
activations_civil

January 5, 2026

1 8. Statistiques d’activation
1.1 Reprise du code précédent

[1]: import random

import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
%matplotlib inline

1.1.1 Words

[2]: class Words(object):
"""Représente une liste de mots, ainsi que la liste ordonnée des caractères␣

↪les composants."""

EOS = '.'

def __init__(self, filename):
self.filename = filename
self.words = open(self.filename, 'r').read().splitlines()
self.nb_words = len(self.words)
self.chars = sorted(list(set(''.join(self.words))))
self.nb_chars = len(self.chars) + 1 # On ajoute 1 pour EOS
self.ctoi = {c:i+1 for i,c in enumerate(self.chars)}
self.ctoi[self.EOS] = 0
self.itoc = {i:s for s,i in self.ctoi.items()}

def __repr__(self):
l = []
l.append("<Words")
l.append(f' filename="{self.filename}"')
l.append(f' nb_words="{self.nb_words}"')
l.append(f' nb_chars="{self.nb_chars}"/>')
return '\n'.join(l)

1

[3]: words = Words('civil_mots.txt')
print(words)

<Words
filename="civil_mots.txt"
nb_words="7223"
nb_chars="41"/>

1.1.2 Datasets

[4]: class Datasets:
"""Construits les jeu de données d'entraînement, de test et de validation.

Prend en paramètres une liste de mots et la taille du contexte pour la␣
↪prédiction.

"""

def _build_dataset(self, lwords:list, context_size:int):
X, Y = [], []
for w in lwords:

context = [0] * context_size
for ch in w + self.words.EOS:

ix = self.words.ctoi[ch]
X.append(context)
Y.append(ix)
context = context[1:] + [ix] # crop and append

X = torch.tensor(X)
Y = torch.tensor(Y)
return X, Y

def __init__(self, words:Words, context_size:int, seed:int=42):
80%, 10%, 10%
self.shuffled_words = words.words.copy()
random.shuffle(self.shuffled_words)
self.n1 = int(0.8*len(self.shuffled_words))
self.n2 = int(0.9*len(self.shuffled_words))
self.words = words
self.Xtr, self.Ytr = self._build_dataset(self.shuffled_words[:self.n1],␣

↪context_size)
self.Xdev, self.Ydev = self._build_dataset(self.shuffled_words[self.n1:

↪self.n2], context_size)
self.Xte, self.Yte = self._build_dataset(self.shuffled_words[self.n2:],␣

↪context_size)

[5]: context_size = 3
datasets = Datasets(words, context_size)

2

1.1.3 Hyperparamètres

[6]: vocab_size = words.nb_chars
e_dims = 10 # the dimensionality of the character embedding vectors
n_hidden = 200 # the number of neurons in the hidden layer of the FFN
seed = 2147483647

1.1.4 Réseau: classe BengioFFN

[7]: class BengioFFN:

def __init__(self, e_dims, n_hidden, context_size, nb_chars, g):
self.g = g
self.nb_chars = nb_chars
self.e_dims = e_dims
self.n_hidden = n_hidden
self.context_size = context_size
self.create_network()

def layers(self):
self.C = torch.randn((self.nb_chars, self.e_dims), generator=self.g)
fan_in = self.context_size * self.e_dims
tanh_gain = 5/3
self.W1 = torch.randn((self.context_size * self.e_dims, self.n_hidden),␣

↪generator=self.g) * (tanh_gain / (fan_in ** 0.5))
self.W2 = torch.randn((self.n_hidden, self.nb_chars), generator=self.g)␣

↪* 0.01 # Pour l'entropie
self.b2 = torch.randn(self.nb_chars, generator=self.g) * 0
self.bngain = torch.ones((1, n_hidden))
self.bnbias = torch.zeros((1, n_hidden))

def create_network(self):
self.layers()
self.loss = None
self.steps = 0
self.parameters = [self.C, self.W1, self.W2, self.b2, self.bngain, self.

