activations civil
January 5, 2026

1 8. Statistiques d’activation

1.1 Reprise du code précédent

[1]: import random

import torch

import torch.nn.functional as F
import matplotlib.pyplot as plt
Jmatplotlib inline

1.1.1 Words

[2]: class Words(object):
"""Représente une liste de mots, ainsi que la liste ordonnée des caractéres,
~les composants. """

EOS = '.!'

def __init__(self, filename):
self.filename = filename
self .words = open(self.filename, 'r').read().splitlines()
self.nb_words = len(self.words)
self.chars = sorted(list(set(''.join(self.words))))
self .nb_chars = len(self.chars) + 1 # On ajoute 1 pour EOS
self.ctoi = {c:i+1 for i,c in enumerate(self.chars)}
self.ctoil[self.E0S] = O
self.itoc = {i:s for s,i in self.ctoi.items()}

def __repr__(self):

= [

.append ("<Words")

.append(f' filename="{self.filenamel}""')
.append(f' nb_words="{self.nb_words}"')
.append(f' nb_chars="{self.nb_chars}"/>"')
return '\n'.join(1)

I S =

[3]: words = Words('civil_mots.txt')
print (words)

<Words
filename="civil_mots.txt"
nb_words="7223"
nb_chars="41"/>

1.1.2 Datasets

[4]: class Datasets:
""hConstruits les jeu de données d'entrainement, de test et de wvalidation.

Prend en paramétres une liste de mots et la taille du contexte pour la,
wprédiction.

nimnn

def build dataset(self, lwords:list, context size:int):
X, Y=1[1, [
for w in lwords:
context = [0] * context_size
for ch in w + self.words.EQS:
ix = self.words.ctoi[ch]
X.append (context)
Y.append (ix)
context = context[1:] + [ix] # crop and append
X = torch.tensor (X)
Y = torch.tensor(Y)
return X, Y

def __init__(self, words:Words, context size:int, seed:int=42):

80, 107, 107

self.shuffled_words = words.words.copy()

random.shuffle(self.shuffled_words)

self.nl = int(0.8*len(self.shuffled words))

self.n2 = int(0.9*len(self.shuffled_words))

self .words = words

self .Xtr, self.Ytr = self._build_dataset(self.shuffled words[:self.nl],
<context_size)

self.Xdev, self.Ydev = self._build_dataset(self.shuffled_words[self.ni:
~self.n2], context_size)

self.Xte, self.Yte = self._build_dataset(self.shuffled_words[self.n2:],
<context_size)

[6]: context_size = 3
datasets = Datasets(words, context_size)

1.1.3 Hyperparametres

[6]: vocab_size = words.nb_chars

e_dims

10 # the dimensionality of the character embedding vectors

n_hidden = 200 # the number of meurons in the hidden layer of the FFN
seed = 2147483647

1.1.4 Réseau: classe BengioFFN

[7]: class BengioFFN:

def

def

__init__(self, e_dims, n_hidden, context_size, nb_chars, g):
self.g = g

self .nb_chars = nb_chars

self.e_dims = e_dims

self.n_hidden = n_hidden

self.context_size = context_size

self.create_network()

layers(self):

self.C = torch.randn((self.nb_chars, self.e_dims), generator=self.g)
fan_in = self.context_size * self.e_dims

tanh_gain = 5/3

self .W1 = torch.randn((self.context_size * self.e_dims, self.n_hidden),

wgenerator=self.g) * (tanh_gain / (fan_in ** 0.5))

self .W2 = torch.randn((self.n_hidden, self.nb_chars), generator=self.g)

»*x 0.01 # Pour l'entropie

def

self.b2 = torch.randn(self.nb_chars, generator=self.g) * 0
self .bngain = torch.ones((1, n_hidden))
self .bnbias = torch.zeros((1, n_hidden))

create network(self):

self.layers()

self.loss = None

self.steps = 0

self .parameters = [self.C, self.Wl, self.W2, self.b2, self.bngain, self.

