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1 5. Multi-Layer Perceptron (MLP)
1.1 Introduction
Implémentation d’un réseau de neurones inspiré du papier de Bengio et al. de 2003 A Neural
Probabilistic Language Model.

On cherche toujours à construire un modèle de langue au niveau des caractères. Dans le papier
ils ont un vocabulaire de 17000 mots et construisent un modèle de langue par mots, mais nous
pouvons utiliser la même approche pour construire un modèle de langues par caractères.

Ils associent à chaque mot un vecteur dans un espace, par exemple à 30 dimensions. Ces vecteurs
sont initialisés à des valeurs aléatoires et ensuite on fait apprendre au modèle, par rétropropagation
et descente de gradient, la “meilleure” position du mot dans cet espace. Les mots similaires doivent
être ensuite “proches” dans cet espace. On cherche à maximiser la log-vraisemblance.

Généralisation sur des phrases comme:

• “The cat is walking in the bedroom”
• “A dog was running in a room”
• “The cat is running in a room”
• “A dog is walking in a bedroom”
• “The dog was walking in the room”

Le schéma du réseau de Bengio 2003 est présenté ci-dessous. Avec un vocabulaire de 70000 mots, le
réseau de neurones se compose d’une couche d’entrée, avec si on a un contexte de 3 mots précédents
pour prédire le 4ème, 3x30 soit 90 neurones. La table C permet de récupérer le vecteur d’embedding
de chaque mot de dimension 30, cette table est de taille 70000. La couche cachée est d’une taille qui
est choisi arbitrairement (un hyperparamètre), par exemple 100. Le but va être de choisir le bon
paramètre pour cette couche cachée. Chaque neurone est complètement connecté à tous les neurones
de la couche d’entrée. La fonction non-linéaire utilisée en sortie est la tangente hyperbolique. La
couche de sortie a 70000 neurones et est complètement connecté aux neurones (par ex. 100) de
la couche cachée. La sortie se compose de logits qui seront transformés en probabilités par une
fonction softmax (log -> exp -> normalisation). Optimisation des paramètres (poids et biais) par
rétropropagation en maximisant la log-vraissemblance.

1

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Source: https://mines.paris/nlp/gfx/schemas/BengioY2003_network.png

Dans la suite de ce notebook, nous allons construire un réseau de neurones similaire à ce lui présenté
dans le papier, de type Feed Forward Network, permettant d’obtenir un modèle de langue au niveau
caractères. Ce type de réseau est également appelé Multi-Layer Perceptron même si les neurones
utilisés ici ne sont pas similaires à ceux d’un perceptron.

1.2 Données sources
Nous reprenons les 7223 mots du code civil, amenant 41 caractères différents dans notre vocabulaire,
incluant le caractère spécial ‘.’ indiquant le début ou la fin d’un mot. Les entiers associés à chaque
caractères sont les tokens qui seront manipulés par notre réseau.

[1]: import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
%matplotlib inline

[2]: words = open('civil_mots.txt', 'r').read().splitlines()
nb_words = len(words)
chars = sorted(list(set(''.join(words))))
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nb_chars = len(chars) + 1 # On ajoute 1 pour EOS
ctoi = {c:i+1 for i,c in enumerate(chars)}
ctoi['.'] = 0
itoc = {i:s for s,i in ctoi.items()}
print(ctoi)
print(f"{nb_words=}")
print(f"{nb_chars=}")

{"'": 1, '-': 2, 'a': 3, 'b': 4, 'c': 5, 'd': 6, 'e': 7, 'f': 8, 'g': 9, 'h':
10, 'i': 11, 'j': 12, 'l': 13, 'm': 14, 'n': 15, 'o': 16, 'p': 17, 'q': 18, 'r':
19, 's': 20, 't': 21, 'u': 22, 'v': 23, 'w': 24, 'x': 25, 'y': 26, 'z': 27, 'à':
28, 'â': 29, 'ç': 30, 'è': 31, 'é': 32, 'ê': 33, 'ë': 34, 'î': 35, 'ï': 36, 'ô':
37, 'ù': 38, 'û': 39, 'œ': 40, '.': 0}
nb_words=7223
nb_chars=41

1.3 Construction du jeu de données pour l’entraînement
1.3.1 Fonction de construction

Nous créons une fonction build_dataset qui va permettre de construire le jeu d’entraînement à
partir d’une liste de mots et d’une taille de contexte. Ce jeu d’entraînement sera composé des
entrées X avec un nombre de caractères pour chaque entrée dépandant de la taille du contexte, et
des réponses Y attendues (un caractère).

[3]: def build_dataset(words:list, context_size:int, verbose:bool=False):
"""Build the dataset of the neural net for training.