↪bnbias]
self.nb_parameters = sum(p.nelement() for p in self.parameters) #␣

↪number of parameters in total
for p in self.parameters:

p.requires_grad = True
self.bnmean_running = torch.zeros((1, n_hidden))
self.bnstd_running = torch.zeros((1, n_hidden))

def forward(self, X, Y):
self.emb = self.C[X] # Embed characters into vectors

3

self.embcat = self.emb.view(self.emb.shape[0], -1) # Concatenate the␣
↪vectors

Linear layer
self.hpreact = self.embcat @ self.W1 # hidden layer pre-activation
BatchNorm layer
self.bnmeani = self.hpreact.mean(0, keepdim=True)
self.bnstdi = self.hpreact.std(0, keepdim=True)
self.hpreact = self.bngain * (self.hpreact - self.bnmeani) / self.

↪bnstdi + self.bnbias
Non linearity
self.h = torch.tanh(self.hpreact) # hidden layer
self.logits = self.h @ self.W2 + self.b2 # output layer
self.loss = F.cross_entropy(self.logits, Y) # loss function
mean, std
with torch.no_grad():

self.bnmean_running = 0.999 * self.bnmean_running + 0.001 * self.
↪bnmeani

self.bnstd_running = 0.999 * self.bnstd_running + 0.001 * self.
↪bnstdi

def backward(self):
for p in self.parameters:

p.grad = None
self.loss.backward()

def train(self, datasets: Datasets, max_steps, mini_batch_size):
lossi = []
for i in range(max_steps):

minibatch construct
ix = torch.randint(0, datasets.Xtr.shape[0], (mini_batch_size,),␣

↪generator=self.g)
Xb, Yb = datasets.Xtr[ix], datasets.Ytr[ix]

forward pass
self.forward(Xb, Yb)

backward pass
self.backward()

update
lr = 0.2 if i < 100000 else 0.02 # step learning rate decay
self.update_grad(lr)

track stats
if i % 10000 == 0:

print(f"{i:7d}/{max_steps:7d}: {self.loss.item():.4f}")
lossi.append(self.loss.log10().item())

4

self.steps += max_steps
return lossi

def update_grad(self, lr):
for p in self.parameters:

p.data += -lr * p.grad

@torch.no_grad() # this decorator disables gradient tracking
def compute_loss(self, X, Y):

emb = self.C[X] # Embed characters into vectors
embcat = emb.view(emb.shape[0], -1) # Concatenate the vectors
hpreact = embcat @ self.W1 # hidden layer pre-activation
hpreact = self.bngain * (hpreact - self.bnmean_running) / self.

↪bnstd_running + self.bnbias
h = torch.tanh(hpreact) # hidden layer
logits = h @ self.W2 + self.b2 # output layer
loss = F.cross_entropy(logits, Y) # loss function
return loss

@torch.no_grad() # this decorator disables gradient tracking
def training_loss(self, datasets:Datasets):

loss = self.compute_loss(datasets.Xtr, datasets.Ytr)
return loss.item()

@torch.no_grad() # this decorator disables gradient tracking
def test_loss(self, datasets:Datasets):

loss = self.compute_loss(datasets.Xte, datasets.Yte)
return loss.item()

@torch.no_grad() # this decorator disables gradient tracking
def dev_loss(self, datasets:Datasets):

loss = self.compute_loss(datasets.Xdev, datasets.Xdev)
return loss.item()

@torch.no_grad()
def generate_word(self, itoc, g):

out = []
context = [0] * self.context_size
while True:

emb = self.C[torch.tensor([context])]
embcat = emb.view(1, -1)
hpreact = embcat @ self.W1
hpreact = self.bngain * (hpreact - self.bnmean_running) / self.