~bnbias]

self .nb_parameters = sum(p.nelement() for p in self.parameters) #,

wnumber of parameters in total

def

for p in self.parameters:

p.requires_grad = True
self .bnmean_running = torch.zeros((1, n_hidden))
self .bnstd_running = torch.zeros((1, n_hidden))

forward(self, X, Y):
self.emb = self.C[X] # Embed characters into wvectors

self.embcat = self.emb.view(self.emb.shapel[0], -1) # Concatenate the,
<vectors
Linear layer
self .hpreact = self.embcat @ self.Wl # hidden layer pre-activation
BatchlNorm layer
self .bnmeani = self.hpreact.mean(0, keepdim=True)
self .bnstdi = self.hpreact.std(0, keepdim=True)
self .hpreact = self.bngain * (self.hpreact - self.bnmeani) / self.
~bnstdi + self.bnbias
Non linearity
self.h = torch.tanh(self .hpreact) # hidden layer
self.logits = self.h Q@ self.W2 + self.b2 # output layer
self.loss = F.cross_entropy(self.logits, Y) # loss function
mean, std
with torch.no_grad():
self .bnmean_running = 0.999 * self.bnmean_running + 0.001 * self.
~bnmeani
self .bnstd_running = 0.999 * self.bnstd_running + 0.001 * self.
~bnstdi

def backward(self):
for p in self.parameters:
p.grad = None
self.loss.backward()

def train(self, datasets: Datasets, max_steps, mini_batch_size):
lossi = []
for i in range(max_steps):
minibatch construct
ix = torch.randint (0, datasets.Xtr.shape[0], (mini_batch_size,),
wgenerator=self.g)
Xb, Yb = datasets.Xtr[ix], datasets.Ytr[ix]

forward pass
self.forward(Xb, Yb)

backward pass
self .backward()

update
lr = 0.2 if i < 100000 else 0.02 # step learning rate decay
self .update_grad(lr)

track stats
if i % 10000 == O:

print(£"{i:7d}/{max_steps:7d}: {self.loss.item():.4f}")
lossi.append(self.loss.logl0().item())

self.steps += max_steps
return lossi

def update_grad(self, 1lr):
for p in self.parameters:
p.data += -1r * p.grad

Q@torch.no_grad() # this decorator disables gradient tracking
def compute_loss(self, X, Y):
emb = self.C[X] # Embed characters into vectors
embcat = emb.view(emb.shape[0], -1) # Concatenate the vectors
hpreact = embcat Q@ self.Wl # hidden layer pre-activation
hpreact = self.bngain * (hpreact - self.bnmean_running) / self.
~bnstd_running + self.bnbias
h = torch.tanh(hpreact) # hidden layer
logits = h @ self.W2 + self.b2 # output layer
loss = F.cross_entropy(logits, Y) # loss function
return loss

Q@torch.no_grad() # this decorator disables gradient tracking
def training loss(self, datasets:Datasets):
loss = self.compute_loss(datasets.Xtr, datasets.Ytr)
return loss.item()

Q@torch.no_grad() # this decorator disables gradient tracking
def test_loss(self, datasets:Datasets):
loss = self.compute_loss(datasets.Xte, datasets.Yte)
return loss.item()

Q@torch.no_grad() # this decorator disables gradient tracking
def dev_loss(self, datasets:Datasets):
loss = self.compute_loss(datasets.Xdev, datasets.Xdev)
return loss.item()

@torch.no_grad()
def generate_word(self, itoc, g):
out = []
context = [0] * self.context_size
while True:
emb = self.C[torch.tensor([context])]
embcat = emb.view(l, -1)
hpreact = embcat 0@ self.Wl
hpreact = self.bngain * (hpreact - self.bnmean_running) / self.
~bnstd_running + self.bnbias
h = torch.tanh(hpreact)
logits = h @ self.W2 + self.b2
probs = F.softmax(logits, dim=1)

Sample from the probability distribution

ix = torch.multinomial (probs, num_samples=1, generator=g).item()

Shift the context window

context = context[1:] + [ix]

Store the generated character

if ix !'= 0:
out .append (ix)

else:
Stop when encounting '.
break

return ''.join(itoc[i] for i in out)

!

def __repr__(self):

(]

.append ("<BengioMLP")

.append(f' nb_chars="{self.nb_chars}"')
.append(f' e_dims="{self.e_dims}"')