Parameters:
words: list of words of our data corpus
context_size: how many characters we take to predict the next one
verbose: print or not the inputs and labels during construction

Returns:
X: inputs to the neural net
Y: labels

"""
X, Y = [], []
if verbose:

nb_examples = 0
nb_characters = 0
nb_words = len(words)

for w in words:
if verbose:

print(w)
nb_characters += len(w)

context = [0] * context_size
for ch in w + '.':

ix = ctoi[ch]
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X.append(context)
Y.append(ix)
if verbose:

print(''.join(itoc[i] for i in context), '--->', itoc[ix])
nb_examples += 1

context = context[1:] + [ix] # crop and append
X = torch.tensor(X)
Y = torch.tensor(Y)
if verbose:

print(X.shape, Y.shape)
print(f"{nb_examples=}")
print(f"{nb_characters=}")
print(f"{nb_words=}")

return X, Y

[4]: X, Y = build_dataset(words[40:45], 3, verbose=True)

acceptée
… ---> a
..a ---> c
.ac ---> c
acc ---> e
cce ---> p
cep ---> t
ept ---> é
pté ---> e
tée ---> .
acceptées
… ---> a
..a ---> c
.ac ---> c
acc ---> e
cce ---> p
cep ---> t
ept ---> é
pté ---> e
tée ---> s
ées ---> .
accessible
… ---> a
..a ---> c
.ac ---> c
acc ---> e
cce ---> s
ces ---> s
ess ---> i
ssi ---> b
sib ---> l
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ibl ---> e
ble ---> .
accession
… ---> a
..a ---> c
.ac ---> c
acc ---> e
cce ---> s
ces ---> s
ess ---> i
ssi ---> o
sio ---> n
ion ---> .
accessoire
… ---> a
..a ---> c
.ac ---> c
acc ---> e
cce ---> s
ces ---> s
ess ---> o
sso ---> i
soi ---> r
oir ---> e
ire ---> .
torch.Size([51, 3]) torch.Size([51])
nb_examples=51
nb_characters=46
nb_words=5

[5]: X, Y = build_dataset(words[40:45], 10, verbose=True)

acceptée
… ---> a
…a ---> c
…ac ---> c
…acc ---> e
…acce ---> p
…accep ---> t
…accept ---> é
…accepté ---> e
..acceptée ---> .
acceptées
… ---> a
…a ---> c
…ac ---> c
…acc ---> e
…acce ---> p
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…accep ---> t
…accept ---> é
…accepté ---> e
..acceptée ---> s
.acceptées ---> .
accessible
… ---> a
…a ---> c
…ac ---> c
…acc ---> e
…acce ---> s
…acces ---> s
…access ---> i
…accessi ---> b
..accessib ---> l
.accessibl ---> e
accessible ---> .
accession
… ---> a
…a ---> c
…ac ---> c
…acc ---> e
…acce ---> s
…acces ---> s
…access ---> i
…accessi ---> o
..accessio ---> n
.accession ---> .
accessoire
… ---> a
…a ---> c
…ac ---> c
…acc ---> e
…acce ---> s
…acces ---> s
…access ---> o
…accesso ---> i
..accessoi ---> r
.accessoir ---> e
accessoire ---> .
torch.Size([51, 10]) torch.Size([51])
nb_examples=51
nb_characters=46
nb_words=5
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1.3.2 Construction du jeu d’entraînement complet

Les mots du code civil générent un jeu d’entraînement avec les entrées X de dimension 2 de forme
(67652, 3), soit 67652 contextes de 3 caractères différents et pour les labels Y 67652 caractères
suivants.

[6]: context_size = 3
X, Y = build_dataset(words, context_size)
print("X.shape =", X.shape)
print("Y.shape =", Y.shape)
print(X[:5])
print(Y[:5])

X.shape = torch.Size([67652, 3])
Y.shape = torch.Size([67652])
tensor([[0, 0, 0],

[0, 0, 3],
[0, 0, 0],
[0, 0, 3],
[0, 3, 4]])

tensor([3, 0, 3, 4, 3])

Pour la suite de la discussion, nous allons uniquement prendre 5 mots, représentant 53 exemples,
afin d’avoir un jeu de données Xd et Yd plus petit qui se prête mieux à l’affichage:

[7]: context_size = 3
Xd, Yd = build_dataset(words[5:10], context_size)
print("Xd.shape =", Xd.shape)
print("Yd.shape =", Yd.shape)
print(Xd)
print(Yd)