↪bnstd_running + self.bnbias
h = torch.tanh(hpreact)
logits = h @ self.W2 + self.b2
probs = F.softmax(logits, dim=1)

5

Sample from the probability distribution
ix = torch.multinomial(probs, num_samples=1, generator=g).item()
Shift the context window
context = context[1:] + [ix]
Store the generated character
if ix != 0:

out.append(ix)
else:

Stop when encounting '.'
break

return ''.join(itoc[i] for i in out)

def __repr__(self):
l = []
l.append("<BengioMLP")
l.append(f' nb_chars="{self.nb_chars}"')
l.append(f' e_dims="{self.e_dims}"')
l.append(f' n_hidden="{self.n_hidden}"')
l.append(f' context_size="{self.context_size}"')
l.append(f' loss="{self.loss}"')
l.append(f' steps="{self.steps}"')
l.append(f' nb_parameters="{self.nb_parameters}"/>')
return '\n'.join(l)

[8]: g = torch.Generator().manual_seed(seed)
nn = BengioFFN(e_dims, n_hidden, context_size, words.nb_chars, g)
print(nn)

<BengioMLP
nb_chars="41"
e_dims="10"
n_hidden="200"
context_size="3"
loss="None"
steps="0"
nb_parameters="15051"/>

[9]: max_steps = 200000
mini_batch_size = 32
lossi = nn.train(datasets, max_steps, mini_batch_size)
train_loss = nn.training_loss(datasets)
val_loss = nn.test_loss(datasets)
print(f"{train_loss=}")
print(f"{val_loss=}")

0/ 200000: 3.7006
10000/ 200000: 2.4151
20000/ 200000: 1.8738

6

30000/ 200000: 2.2808
40000/ 200000: 2.0681
50000/ 200000: 1.4217
60000/ 200000: 1.4718
70000/ 200000: 2.2234
80000/ 200000: 1.4571
90000/ 200000: 1.8084

100000/ 200000: 1.7370
110000/ 200000: 1.5454
120000/ 200000: 1.3682
130000/ 200000: 1.7276
140000/ 200000: 2.1923
150000/ 200000: 1.3551
160000/ 200000: 1.5709
170000/ 200000: 1.4848
180000/ 200000: 1.3914
190000/ 200000: 1.6419
train_loss=1.522524118423462
val_loss=1.6819177865982056

[10]: plt.plot(torch.tensor(lossi).view(-1,1000).mean(1));

7

1.2 “torch-ification”: Linear, BatchNorm1d, vers des réseaux plus profonds
API presque identique aux classes similaires dans torch.nn.

[11]: class Linear:
"""Linear layer.

Similar to <https://pytorch.org/docs/stable/generated/torch.nn.Linear.html>
"""
def __init__(self, fan_in, fan_out, bias=True):

self.weight = torch.randn((fan_in, fan_out)) / fan_in**0.5
self.bias = torch.zeros(fan_out) if bias else None

def __call__(self, x):
self.out = x @ self.weight
if self.bias is not None:

self.out += self.bias
return self.out

def parameters(self):
return [self.weight] + ([] if self.bias is None else [self.bias])

[12]: class BatchNorm1d:
"""Batch normalization layer.

Similar to <https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.
↪html#torch.nn.BatchNorm1d>

"""

def __init__(self, dim, eps=1e-5, momentum=0.1):
self.eps = eps
self.momentum = momentum
self.training = True
parameters (trained with backprop)
self.gamma = torch.ones(dim)
self.beta = torch.zeros(dim)
buffers (trained with a running 'momentum update')
self.running_mean = torch.zeros(dim)
self.running_var = torch.ones(dim)

def __call__(self, x):
calculate the forward pass
if self.training:

xmean = x.mean(0, keepdim=True) # batch mean
xvar = x.var(0, keepdim=True) # batch variance

else:
xmean = self.running_mean
xvar = self.running_var

8

https://pytorch.org/docs/stable/nn.html

xhat = (x - xmean) / torch.sqrt(xvar + self.eps) # normalize to unit␣
↪variance

self.out = self.gamma * xhat + self.beta
update the buffers
if self.training:

with torch.no_grad():
self.running_mean = (1 - self.momentum) * self.running_mean +␣

↪self.momentum * xmean
self.running_var = (1 - self.momentum) * self.running_var +␣