.append(f' n_hidden="{self.n_hidden}"')
.append(f' context_size="{self.context_sizel}"')
.append(f' loss="{self.loss}"')

.append(f' steps="{self.steps}"')

.append(f' nb_parameters="{self.nb_parametersl}"/>')
return '\n'.join(1)

HoH

[8]: g = torch.Generator() .manual_seed(seed)
nn = BengioFFN(e_dims, n_hidden, context_size, words.nb_chars, g)
print(nn)

<BengioMLP
nb_chars="41"
e_dims="10"
n_hidden="200"
context_size="3"
loss="None"
steps="0"
nb_parameters="15051"/>

[9]: max_steps = 200000
mini_batch_size = 32
lossi = nn.train(datasets, max_steps, mini_batch_size)
train_loss = nn.training loss(datasets)
val loss = nn.test_loss(datasets)
print(f"{train_loss=}")
print(f"{val_loss=}")

0/ 200000: 3.7006
10000/ 200000: 2.4151
20000/ 200000: 1.8738

30000/
40000/
50000/
60000/
70000/
80000/
90000/
100000/
110000/
120000/
130000/
140000/
150000/
160000/
170000/
180000/
190000/

200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
200000:
train_loss=1.522524118423462
val_loss=1.6819177865982056

B R R R NNR,R PR PR R RNDR PR NDN

.2808
.0681
.4217
.4718
.2234
.4571
.8084
.7370
.5454
.3682
L7276
.1923
.35561
.5709
.4848
.3914
1.

6419

[10]: plt.plot(torch.tensor(lossi).view(-1,1000) .mean(1));

0.375

0.350 ~

0.325 +

0.300 ~

0.275

0.250 ~

0.225

0.200

T
100

T
125

T
150

T
175

T
200

1.2 “torch-ification”: Linear, BatchNormld, vers des réseaux plus profonds

API presque identique aux classes similaires dans torch.nn.

[11]: | class Linear:
"""Linear layer.

Similar to <https://pytorch.org/docs/stable/generated/torch.nn.Linear.html>
nimnn
def __init__(self, fan_in, fan_out, bias=True):

self .weight = torch.randn((fan_in, fan_out)) / fan_in**0.5

self.bias = torch.zeros(fan_out) if bias else None

def __call__(self, x):
self.out = x Q@ self.weight
if self.bias is not None:

self.out += self.bias
return self.out

def parameters(self):
return [self.weight] + ([] if self.bias is None else [self.bias])

[12]: | class BatchNormild:
"""Batch normalization layer.

Similar to <https://pytorch.org/docs/stable/generated/torch.nn.BatchNormld.
~html#torch.nn.BatchNormld>

nimnn

def __init__(self, dim, eps=le-5, momentum=0.1):
self.eps = eps
self .momentum = momentum
self.training = True
parameters (trained with backprop)
self .gamma = torch.ones(dim)
self.beta = torch.zeros(dim)
buffers (trained with a running 'momentum update')
self .running mean = torch.zeros(dim)
self.running var = torch.ones(dim)

def __call__(self, x):
calculate the forward pass
if self.training:
xmean = x.mean(0, keepdim=True) # batch mean
xvar = x.var(0, keepdim=True) # batch variance
else:
xmean = self.running_mean
xvar = self.running_var

https://pytorch.org/docs/stable/nn.html

xhat = (x - xmean) / torch.sqrt(xvar + self.eps) # normalize to unity
—variance
self.out = self.gamma * xhat + self.beta
update the buffers
if self.training:
with torch.no_grad():
self .running mean = (1 - self.momentum) * self.running mean +
~self .momentum * xmean
self .running var = (1 - self.momentum) * self.running var +
~self .momentum * xvar
return self.out

def parameters(self):
return [self.gamma, self.beta]

[13]: class Tanh:

def __call__(self, x):
self.out = torch.tanh(x)
return self.out

def parameters(self):
return []