Xd.shape = torch.Size([53, 3])
Yd.shape = torch.Size([53])
tensor([[ 0, 0, 0],

[ 0, 0, 3],
[ 0, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],
[15, 6, 16],
[ 6, 16, 15],
[16, 15, 15],
[15, 15, 32],
[ 0, 0, 0],
[ 0, 0, 3],
[ 0, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],
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[15, 6, 16],
[ 6, 16, 15],
[16, 15, 15],
[15, 15, 32],
[15, 32, 7],
[ 0, 0, 0],
[ 0, 0, 3],
[ 0, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],
[15, 6, 16],
[ 6, 16, 15],
[16, 15, 15],
[15, 15, 32],
[15, 32, 7],
[32, 7, 20],
[ 0, 0, 0],
[ 0, 0, 3],
[ 0, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],
[15, 6, 16],
[ 6, 16, 15],
[16, 15, 15],
[15, 15, 32],
[15, 32, 20],
[ 0, 0, 0],
[ 0, 0, 3],
[ 0, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],
[15, 6, 16],
[ 6, 16, 15],
[16, 15, 20]])

tensor([ 3, 4, 3, 15, 6, 16, 15, 15, 32, 0, 3, 4, 3, 15, 6, 16, 15, 15,
32, 7, 0, 3, 4, 3, 15, 6, 16, 15, 15, 32, 7, 20, 0, 3, 4, 3,
15, 6, 16, 15, 15, 32, 20, 0, 3, 4, 3, 15, 6, 16, 15, 20, 0])

Nous avons donc Xd qui représentent des suites de trois tokens pour lesquels nous devrions obtenir
à la fin les Yd correspondants.
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1.4 Discussion: construction du réseau de neurones
1.4.1 Création de la matrice d’embeddings

Cette matrice est ce qui est appelé la lookup table dans Bengio et al. 2003. Elle sera de taille
nb_chars x e_dims, où nb_chars est le nombre de caractères différents de notre dataset (41) et
e_dims le nombre de dimensions (ici 2) que nous choisirons pour représenter chaque caractère dans
ce nouvel espace. Nous initialisons ici les valeurs de cette table de manière aléatoire.

[8]: e_dims = 2 # Dimensions des embeddings
C = torch.randn((nb_chars, e_dims))
print(C)

tensor([[ 0.4806, 0.9659],
[-0.9354, 0.8722],
[ 1.9186, 1.1885],
[ 0.1595, -0.9922],
[-0.3260, 0.9572],
[ 2.2385, -1.2704],
[-0.2007, -1.0860],
[ 1.1423, -0.2115],
[-0.7590, -0.6401],
[ 0.0339, -0.4439],
[-0.3950, -0.5841],
[-0.6752, -0.6698],
[ 0.2760, 0.0204],
[ 1.0637, 1.7657],
[-0.4892, -0.0236],
[-0.4793, 0.3979],
[-0.2206, 0.3598],
[ 1.2669, 1.5495],
[-0.8553, 0.5060],
[ 1.1250, -1.6645],
[ 0.8648, -0.6060],
[ 0.8861, 0.9204],
[-1.0055, 1.5119],
[-1.2406, 0.1779],
[ 0.8390, -0.1560],
[ 1.1340, 1.0290],
[-0.5181, -0.3230],
[ 0.4742, 0.2750],
[-0.0866, 0.3084],
[-0.1322, -0.6673],
[-0.4096, 1.3299],
[ 1.5092, -0.4951],
[-0.0418, 1.0244],
[-0.3153, -0.5744],
[ 0.3304, -0.9862],
[-1.9956, -1.8532],
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[ 0.2311, -0.9675],
[-0.6461, -0.8295],
[-0.7013, 1.7916],
[-1.1629, -1.5063],
[-0.6191, 0.1512]])

Pour utiliser cette “lookup table” sous la forme d’une matrice, on peut l’indexer avec le numéro du
caractère dont on souhaite obtenir l’embedding, par exemple ici à partir du token 5 correspondant
au caractère c:

[9]: emb_char_c = C[5] # 5: token correspondant à 'c'
print(emb_char_c)

tensor([ 2.2385, -1.2704])

On peut également remarquer que l’on peut indexer un caractère à partir d’un vecteur “one-hot”
correspondant au même caractère, en multipliant la matrice d’embeddings par ce vecteur:

[10]: c_one_hot = F.one_hot(torch.tensor(5), num_classes=nb_chars).float()
print(f"{c_one_hot=}")

c_one_hot=tensor([0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.])

[11]: c_one_hot @ C

[11]: tensor([ 2.2385, -1.2704])

La première couche linéaire de ce réseau de neurones, composé de cette matrice C, va être activée
avec les indices des caractères.