↪self.momentum * xvar
return self.out

def parameters(self):
return [self.gamma, self.beta]

[13]: class Tanh:

def __call__(self, x):
self.out = torch.tanh(x)
return self.out

def parameters(self):
return []

[14]: class TorchBengioFFN:

def __init__(self, e_dims, n_hidden, context_size, nb_chars, g):
self.g = g
self.nb_chars = nb_chars
self.e_dims = e_dims
self.n_hidden = n_hidden
self.context_size = context_size
self.steps = 0
self.create_network()

def _create_layers(self):
self.layers = [

Linear(self.e_dims * self.context_size, self.n_hidden, bias=False),␣
↪BatchNorm1d(self.n_hidden), Tanh(),

Linear(n_hidden, vocab_size), BatchNorm1d(vocab_size),
]
with torch.no_grad():

last layer: make less confident
self.layers[-1].gamma *= 0.1
all other layers: apply gain
for layer in self.layers[:-1]:

if isinstance(layer, Linear):

9

layer.weight *= 5/3

def create_network(self):
self.C = torch.randn((self.nb_chars, self.e_dims), generator=self.g)
self._create_layers()
self.parameters = [self.C] + [p for layer in self.layers for p in layer.

↪parameters()]
for p in self.parameters:

p.requires_grad = True
self.nb_parameters = sum(p.nelement() for p in self.parameters)

def forward(self, X, Y):
emb = self.C[X] # embed the characters into vectors
x = emb.view(emb.shape[0], -1) # concatenate the vectors
for layer in self.layers:

x = layer(x)
self.loss = F.cross_entropy(x, Y) # loss function

def backward(self):
for layer in self.layers:

layer.out.retain_grad() # AFTER_DEBUG: would take out retain_graph
for p in self.parameters:

p.grad = None
self.loss.backward()

def train(self, datasets: Datasets, max_steps, mini_batch_size):
lossi = []
for i in range(max_steps):

minibatch construct
ix = torch.randint(0, datasets.Xtr.shape[0], (mini_batch_size,),␣

↪generator=self.g)
Xb, Yb = datasets.Xtr[ix], datasets.Ytr[ix]

forward pass
self.forward(Xb, Yb)

backward pass
self.backward()

update
lr = 0.2 if i < 100000 else 0.02 # step learning rate decay
self.update_grad(lr)

track stats
if i % 10000 == 0:

print(f"{i:7d}/{max_steps:7d}: {self.loss.item():.4f}")
lossi.append(self.loss.log10().item())

10

self.steps += max_steps
return lossi

def update_grad(self, lr):
for p in self.parameters:

p.data += -lr * p.grad

@torch.no_grad() # this decorator disables gradient tracking
def compute_loss(self, X, Y):

emb = self.C[X] # Embed characters into vectors
x = emb.view(emb.shape[0], -1) # Concatenate the vectors
for layer in self.layers:

x = layer(x)
loss = F.cross_entropy(x, Y)
return loss

@torch.no_grad() # this decorator disables gradient tracking
def training_loss(self, datasets:Datasets):

loss = self.compute_loss(datasets.Xtr, datasets.Ytr)
return loss.item()

@torch.no_grad() # this decorator disables gradient tracking
def test_loss(self, datasets:Datasets):

loss = self.compute_loss(datasets.Xte, datasets.Yte)
return loss.item()

@torch.no_grad() # this decorator disables gradient tracking
def dev_loss(self, datasets:Datasets):

loss = self.compute_loss(datasets.Xdev, datasets.Xdev)
return loss.item()

@torch.no_grad()
def generate_word(self, itoc, g):

for layer in self.layers:
layer.training = False

out = []
context = [0] * self.context_size
while True:

emb = self.C[torch.tensor([context])]
x = emb.view(emb.shape[0], -1) # concatenate the vectors
for layer in self.layers:

x = layer(x)
logits = x
probs = F.softmax(logits, dim=1)
Sample from the probability distribution
ix = torch.multinomial(probs, num_samples=1, generator=g).item()
Shift the context window