[14]: class TorchBengioFFN:

def __init__(self, e_dims, n_hidden, context_size, nb_chars, g):
self.g = g
self .nb_chars = nb_chars
self.e_dims = e_dims
self.n_hidden = n_hidden
self.context_size = context_size
self.steps = 0
self.create_network()

def _create_layers(self):
self.layers = [
Linear(self.e_dims * self.context _size, self.n_hidden, bias=False),
«BatchNormid(self.n_hidden), Tanh(),
Linear(n_hidden, vocab_size), BatchNormid(vocab_size),
]
with torch.no_grad():
last layer: make less confident
self.layers[-1] .gamma *= 0.1
all other layers: apply gain
for layer in self.layers[:-1]:
if isinstance(layer, Linear):

layer.weight *= 5/3

def create_network(self):
self.C = torch.randn((self.nb_chars, self.e_dims), generator=self.g)
self._create_layers()
self .parameters = [self.C] + [p for layer in self.layers for p in layer.
~parameters()]
for p in self.parameters:
p.requires_grad = True
self .nb_parameters = sum(p.nelement() for p in self.parameters)

def forward(self, X, Y):
emb = self.C[X] # embed the characters into vectors
x = emb.view(emb.shape[0], -1) # concatenate the vectors
for layer in self.layers:
x = layer(x)
self.loss = F.cross_entropy(x, Y) # loss function

def backward(self):
for layer in self.layers:
layer.out.retain_grad() # AFTER_DEBUG: would take out retain_graph
for p in self.parameters:
p.grad = None
self.loss.backward()

def train(self, datasets: Datasets, max_steps, mini_batch_size):
lossi = []
for i in range(max_steps):
minibatch construct
ix = torch.randint (0, datasets.Xtr.shape[0], (mini_batch_size,),
wgenerator=self.g)
Xb, Yb = datasets.Xtr[ix], datasets.Ytr[ix]

forward pass
self.forward(Xb, Yb)

backward pass
self.backward()

update
lr = 0.2 if i < 100000 else 0.02 # step learning rate decay
self.update_grad(lr)

track stats
if i % 10000 == O:

print (£"{i:7d}/{max_steps:7d}: {self.loss.item():.4f}")
lossi.append(self.loss.logl0() .item())

10

self.steps += max_steps
return lossi

def update_grad(self, 1lr):
for p in self.parameters:
p.data += -1r * p.grad

Q@torch.no_grad() # this decorator disables gradient tracking
def compute_loss(self, X, Y):

emb = self.C[X] # Embed characters into vectors

x = emb.view(emb.shape[0], -1) # Concatenate the vectors

for layer in self.layers:

x = layer (x)
loss = F.cross_entropy(x, Y)
return loss

Q@torch.no_grad() # this decorator disables gradient tracking
def training loss(self, datasets:Datasets):
loss = self.compute_loss(datasets.Xtr, datasets.Ytr)
return loss.item()

@torch.no_grad() # this decorator disables gradient tracking
def test_loss(self, datasets:Datasets):
loss = self.compute_loss(datasets.Xte, datasets.Yte)
return loss.item()

Q@torch.no_grad() # this decorator disables gradient tracking
def dev_loss(self, datasets:Datasets):
loss = self.compute_loss(datasets.Xdev, datasets.Xdev)
return loss.item()

@torch.no_grad()
def generate_word(self, itoc, g):
for layer in self.layers:
layer.training = False
out = []
context = [0] #* self.context size
while True:
emb = self.C[torch.tensor([context])]
x = emb.view(emb.shape[0], -1) # concatenate the vectors
for layer in self.layers:
x = layer(x)
logits = x
probs = F.softmax(logits, dim=1)
Sample from the probability distribution
ix = torch.multinomial (probs, num_samples=1, generator=g).item()
Shift the context window

11

context = context[1:] + [ix]
Store the generated character
if ix !'= O:

out .append (ix)
else:

Stop when encounting '.'
break

return ''

.join(itoc[i] for i in out)

def __repr__(self):

= [

.append ("<BengioMLP")

.append(f' nb_chars="{self.nb_chars}""')
.append(f' e_dims="{self.e_dims}""')

.append(f' n_hidden="{self.n_hiddenl}"')
.append(f' context_size="{self.context_sizel}"')
.append(f' steps="{self.steps}"')

.append(f' nb_parameters="{self.nb_parametersl}"/>')
return '\n'.join(1)