L’indexation avec des tenseurs Pytorch est très flexible, ce qui permet de récupérer plusiers lignes,
par exemple correspondant à la suite de lettres c, a, b (soit 5,3,4):

[12]: C[[5,3,4]]

[12]: tensor([[ 2.2385, -1.2704],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]])

[13]: C[[ctoi['c'], ctoi['a'], ctoi['b']]]

[13]: tensor([[ 2.2385, -1.2704],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]])

On peut également indexer avec un tenseur:

[14]: C[torch.tensor([5,3,4])]
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[14]: tensor([[ 2.2385, -1.2704],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]])

Ce tenseur peut être multi-dimensionnel, comme par exemple Xd:

[15]: C[Xd]

[15]: tensor([[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],
[ 0.4806, 0.9659]],

[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],
[ 0.1595, -0.9922]],

[[ 0.4806, 0.9659],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]],

[[ 0.1595, -0.9922],
[-0.3260, 0.9572],
[ 0.1595, -0.9922]],

[[-0.3260, 0.9572],
[ 0.1595, -0.9922],
[-0.4793, 0.3979]],

[[ 0.1595, -0.9922],
[-0.4793, 0.3979],
[-0.2007, -1.0860]],

[[-0.4793, 0.3979],
[-0.2007, -1.0860],
[-0.2206, 0.3598]],

[[-0.2007, -1.0860],
[-0.2206, 0.3598],
[-0.4793, 0.3979]],

[[-0.2206, 0.3598],
[-0.4793, 0.3979],
[-0.4793, 0.3979]],

[[-0.4793, 0.3979],
[-0.4793, 0.3979],
[-0.0418, 1.0244]],
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[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],
[ 0.4806, 0.9659]],

[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],
[ 0.1595, -0.9922]],

[[ 0.4806, 0.9659],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]],

[[ 0.1595, -0.9922],
[-0.3260, 0.9572],
[ 0.1595, -0.9922]],

[[-0.3260, 0.9572],
[ 0.1595, -0.9922],
[-0.4793, 0.3979]],

[[ 0.1595, -0.9922],
[-0.4793, 0.3979],
[-0.2007, -1.0860]],

[[-0.4793, 0.3979],
[-0.2007, -1.0860],
[-0.2206, 0.3598]],

[[-0.2007, -1.0860],
[-0.2206, 0.3598],
[-0.4793, 0.3979]],

[[-0.2206, 0.3598],
[-0.4793, 0.3979],
[-0.4793, 0.3979]],

[[-0.4793, 0.3979],
[-0.4793, 0.3979],
[-0.0418, 1.0244]],

[[-0.4793, 0.3979],
[-0.0418, 1.0244],
[ 1.1423, -0.2115]],

[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],
[ 0.4806, 0.9659]],
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[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],
[ 0.1595, -0.9922]],

[[ 0.4806, 0.9659],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]],

[[ 0.1595, -0.9922],
[-0.3260, 0.9572],
[ 0.1595, -0.9922]],

[[-0.3260, 0.9572],
[ 0.1595, -0.9922],
[-0.4793, 0.3979]],

[[ 0.1595, -0.9922],
[-0.4793, 0.3979],
[-0.2007, -1.0860]],

[[-0.4793, 0.3979],
[-0.2007, -1.0860],
[-0.2206, 0.3598]],

[[-0.2007, -1.0860],
[-0.2206, 0.3598],
[-0.4793, 0.3979]],

[[-0.2206, 0.3598],
[-0.4793, 0.3979],
[-0.4793, 0.3979]],

[[-0.4793, 0.3979],
[-0.4793, 0.3979],
[-0.0418, 1.0244]],

[[-0.4793, 0.3979],
[-0.0418, 1.0244],
[ 1.1423, -0.2115]],

[[-0.0418, 1.0244],
[ 1.1423, -0.2115],
[ 0.8648, -0.6060]],

[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],

13



[ 0.4806, 0.9659]],

[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],
[ 0.1595, -0.9922]],

[[ 0.4806, 0.9659],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]],

[[ 0.1595, -0.9922],
[-0.3260, 0.9572],
[ 0.1595, -0.9922]],

[[-0.3260, 0.9572],
[ 0.1595, -0.9922],
[-0.4793, 0.3979]],

[[ 0.1595, -0.9922],
[-0.4793, 0.3979],
[-0.2007, -1.0860]],

[[-0.4793, 0.3979],
[-0.2007, -1.0860],
[-0.2206, 0.3598]],

[[-0.2007, -1.0860],
[-0.2206, 0.3598],
[-0.4793, 0.3979]],

[[-0.2206, 0.3598],
[-0.4793, 0.3979],
[-0.4793, 0.3979]],

[[-0.4793, 0.3979],
[-0.4793, 0.3979],
[-0.0418, 1.0244]],

[[-0.4793, 0.3979],
[-0.0418, 1.0244],
[ 0.8648, -0.6060]],

[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],
[ 0.4806, 0.9659]],

[[ 0.4806, 0.9659],
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[ 0.4806, 0.9659],
[ 0.1595, -0.9922]],