11

context = context[1:] + [ix]
Store the generated character
if ix != 0:

out.append(ix)
else:

Stop when encounting '.'
break

return ''.join(itoc[i] for i in out)

def __repr__(self):
l = []
l.append("<BengioMLP")
l.append(f' nb_chars="{self.nb_chars}"')
l.append(f' e_dims="{self.e_dims}"')
l.append(f' n_hidden="{self.n_hidden}"')
l.append(f' context_size="{self.context_size}"')
l.append(f' steps="{self.steps}"')
l.append(f' nb_parameters="{self.nb_parameters}"/>')
return '\n'.join(l)

[15]: g = torch.Generator().manual_seed(seed)
nn = TorchBengioFFN(e_dims, n_hidden, context_size, words.nb_chars, g)
print(nn)

<BengioMLP
nb_chars="41"
e_dims="10"
n_hidden="200"
context_size="3"
steps="0"
nb_parameters="15133"/>

[16]: lossi = nn.train(datasets, max_steps, mini_batch_size)
train_loss = nn.training_loss(datasets)
val_loss = nn.test_loss(datasets)
print(f"{train_loss=}")
print(f"{val_loss=}")

0/ 200000: 3.7297
10000/ 200000: 1.7267
20000/ 200000: 1.8718
30000/ 200000: 1.3533
40000/ 200000: 1.4859
50000/ 200000: 1.5927
60000/ 200000: 1.8781
70000/ 200000: 1.6199
80000/ 200000: 1.8822
90000/ 200000: 1.8774

12

100000/ 200000: 1.8686
110000/ 200000: 1.7877
120000/ 200000: 1.6906
130000/ 200000: 1.3904
140000/ 200000: 1.7476
150000/ 200000: 1.5275
160000/ 200000: 1.5421
170000/ 200000: 1.6666
180000/ 200000: 1.3521
190000/ 200000: 1.6354
train_loss=1.5337094068527222
val_loss=1.6885684728622437

[17]: plt.plot(torch.tensor(lossi).view(-1,1000).mean(1));

[18]: g = torch.Generator().manual_seed(seed + 10)
for _ in range(20):

word = nn.generate_word(words.itoc, g)
print(word)

aveilles
saien
impôt

13

répondaraîtration
compublité
expulent
posée
posée
un
condorégles
subsistement
affachés
souèvient
hes
factée
falbution
liolé
tymisespoquération
pe
nor

1.3 Réseau plus profond

[19]: def _deep_create_layers(self):
self.layers = [

Linear(self.e_dims * self.context_size, self.n_hidden, bias=False),␣
↪BatchNorm1d(self.n_hidden), Tanh(),

Linear(self.n_hidden, self.n_hidden, bias=False),␣
↪BatchNorm1d(self.n_hidden), Tanh(),

Linear(self.n_hidden, self.n_hidden, bias=False),␣
↪BatchNorm1d(self.n_hidden), Tanh(),

Linear(self.n_hidden, self.n_hidden, bias=False),␣
↪BatchNorm1d(self.n_hidden), Tanh(),

Linear(self.n_hidden, self.n_hidden, bias=False),␣
↪BatchNorm1d(self.n_hidden), Tanh(),

Linear(n_hidden, vocab_size), BatchNorm1d(vocab_size),
]
with torch.no_grad():

last layer: make less confident
self.layers[-1].gamma *= 0.1

TorchBengioFFN._create_layers = _deep_create_layers

[21]: g = torch.Generator().manual_seed(seed)
nn = TorchBengioFFN(e_dims, n_hidden, context_size, words.nb_chars, g)
print(nn)
max_steps = 200000
lossi = nn.train(datasets, max_steps, mini_batch_size)

<BengioMLP
nb_chars="41"
e_dims="10"