H o

[15]: g = torch.Generator() .manual_seed(seed)
nn = TorchBengioFFN(e_dims, n_hidden, context_size, words.nb_chars, g)
print(nn)

<BengioMLP
nb_chars="41"
e_dims="10"
n_hidden="200"
context_size="3"
steps="0"
nb_parameters="15133"/>

[16]: lossi = nn.train(datasets, max_steps, mini_batch_size)
train_loss = nn.training_loss(datasets)
val loss = nn.test_loss(datasets)
print(f"{train_loss=}")
print (f"{val_loss=1}")

0/ 200000: 3.7297
10000/ 200000: 1.7267
20000/ 200000: 1.8718
30000/ 200000: 1.3533
40000/ 200000: 1.4859
50000/ 200000: 1.5927
60000/ 200000: 1.8781
70000/ 200000: 1.6199
80000/ 200000: 1.8822
90000/ 200000: 1.8774

12

100000/ 200000: 1.8686
110000/ 200000: 1.7877
120000/ 200000: 1.6906
130000/ 200000: 1.3904
140000/ 200000: 1.7476
150000/ 200000: 1.5275
160000/ 200000: 1.5421
170000/ 200000: 1.6666
180000/ 200000: 1.3521

190000/ 200000: 1.6354
train_loss=1.5337094068527222
val_loss=1.6885684728622437

[17]: plt.plot(torch.tensor(lossi).view(-1,1000) .mean(1));

0.40 -

0.35 +

0.30 4

0.25 +

0.20 . T |

T T T T T
0 25 50 75 100 125 150 175 200

[18]: g = torch.Generator () .manual_seed(seed + 10)
for _ in range(20):
word = nn.generate_word(words.itoc, g)
print (word)

aveilles
saien
impdét

13

[19]:

[21]:

répondaraitration
compublité
expulent

posée

posée

un

condorégles
subsistement
affachés
souévient

hes

factée

falbution

liolé
tymisespoquération
pe

nor

1.3 Réseau plus profond

self.

self.

self.

self.

self.

n_hidden,

n_hidden,

n_hidden,

n_hidden,

n_hidden,

bias=False),

bias=False),

bias=False),

bias=False),

bias=False),

def _deep_create_layers(self):
self.layers = [
Linear(self.e_dims * self.context_size,
~;BatchNormid(self.n_hidden), Tanh(),
Linear(self.n_hidden,
~;BatchNormid(self.n_hidden), Tanh(),
Linear(self.n_hidden,
~BatchNormid(self.n_hidden), Tanh(),
Linear(self.n_hidden,
-.BatchNormild(self.n _hidden), Tanh(),
Linear(self.n_hidden,
-.BatchNormld(self.n _hidden), Tanh(),
Linear(n_hidden, vocab_size), BatchNormid(vocab_size),
]
with torch.no_grad():
last layer: make less confident
self.layers[-1] .gamma *= 0.1
TorchBengioFFN._create_layers = _deep_create_layers
g = torch.Generator() .manual_seed(seed)
nn = TorchBengioFFN(e_dims, n_hidden, context_size, words.nb_chars, g)
print(nn)
max_steps = 200000
lossi = nn.train(datasets, max_steps, mini_batch_size)
<BengioMLP
nb_chars="41"
e_dims="10"

14

[22]:

n_hidden="200"

context_size="3"

steps="0"

nb_parameters="176733"/>
0/ 200000: 3.7337

10000/ 200000: 1.6387
20000/ 200000: 1.5760
30000/ 200000: 1.2514
40000/ 200000: 1.3076
50000/ 200000: 1.4092
60000/ 200000: 1.6595
70000/ 200000: 1.3982
80000/ 200000: 1.7699
90000/ 200000: 1.4177
100000/ 200000: 1.7193
110000/ 200000: 1.5801
120000/ 200000: 1.5591
130000/ 200000: 1.1626
140000/ 200000: 1.4381
150000/ 200000: 1.3407
160000/ 200000: 1.2633
170000/ 200000: 1.2788
180000/ 200000: 1.1989
190000/ 200000: 1.4888

1.4 Fonctions utiles pour I’étude des activations: santé du réseau
1.4.1 Histogramme d’activation (forward)

Visualisation par histograme de la distribution des activations lors de la passe avant, pour les
couches Tanh. On calcule la moyenne, I’écart-type et la saturation (t.abs() > 0.97) des valeurs.

e Visualiser la sortie des tanh.