[[ 0.4806, 0.9659],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]],

[[ 0.1595, -0.9922],
[-0.3260, 0.9572],
[ 0.1595, -0.9922]],

[[-0.3260, 0.9572],
[ 0.1595, -0.9922],
[-0.4793, 0.3979]],

[[ 0.1595, -0.9922],
[-0.4793, 0.3979],
[-0.2007, -1.0860]],

[[-0.4793, 0.3979],
[-0.2007, -1.0860],
[-0.2206, 0.3598]],

[[-0.2007, -1.0860],
[-0.2206, 0.3598],
[-0.4793, 0.3979]],

[[-0.2206, 0.3598],
[-0.4793, 0.3979],
[ 0.8648, -0.6060]]])

[16]: C[Xd].shape

[16]: torch.Size([53, 3, 2])

Ce qui nous permet de créer tous les embeddings sur notre jeu de données de “démo”, un tenseur
d’ordre 3 de dimensions 53 × 3 × 2.

[17]: emb = C[Xd]
emb.shape

[17]: torch.Size([53, 3, 2])

1.5 Création de la couche cachée
La couche cachée sera composée d’une couche avec context_size * e_dims entrées et un nombre
de neurones hidden_layer_size à définir (prenons ici 100), avec pour chaque neurone un poids et
un biais, poids et biais qui seront définis dans une matrice W1 et un vecteur b1:
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[18]: hidden_layer_size = 100
W1 = torch.randn((context_size * e_dims, hidden_layer_size))
b1 = torch.randn(hidden_layer_size)
W1.shape, b1.shape

[18]: (torch.Size([6, 100]), torch.Size([100]))

Nous souhaiterions donc maintenant multiplier les entrées par les poids et ajouter les biais, ce qui
ne va pas être possibles car les tenseurs ne sont pas compatibles.

[19]: # emb @ W1 + b1 # Décommenter pour voir l'erreur

Il faudrait passer pour emb d’une forme [53, 3, 2] à une forme [53, 6].

On peut le faire avec PyTorch en concaténant en dimension 1 avec cat:

[20]: torch.cat([emb[:, 0, :], emb[:, 1, :], emb[:, 2, :]], 1).shape

[20]: torch.Size([53, 6])

Mais cette approche n’est pas très propre car difficilement généralisable. On peut également utiliser
unbind qui est plus simple:

[21]: torch.cat(torch.unbind(emb, 1), 1).shape

[21]: torch.Size([53, 6])

Mais il y a une approche plus efficace consistant à utiliser la méthode view() d’un tenseur, perme-
ttant de “réorganiser” les éléments d’un tenseur selon différentes formes et dimensions, à condition
que le nombre d’éléments soit identique:

[22]: a = torch.arange(18)
a

[22]: tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17])

[23]: a.shape

[23]: torch.Size([18])

[24]: a.view(2, 9)

[24]: tensor([[ 0, 1, 2, 3, 4, 5, 6, 7, 8],
[ 9, 10, 11, 12, 13, 14, 15, 16, 17]])

[25]: a.view(9, 2)

[25]: tensor([[ 0, 1],
[ 2, 3],
[ 4, 5],
[ 6, 7],
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[ 8, 9],
[10, 11],
[12, 13],
[14, 15],
[16, 17]])

[26]: a.view(3, 3, 2)

[26]: tensor([[[ 0, 1],
[ 2, 3],
[ 4, 5]],

[[ 6, 7],
[ 8, 9],
[10, 11]],

[[12, 13],
[14, 15],
[16, 17]]])

[27]: # a.untyped_storage()

Avec nos embeddings emb, il est donc possible d’utiliser view ainsi:

[28]: emb.view(53, 6)

[28]: tensor([[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[-0.4793, 0.3979, -0.0418, 1.0244, 1.1423, -0.2115],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
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[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[-0.4793, 0.3979, -0.0418, 1.0244, 1.1423, -0.2115],
[-0.0418, 1.0244, 1.1423, -0.2115, 0.8648, -0.6060],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[-0.4793, 0.3979, -0.0418, 1.0244, 0.8648, -0.6060],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, 0.8648, -0.6060]])

ou avec la valeur spéciale -1 qui permet de ne pas avoir à spécifier la taille du premier ordre du
tenseur:

[29]: emb.view(-1, 6)

[29]: tensor([[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
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[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[-0.4793, 0.3979, -0.0418, 1.0244, 1.1423, -0.2115],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[-0.4793, 0.3979, -0.0418, 1.0244, 1.1423, -0.2115],
[-0.0418, 1.0244, 1.1423, -0.2115, 0.8648, -0.6060],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[-0.4793, 0.3979, -0.0418, 1.0244, 0.8648, -0.6060],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, 0.8648, -0.6060]])