14

n_hidden="200"
context_size="3"
steps="0"
nb_parameters="176733"/>

0/ 200000: 3.7337
10000/ 200000: 1.6387
20000/ 200000: 1.5760
30000/ 200000: 1.2514
40000/ 200000: 1.3076
50000/ 200000: 1.4092
60000/ 200000: 1.6595
70000/ 200000: 1.3982
80000/ 200000: 1.7699
90000/ 200000: 1.4177

100000/ 200000: 1.7193
110000/ 200000: 1.5801
120000/ 200000: 1.5591
130000/ 200000: 1.1626
140000/ 200000: 1.4381
150000/ 200000: 1.3407
160000/ 200000: 1.2633
170000/ 200000: 1.2788
180000/ 200000: 1.1989
190000/ 200000: 1.4888

1.4 Fonctions utiles pour l’étude des activations: santé du réseau
1.4.1 Histogramme d’activation (forward)

Visualisation par histograme de la distribution des activations lors de la passe avant, pour les
couches Tanh. On calcule la moyenne, l’écart-type et la saturation (t.abs() > 0.97) des valeurs.

• Visualiser la sortie des tanh.
• Objectif : une distribution étalée. Éviter les pics exclusifs à -1 et +1 (saturation).
• Alerte : comme vu précédemment, si une colonne est 100% blanche (toujours saturée), le

neurone est mort.

[22]: def plot_forward_tanh(layers):
visualize histograms
plt.figure(figsize=(20, 4)) # width and height of the plot
legends = []
for i, layer in enumerate(layers[:-1]): # note: exclude the output layer

if isinstance(layer, Tanh):
t = layer.out
print('layer %d (%10s): mean %+.2f, std %.2f, saturated: %.2f%%' %␣

↪(i, layer.__class__.__name__, t.mean(), t.std(), (t.abs() > 0.97).float().
↪mean()*100))

hy, hx = torch.histogram(t, density=True)
plt.plot(hx[:-1].detach(), hy.detach())

15

legends.append(f'layer {i} ({layer.__class__.__name__}')
plt.legend(legends);
plt.title('activation distribution')

[23]: plot_forward_tanh(nn.layers)

layer 2 (Tanh): mean +0.00, std 0.75, saturated: 24.47%
layer 5 (Tanh): mean -0.00, std 0.80, saturated: 28.20%
layer 8 (Tanh): mean +0.01, std 0.81, saturated: 29.75%
layer 11 (Tanh): mean +0.01, std 0.81, saturated: 29.84%
layer 14 (Tanh): mean -0.00, std 0.82, saturated: 29.47%

/var/folders/f3/nrzvpdb51b7f_cd_50qlhsvr0000gn/T/ipykernel_82618/2139251471.py:8
: UserWarning: Converting a tensor with requires_grad=True to a scalar may lead
to unexpected behavior.
Consider using tensor.detach() first. (Triggered internally at /Users/runner/wor
k/pytorch/pytorch/pytorch/torch/csrc/autograd/generated/python_variable_methods.
cpp:837.)

print('layer %d (%10s): mean %+.2f, std %.2f, saturated: %.2f%%' % (i,
layer.__class__.__name__, t.mean(), t.std(), (t.abs() >
0.97).float().mean()*100))

1.4.2 Histogrammes des gradients (backward)

• Visualiser les gradients des poids à chaque couche.
• Objectif : Les gradients doivent avoir la même échelle (même écart-type) dans toutes les

couches. Sinon, on a un problème de vanishing ou exploding gradient.

[24]: def plot_backward_tanh(layers):
visualize histograms
plt.figure(figsize=(20, 4)) # width and height of the plot
legends = []
for i, layer in enumerate(layers[:-1]): # note: exclude the output layer

if isinstance(layer, Tanh):
t = layer.out.grad
print('layer %d (%10s): mean %+f, std %e' % (i, layer.__class__.

