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1 5. Multi-Layer Perceptron (MLP)

1.1 Introduction

Implémentation d’'un réseau de neurones inspiré du papier de Bengio et al. de 2003 A Neural
Probabilistic Language Model.

On cherche toujours & construire un modele de langue au niveau des caracteres. Dans le papier
ils ont un vocabulaire de 17000 mots et construisent un modeéle de langue par mots, mais nous
pouvons utiliser la méme approche pour construire un modele de langues par caracteres.

Ils associent a chaque mot un vecteur dans un espace, par exemple a 30 dimensions. Ces vecteurs
sont initialisés a des valeurs aléatoires et ensuite on fait apprendre au modele, par rétropropagation
et descente de gradient, la “meilleure” position du mot dans cet espace. Les mots similaires doivent
étre ensuite “proches” dans cet espace. On cherche & maximiser la log-vraisemblance.

Généralisation sur des phrases comme:

e “The cat is walking in the bedroom”
e “A dog was running in a room”

e “The cat is running in a room”

e “A dog is walking in a bedroom”

e “The dog was walking in the room”

Le schéma du réseau de Bengio 2003 est présenté ci-dessous. Avec un vocabulaire de 70000 mots, le
réseau de neurones se compose d’une couche d’entrée, avec si on a un contexte de 3 mots précédents
pour prédire le 4eme, 3x30 soit 90 neurones. La table C permet de récupérer le vecteur d’embedding
de chaque mot de dimension 30, cette table est de taille 70000. La couche cachée est d’une taille qui
est choisi arbitrairement (un hyperparametre), par exemple 100. Le but va étre de choisir le bon
parametre pour cette couche cachée. Chaque neurone est complétement connecté a tous les neurones
de la couche d’entrée. La fonction non-linéaire utilisée en sortie est la tangente hyperbolique. La
couche de sortie a 70000 neurones et est complétement connecté aux neurones (par ex. 100) de
la couche cachée. La sortie se compose de logits qui seront transformés en probabilités par une
fonction softmax (log -> exp -> normalisation). Optimisation des parameétres (poids et biais) par
rétropropagation en maximisant la log-vraissemblance.


https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Source: https://mines.paris/nlp/gfx/schemas/BengioY2003_network.png

Dans la suite de ce notebook, nous allons construire un réseau de neurones similaire a ce lui présenté
dans le papier, de type Feed Forward Network, permettant d’obtenir un modele de langue au niveau
caracteres. Ce type de réseau est également appelé Multi-Layer Perceptron méme si les neurones
utilisés ici ne sont pas similaires a ceux d’un perceptron.

1.2 Données sources

Nous reprenons les 7223 mots du code civil, amenant 41 caracteres différents dans notre vocabulaire,
incluant le caractere spécial ‘.’ indiquant le début ou la fin d’un mot. Les entiers associés a chaque
caracteres sont les tokens qui seront manipulés par notre réseau.

import torch

import torch.nn.functional as F
import matplotlib.pyplot as plt
Jmatplotlib inline

words = open('civil _mots.txt', 'r').read().splitlines()
nb_words = len(words)
chars = sorted(list(set(''.join(words))))


https://mines.paris/nlp/gfx/schemas/BengioY2003_network.png

nb_chars = len(chars) + 1 # On ajoute 1 pour EOS
ctoi = {c:i+1 for i,c in enumerate(chars)}
ctoil['.'] =0

itoc = {i:s for s,i in ctoi.items()}

print(ctoi)

print (f"{nb_words=}")

print (f"{nb_chars=}")

{1, =2, 'a': 3, 'b': 4, 'c¢': 5, 'd': 6, 'e': 7, '£': 8, 'g': 9, 'h':
10, 'i': 11, 'j': 12, '1': 13, 'm': 14, 'n': 15, 'o': 16, 'p': 17, 'q': 18, 'r'
19, 's': 20, 't': 21, 'u': 22, 'v': 23, 'w': 24, 'x': 25, 'y': 26, 'z': 27, 'a'
28, 'a': 29, '¢': 30, 'e': 31, 'é': 32, 'é': 33, 'é': 34, '1': 35, 'i': 36, 'd'
37, 'a': 38, 'd': 39, '®e': 40, '.': O}

nb_words=722

nb_chars=41

1.3 Construction du jeu de données pour ’entrainement
1.3.1 Fonction de construction

Nous créons une fonction build_dataset qui va permettre de construire le jeu d’entrainement a
partir d’une liste de mots et d’une taille de contexte. Ce jeu d’entrainement sera composé des
entrées X avec un nombre de caracteres pour chaque entrée dépandant de la taille du contexte, et
des réponses Y attendues (un caractere).

[3]: def build_dataset(words:list, context_size:int, verbose:bool=False):
"""Butld the dataset of the mneural net for training.