De manière générique, nous pouvons donc écrire:

[30]: emb.view(-1, context_size * e_dims)
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[30]: tensor([[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[-0.4793, 0.3979, -0.0418, 1.0244, 1.1423, -0.2115],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[-0.4793, 0.3979, -0.0418, 1.0244, 1.1423, -0.2115],
[-0.0418, 1.0244, 1.1423, -0.2115, 0.8648, -0.6060],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
[-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
[-0.4793, 0.3979, -0.0418, 1.0244, 0.8648, -0.6060],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
[ 0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
[ 0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
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[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, 0.8648, -0.6060]])

Nous pouvons maintenant implémenter la couche cachée h complètement:

[31]: h = torch.tanh(emb.view(-1, context_size*e_dims) @ W1 + b1)
h

[31]: tensor([[ 0.4931, 0.9997, -0.4131, …, -0.9919, 0.2336, 0.4416],
[-0.7059, 0.9476, -0.9881, …, -0.9353, 0.6110, -0.2495],
[ 0.7830, 0.8349, 0.9091, …, -0.7906, -0.6847, 0.9962],
…,
[ 0.8753, 0.2654, -0.6717, …, -0.1456, -0.2736, 0.8699],
[ 0.7239, -0.0967, -0.9465, …, -0.8542, 0.5216, -0.9400],
[ 0.4366, 0.9808, -0.9875, …, -0.1445, -0.8273, 0.1011]])

1.5.1 Couche de sortie

De manière similaire à la couche cachée la couche de sortie va se composer d’une matrice de poids
W2 et d’un vecteur de biais b2:

[32]: W2 = torch.randn((hidden_layer_size, nb_chars))
b2 = torch.randn(nb_chars)
W2.shape, b2.shape

[32]: (torch.Size([100, 41]), torch.Size([41]))

Le calcul des logits de sortie de la couche de sortie s’obtiennent en multipliant les valeurs de la
couche cachée par les poids W2 et en ajoutant les biais:

[33]: logits = h @ W2 + b2
logits.shape

[33]: torch.Size([53, 41])

Pour obtenir des probabilités à partir des logits (interprétés comme des logs), on utilise notre
fonction softmax:

[34]: counts = logits.exp()
prob = counts / counts.sum(1, keepdims=True)

Nous pouvons vérifier que la somme de ces probabilités est également à 1:

[35]: prob[0].sum()

[35]: tensor(1.0000)
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À partir de ces probabilités, nous voulons maintenant obtenir la probabilité affectée à chacun des
caractères attendus de Yd:

[36]: Yd

[36]: tensor([ 3, 4, 3, 15, 6, 16, 15, 15, 32, 0, 3, 4, 3, 15, 6, 16, 15, 15,
32, 7, 0, 3, 4, 3, 15, 6, 16, 15, 15, 32, 7, 20, 0, 3, 4, 3,
15, 6, 16, 15, 15, 32, 20, 0, 3, 4, 3, 15, 6, 16, 15, 20, 0])

prob étant d’ordre 2, nous devons donc indexer par le “numéro” de l’exemple (torch.arange(53)
car il y a 53 exemples dans Yd) et le numéro du token, soit:

[37]: prob[torch.arange(53), Yd]

[37]: tensor([1.3885e-09, 2.0777e-06, 9.6970e-03, 4.8020e-15, 6.1410e-06, 8.1274e-15,
1.1853e-01, 8.5158e-09, 2.0254e-05, 1.6990e-04, 1.3885e-09, 2.0777e-06,
9.6970e-03, 4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09,
2.0254e-05, 5.7130e-06, 1.3612e-06, 1.3885e-09, 2.0777e-06, 9.6970e-03,
4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09, 2.0254e-05,
5.7130e-06, 6.4163e-10, 2.2806e-05, 1.3885e-09, 2.0777e-06, 9.6970e-03,
4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09, 2.0254e-05,
1.5092e-14, 9.4455e-08, 1.3885e-09, 2.0777e-06, 9.6970e-03, 4.8020e-15,
6.1410e-06, 8.1274e-15, 1.1853e-01, 1.0905e-14, 1.0875e-09])

Ou de manière générique en utilisant size pour obtenir la taille de Yd:

[38]: prob[torch.arange(Yd.size(0)), Yd]