« Objectif : une distribution étalée. Eviter les pics exclusifs & -1 et +1 (saturation).

o Alerte : comme vu précédemment, si une colonne est 100% blanche (toujours saturée), le
neurone est mort.

def plot_forward_tanh(layers):
visualize histograms
plt.figure(figsize=(20, 4)) # width and height of the plot
legends = []
for i, layer in enumerate(layers[:-1]): # mote: exclude the output layer
if isinstance(layer, Tanh):
t = layer.out
print('layer %d (%10s): mean %+.2f, std %.2f, saturated: %.2f%%' %wu
(i, layer.__class__.__name__, t.mean(), t.std(), (t.abs() > 0.97).float().
~mean ()*100))
hy, hx = torch.histogram(t, density=True)
plt.plot(hx[:-1].detach(), hy.detach())

15

legends.append(f'layer {i} ({layer.__class__.__name__}')
plt.legend(legends);
plt.title('activation distribution')

[23]: plot_forward_tanh(nn.layers)

layer 2 (Tanh): mean +0.00, std 0.75, saturated: 24.47Y
layer 5 (Tanh): mean -0.00, std 0.80, saturated: 28.20Y%
layer 8 (Tanh) : mean +0.01, std 0.81, saturated: 29.75Y%
layer 11 (Tanh) : mean +0.01, std 0.81, saturated: 29.84Y
layer 14 (Tanh) : mean -0.00, std 0.82, saturated: 29.47Y%

/var/folders/f3/nrzvpdb51b7f_cd_50qlhsvr0000gn/T/ipykernel 82618/2139251471.py:8
: UserWarning: Converting a tensor with requires_grad=True to a scalar may lead
to unexpected behavior.

Consider using tensor.detach() first. (Triggered internally at /Users/runner/wor
k/pytorch/pytorch/pytorch/torch/csrc/autograd/generated/python_variable_methods.

cpp:837.)
print('layer %d (%10s): mean %+.2f, std %.2f, saturated: %.2f%%' % (4,
layer.__class__.__name__, t.mean(), t.std(), (t.abs() >

0.97) .float () .mean() *100))

activation distribution

— layer 2 (Tanh
layer 5 (Tanh
—— layer 8 (Tanh
— layer 11 (Tanh
—— layer 14 (Tanh

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

1.4.2 Histogrammes des gradients (backward)

e Visualiser les gradients des poids a chaque couche.
o Objectif : Les gradients doivent avoir la méme échelle (méme écart-type) dans toutes les
couches. Sinon, on a un probléme de vanishing ou exploding gradient.

[24]: def plot_backward_tanh(layers):
visualize histograms
plt.figure(figsize=(20, 4)) # width and height of the plot
legends = []
for i, layer in enumerate(layers[:-1]): # note: exzclude the output layer
if isinstance(layer, Tanh):
t = layer.out.grad
print('layer %d (%10s): mean %+f, std %e' % (i, layer.__class__
«__name__, t.mean(), t.std()))
hy, hx = torch.histogram(t, density=True)

16

plt.plot(hx[:-1].detach(), hy.detach())
legends.append(f'layer {i} ({layer.__class__.__name__}')
plt.legend(legends);
plt.title('gradient distribution')

[25]: plot_backward_tanh(nn.layers)

layer 2 (Tanh) : mean -0.000000, std 2.198041e-03
layer 5 (Tanh) : mean -0.000000, std 2.340218e-03
layer 8 (Tanh) : mean -0.000000, std 2.221729e-03
layer 11 (Tanh) : mean -0.000000, std 1.866999e-03
layer 14 (Tanh) : mean -0.000000, std 2.408152e-03

gradient distribution

— layer 2 (Tanh
2004 layer 5 (Tanh
— layer 8 (Tanh
2504 — layer 11 (Tanh
— layer 14 (Tanh