↪__name__, t.mean(), t.std()))
hy, hx = torch.histogram(t, density=True)

16

plt.plot(hx[:-1].detach(), hy.detach())
legends.append(f'layer {i} ({layer.__class__.__name__}')

plt.legend(legends);
plt.title('gradient distribution')

[25]: plot_backward_tanh(nn.layers)

layer 2 (Tanh): mean -0.000000, std 2.198041e-03
layer 5 (Tanh): mean -0.000000, std 2.340218e-03
layer 8 (Tanh): mean -0.000000, std 2.221729e-03
layer 11 (Tanh): mean -0.000000, std 1.866999e-03
layer 14 (Tanh): mean -0.000000, std 2.408152e-03

1.5 Exemples
1.5.1 Test sans l’utilisation de 5/3

[44]: def _deep_create_layers(self):
self.layers = [

Linear(self.e_dims * self.context_size, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(n_hidden, vocab_size),

]
with torch.no_grad():

last layer: make less confident
self.layers[-1].weight *= 0.1
for layer in self.layers[:-1]:

if isinstance(layer, Linear):
layer.weight *= 1.0 #5/3

TorchBengioFFN._create_layers = _deep_create_layers

[45]: g = torch.Generator().manual_seed(seed)
nn_no_kaiming = TorchBengioFFN(e_dims, n_hidden, context_size, words.nb_chars,␣

↪g)

17

print(nn_no_kaiming)
max_steps = 1000
lossi = nn_no_kaiming.train(datasets, max_steps, mini_batch_size)

<BengioMLP
nb_chars="41"
e_dims="10"
n_hidden="200"
context_size="3"
steps="0"
nb_parameters="175651"/>

0/ 1000: 3.7100

[46]: plot_forward_tanh(nn_no_kaiming.layers)

layer 1 (Tanh): mean +0.01, std 0.66, saturated: 6.83%
layer 3 (Tanh): mean -0.00, std 0.64, saturated: 4.33%
layer 5 (Tanh): mean -0.00, std 0.65, saturated: 4.23%
layer 7 (Tanh): mean -0.02, std 0.65, saturated: 5.03%
layer 9 (Tanh): mean -0.02, std 0.55, saturated: 2.31%

1.5.2 Initialisation avec un facteur trop grand

[47]: def _deep_create_layers(self):
self.layers = [

Linear(self.e_dims * self.context_size, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(self.n_hidden, self.n_hidden), Tanh(),
Linear(n_hidden, vocab_size),

]
with torch.no_grad():

last layer: make less confident
self.layers[-1].weight *= 0.1
for layer in self.layers[:-1]:

if isinstance(layer, Linear):

18

layer.weight *= 3
TorchBengioFFN._create_layers = _deep_create_layers

[48]: g = torch.Generator().manual_seed(seed)
nn_no_kaiming = TorchBengioFFN(e_dims, n_hidden, context_size, words.nb_chars,␣

↪g)
print(nn_no_kaiming)
max_steps = 1000
lossi = nn_no_kaiming.train(datasets, max_steps, mini_batch_size)

<BengioMLP
nb_chars="41"
e_dims="10"
n_hidden="200"
context_size="3"
steps="0"
nb_parameters="175651"/>

0/ 1000: 3.6848

[49]: plot_forward_tanh(nn_no_kaiming.layers)

layer 1 (Tanh): mean +0.03, std 0.87, saturated: 50.64%
layer 3 (Tanh): mean -0.04, std 0.89, saturated: 53.08%
layer 5 (Tanh): mean -0.00, std 0.89, saturated: 56.42%
layer 7 (Tanh): mean +0.00, std 0.89, saturated: 54.92%
layer 9 (Tanh): mean +0.03, std 0.87, saturated: 46.58%

19

	8. Statistiques d'activation
	Reprise du code précédent
	Words
	Datasets
	Hyperparamètres
	Réseau: classe BengioFFN

	``torch-ification'': Linear, BatchNorm1d, vers des réseaux plus profonds
	Réseau plus profond
	Fonctions utiles pour l'étude des activations: santé du réseau
	Histogramme d'activation (forward)
	Histogrammes des gradients (backward)

	Exemples
	Test sans l'utilisation de 5/3
	Initialisation avec un facteur trop grand