[38]: tensor([1.3885e-09, 2.0777e-06, 9.6970e-03, 4.8020e-15, 6.1410e-06, 8.1274e-15,
1.1853e-01, 8.5158e-09, 2.0254e-05, 1.6990e-04, 1.3885e-09, 2.0777e-06,
9.6970e-03, 4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09,
2.0254e-05, 5.7130e-06, 1.3612e-06, 1.3885e-09, 2.0777e-06, 9.6970e-03,
4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09, 2.0254e-05,
5.7130e-06, 6.4163e-10, 2.2806e-05, 1.3885e-09, 2.0777e-06, 9.6970e-03,
4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09, 2.0254e-05,
1.5092e-14, 9.4455e-08, 1.3885e-09, 2.0777e-06, 9.6970e-03, 4.8020e-15,
6.1410e-06, 8.1274e-15, 1.1853e-01, 1.0905e-14, 1.0875e-09])

1.5.2 Fonction de perte: cross-entropy

Nous pouvons maintenant estimer la “qualité” de notre modèle partiel (sur 53 exemples) avec notre
fonction de perte:

[39]: loss = -prob[torch.arange(Yd.size(0)), Yd].log().mean()
loss

[39]: tensor(16.6951)

Jusqu’à ce point, le réseau calcule des “logits”, qui sont passés dans un Softmax pour obtenir des
probabilités. La “Negative Log Likelihood” est calculée manuellement. Le calcul manuel peut-être
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remplacé par la “cross-entropy”:

1. Plus efficace (opérations fusionnées, moins de tenseurs intermédiaires).
2. Plus simple pour la rétropropagation (backward pass).
3. Stabilité numérique: la “cross-entropy” gère mieux les très grands nombres (qui causeraient

des NaN avec une exponentielle naïve) en soustrayant le maximum des logits avant le calcul.

La methode cross_entropy de Pytorch permet de calculer plus efficacement le loss, tout en donnant
le même résultat:

[40]: loss = F.cross_entropy(logits, Yd)
loss

[40]: tensor(16.6951)

Pour illustrer le fait d’utiliser des probabilités examinons ces deux exemples:

[41]: logits = torch.tensor([-2, -3, 0, 5])
counts = logits.exp()
probs = counts / counts.sum()
probs

[41]: tensor([9.0466e-04, 3.3281e-04, 6.6846e-03, 9.9208e-01])

[42]: logits = torch.tensor([-100, -3, 0, 100])
counts = logits.exp()
probs = counts / counts.sum()
probs

[42]: tensor([0., 0., 0., nan])

1.6 Réseau complet “Feed Forward Netword”
1.6.1 Données

[43]: words = open('civil_mots.txt', 'r').read().splitlines()
nb_words = len(words)
chars = sorted(list(set(''.join(words))))
EOS = '.'
nb_chars = len(chars) + 1 # On ajoute 1 pour EOS
ctoi = {c:i+1 for i,c in enumerate(chars)}
ctoi[EOS] = 0
itoc = {i:s for s,i in ctoi.items()}

1.6.2 Jeux d’entraînement, de développement et de test

[44]: # 80%, 10%, 10%
import random

random.seed(42)

23

https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html


random.shuffle(words)
n1 = int(0.8 * len(words))
n2 = int(0.9 * len(words))

Xtr, Ytr = build_dataset(words[:n1], context_size=context_size)
Xdev, Ydev = build_dataset(words[n1:n2], context_size=context_size)
Xte, Yte = build_dataset(words[n2:], context_size=context_size)

1.6.3 Hyperparamètres

[45]: context_size = 3
e_dims = 2 # Dimensions des embeddings
hidden_layer_size = 100
mini_batch_size = 32
steps = 200000
seed = 2147483647

1.6.4 Architecture

[46]: g = torch.Generator().manual_seed(seed) # for reproducibility
C = torch.randn((nb_chars, e_dims), generator=g)
W1 = torch.randn((context_size * e_dims, hidden_layer_size), generator=g)
b1 = torch.randn(hidden_layer_size, generator=g)
W2 = torch.randn((hidden_layer_size, nb_chars), generator=g)
b2 = torch.randn(nb_chars, generator=g)
parameters = [C, W1, b1, W2, b2]
for p in parameters:

p.requires_grad = True

[47]: sum(p.nelement() for p in parameters) # number of parameters in total

[47]: 4923

1.7 Entraînement
[48]: lossi = []

stepi = []

[49]: for i in range(steps):
# mini-batch construct
ix = torch.randint(0, Xtr.shape[0], (mini_batch_size,))

# forward pass
emb = C[Xtr[ix]] # (mini_batch_size, context_size, e_dims)
h = torch.tanh(emb.view(-1, context_size * e_dims) @ W1 + b1) #␣

↪(mini_batch_size, hidden_layer_size)
logits = h @ W2 + b2 # (mini_batch_size, nb_chars)
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loss = F.cross_entropy(logits, Ytr[ix])