-0.02 -0.01 0.00 0.01

1.5 Exemples

1.5.1 Test sans ’utilisation de 5/3

[44]: def _deep_create_layers(self):
self.layers = [

Linear(self.e_dims * self.context size, self.n_hidden), Tanh(),

Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),

Linear (n_hidden, vocab_size),
]
with torch.no_grad():
last layer: make less confident
self .layers[-1] .weight *= 0.1
for layer in self.layers[:-1]:
if isinstance(layer, Linear):
layer.weight *= 1.0 #5/3
TorchBengioFFN._create_layers = _deep_create_layers

[45]: g = torch.Generator() .manual_seed(seed)
nn_no_kaiming = TorchBengioFFN(e_dims, n_hidden, context_size, words.nb_chars,

qg)

17

print(nn_no_kaiming)

max_steps = 1000
nn_no_kaiming.train(datasets, max_steps, mini_batch_size)

lossi

<BengioMLP
nb_chars="41"
e_dims="10"
n_hidden="200"
context_size="3"

steps="0"
nb_parameters="175651"/>
0/ 1000: 3.7100

[46]: plot_forward_tanh(nn_no_kaiming.layers)

layer
layer
layer
layer
layer

©O© N o1 W~

N AN AN AN A

Tanh) :
Tanh) :
Tanh) :
Tanh) :
Tanh) :

mean
mean
mean
mean
mean

+0.01,
-0.00,
-0.00,
-0.02,
-0.02,

std 0.66, saturated:
std 0.64, saturated:
std 0.65, saturated:
std 0.65, saturated:
std 0.55, saturated:

activation distribution

6.83%
4.33Y%
4.23%
5.03Y%
2.31%

— layer 1 (Tanh

layer 3 (Tanh
—— layer 5 (Tanh
— layer 7 (Tanh
— layer 9 (Tanh

-1.00 —-0.75

1.5.2 Initialisation avec un facteur trop grand

[47]: def _deep_create_layers(self):
self.layers = [
Linear(self.e_dims * self.context _size, self.

]

Linear(
Linear(
Linear(
Linear(

self.n_hidden, self.
self.n_hidden, self.
self.n_hidden, self.
self.n_hidden, self.

Linear(n_hidden, vocab_size),

with torch.no_grad(Q):
last layer: make less confident
self.layers[-1] .weight *= 0.1

for layer in self.layers[:-1]:

if isinstance(layer, Linear):

18

n_hidden),
n_hidden),
n_hidden),
n_hidden),
n_hidden),

Tanh (),
Tanh(),
Tanh (),
Tanh(),
Tanh(),

layer.weight *= 3
TorchBengioFFN._create_layers = _deep_create_layers

[48]: g = torch.Generator() .manual_seed(seed)
nn_no_kaiming = TorchBengioFFN(e_dims, n_hidden, context_size, words.nb_chars,
fag)
print(nn_no_kaiming)
max_steps = 1000
lossi = nn_no_kaiming.train(datasets, max_steps, mini_batch_size)

<BengioMLP
nb_chars="41"
e_dims="10"
n_hidden="200"
context_size="3"
steps="0"
nb_parameters="175651"/>

0/ 1000: 3.6848

[49]: plot_forward_tanh(nn_no_kaiming.layers)

layer 1 (Tanh) : mean +0.03, std 0.87, saturated: 50.64Y
layer 3 (Tanh): mean -0.04, std 0.89, saturated: 53.08%
layer 5 (Tanh) : mean -0.00, std 0.89, saturated: 56.42Y
layer 7 (Tanh): mean +0.00, std 0.89, saturated: 54.92%
layer 9 (Tanh): mean +0.03, std 0.87, saturated: 46.58

activation distribution

— layer 1 (Tanh

-1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00

19

	8. Statistiques d'activation
	Reprise du code précédent
	Words
	Datasets
	Hyperparamètres
	Réseau: classe BengioFFN

	``torch-ification'': Linear, BatchNorm1d, vers des réseaux plus profonds
	Réseau plus profond
	Fonctions utiles pour l'étude des activations: santé du réseau
	Histogramme d'activation (forward)
	Histogrammes des gradients (backward)

	Exemples
	Test sans l'utilisation de 5/3
	Initialisation avec un facteur trop grand