# backward pass
for p in parameters:

p.grad = None
loss.backward()

# update
lr = 0.16 if i < 100000 else 0.016
for p in parameters:

p.data += -lr * p.grad

# track stats
stepi.append(i)
lossi.append(loss.log10().item())

[50]: plt.plot(stepi, lossi)

[50]: [<matplotlib.lines.Line2D at 0x1184e81a0>]

[51]: emb = C[Xtr] # (batch_size, context_size , e_dims)
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h = torch.tanh(emb.view(-1, context_size * e_dims) @ W1 + b1) # (batch_size,␣
↪hidden_layer_size)

logits = h @ W2 + b2 # (batch_size, nb_chars)
loss = F.cross_entropy(logits, Ytr)
loss

[51]: tensor(1.8583, grad_fn=<NllLossBackward0>)

[52]: emb = C[Xdev] # (batch_size, context_size , e_dims)
h = torch.tanh(emb.view(-1, context_size * e_dims) @ W1 + b1) # (batch_size,␣

↪hidden_layer_size)
logits = h @ W2 + b2 # (batch_size, nb_chars)
loss = F.cross_entropy(logits, Ydev)
loss

[52]: tensor(1.9103, grad_fn=<NllLossBackward0>)

[53]: # visualize dimensions 0 and 1 of the embedding matrix C for all characters
plt.figure(figsize=(8,8))
plt.scatter(C[:,0].data, C[:,1].data, s=200)
for i in range(C.shape[0]):

plt.text(C[i,0].item(), C[i,1].item(), itoc[i], ha="center", va="center",␣
↪color='white')

plt.grid('minor')
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1.8 Utilisation du modèle: génération de mots

[54]: context = [0] * context_size
C[torch.tensor([context])].shape

[54]: torch.Size([1, 3, 2])

[55]: # sample from the model
g = torch.Generator().manual_seed(seed)

for _ in range(20):
out = []
context = [0] * context_size # initialize with all ...
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while True:
emb = C[torch.tensor([context])] # (1, context_size, e_dims)
h = torch.tanh(emb.view(1, -1) @ W1 + b1)
logits = h @ W2 + b2
probs = F.softmax(logits, dim=1)
ix = torch.multinomial(probs, num_samples=1, generator=g).item()
context = context[1:] + [ix]
if ix == 0:

break
out.append(ix)

print(''.join(itoc[i] for i in out))
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1.9 Exercice
Modifier les hyperparamètres de l’entraînement pour battre le score courant de test.

[56]: emb = C[Xte] # (batch_size, context_size , e_dims)
h = torch.tanh(emb.view(-1, context_size * e_dims) @ W1 + b1) # (batch_size,␣

↪hidden_layer_size)
logits = h @ W2 + b2 # (batch_size, nb_chars)
loss = F.cross_entropy(logits, Yte)
loss

[56]: tensor(1.9492, grad_fn=<NllLossBackward0>)
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1.10 Post-cours: détermination d’un “bon” lr
[57]: g = torch.Generator().manual_seed(seed) # for reproducibility

C = torch.randn((nb_chars, e_dims), generator=g)
W1 = torch.randn((context_size * e_dims, hidden_layer_size), generator=g)
b1 = torch.randn(hidden_layer_size, generator=g)
W2 = torch.randn((hidden_layer_size, nb_chars), generator=g)
b2 = torch.randn(nb_chars, generator=g)
parameters = [C, W1, b1, W2, b2]
for p in parameters:

p.requires_grad = True

lre = torch.linspace(-3, 0, 1000)
lrs = 10**lre
lossi = []
stepi = []
lri = []
lrei = []

for i in range(1000):
# mini-batch construct
ix = torch.randint(0, Xtr.shape[0], (mini_batch_size,))

# forward pass
emb = C[Xtr[ix]] # (mini_batch_size, context_size, e_dims)
h = torch.tanh(emb.view(-1, context_size * e_dims) @ W1 + b1) #␣

↪(mini_batch_size, hidden_layer_size)
logits = h @ W2 + b2 # (mini_batch_size, nb_chars)
loss = F.cross_entropy(logits, Ytr[ix])

# backward pass
for p in parameters:

p.grad = None
loss.backward()

# update
lr = lrs[i]
for p in parameters:

p.data += -lr * p.grad

# track stats
lrei.append(lre[i])
lri.append(lr)
stepi.append(i)
lossi.append(loss.log10().item())

[58]: plt.plot(lri, lossi)
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[58]: [<matplotlib.lines.Line2D at 0x11863f230>]

[59]: plt.plot(lrei, lossi)

[59]: [<matplotlib.lines.Line2D at 0x1129d7770>]
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