Parameters:
words: list of words of our data corpus
context_size: how many characters we take to predict the next one
verbose: print or not the inputs and labels during construction

Returns:
X: 2nputs to the neural net
Y: labels

X, Y=1[0, O

if verbose:
nb_examples = 0
nb_characters = 0
nb_words = len(words)
for w in words:
if verbose:
print (w)
nb_characters += len(w)
context = [0] * context_size
for ch inw + '.':
ix = ctoilchl]



X.append(context)
Y.append (ix)
if verbose:
print(''.join(itoc[i] for i in context), '--->', itoc[ix])
nb_examples += 1
context = context[1:] + [ix] # crop and append
X = torch.tensor (X)
Y = torch.tensor(Y)
if verbose:
print (X.shape, Y.shape)
print (£"{nb_examples=1}")
print (£"{nb_characters=}")
print (f"{nb_words=1}")
return X, Y

[4]: X, Y = build_dataset(words[40:45], 3, verbose=True)

acceptée
. ——=> a
.a ——>c¢
ac ———> ¢
acc --=> e
cce ——=>p
cep ———> t
ept —---> é
pté ———> e
tée ———>
acceptées
-—> a
.a ——=> ¢
ac ———> ¢
acc —---> e
cce ———>p
cep ——> t
ept -—-—> é
pté ———> e
tée ——> s
ées ———>
accessible
-—> a
.a ——=> ¢
ac ———> ¢
acc —---> e
cce ——=> s
ces ——=> s
ess ———> 1
ssi ---> Db
sib ---> 1



ibl --=> e

ble ——>
accession
. ——=> a
..a ——> ¢C
.ac ——-> ¢
acc ———> e
cce ——=> s
ces ———> s
ess ———> 1
ssi ———> o
sio -—->n
ion —-—->
accessoire
. ——=> a
..a ——> C
.ac ———> ¢
acc ———> e
cce ——=> s
ces ———> s
ess ——-> o
sso ——-> i
soi -—-——>r
oir —-——> e
ire ———>

torch.Size([51, 3]) torch.Size([51])
nb_examples=51

nb_characters=46

nb_words=5

[6]: X, Y = build_dataset(words[40:45], 10, verbose=True)

acceptée

. ——=> a

wa —==> C

.ac —-=> ¢

.acc --=> e
.acce —--=> p
.accep —---> t
..accept ---> é&
..accepté ---> e
..acceptée --->
acceptées

. ——=> a

wd ——=> C

“ac —==> ¢

.acc --=> e
.acce —-==> p



..accep —-—> t
.accept ———> &
..accepté ---> e
..acceptée ---> s
.acceptées ———>
accessible

. ———> a

a ——=> ¢C

.ac ———> ¢

..acc —-—=> e

..acce ——--> s
..acces ——--> s
..access ———-> i
..accessi -——-> b
..accessib ---> 1
.accessibl ---> e
accessible ———>
accession

. ——=> a

.a ——> C

.ac ——=> ¢

.acc ———> e

..acce ——-> s
..acces ———> s
..access ---> i
..accessi —---> o
..accessio ——-> n
.accession ——->
accessoire

. ——=> a

.a ——> C

..ac ——=> ¢

..acc ———> e

..acce ——-> s
..acces ———> s
..access —-——-> o
..accesso ——-> i
..accessoi ———>r
.accessoir ---> e
accessoire —-——>
torch.Size([51, 10]) torch.Size([51])
nb_examples=51
nb_characters=46
nb_words=5



1.3.2 Construction du jeu d’entrainement complet

Les mots du code civil générent un jeu d’entrainement avec les entrées X de dimension 2 de forme
(67652, 3), soit 67652 contextes de 3 caracteres différents et pour les labels Y 67652 caracteéres
suivants.

[6]: context_size = 3
X, Y = build_dataset(words, context_size)
print ("X.shape =", X.shape)
print ("Y.shape =", Y.shape)
print(X[:5])
print(Y[:5])

X.shape = torch.Size([67652, 31)
Y.shape = torch.Size([67652])
tensor ([[0, 0, 0],

o, o, 31,
o, o, ol,
(o, o, 31,
o, 3, 411

tensor([3, 0, 3, 4, 3])

Pour la suite de la discussion, nous allons uniquement prendre 5 mots, représentant 53 exemples,
afin d’avoir un jeu de données Xd et Yd plus petit qui se préte mieux a ’affichage:

[7]: context_size = 3
Xd, Yd = build_dataset(words[5:10], context_size)
print("Xd.shape =", Xd.shape)
print("Yd.shape =", Yd.shape)
print (Xd)
print(Yd)

Xd.shape = torch.Size([53, 3])
Yd.shape = torch.Size([53])
tensor([[ 0, 0, 0],

[0, 0, 3],
[0, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],
[15, 6, 16],
[ 6, 16, 15],
[16, 15, 15],
[15, 15, 32],
[o, o0, 0],
[0, 0, 3],
[0, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],



[15, 6, 16],
[ 6, 16, 15],
(16, 15, 15],
[15, 15, 32],
(15, 32, 71,

Lo, 0, o0,
[0, 0, 3],
[ o, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],
[15, 6, 16],

[ 6, 16, 15],
(16, 15, 15],
[15, 15, 32],
(15, 32, 71,

[32, 7, 20],
[0, 0, 0],
[0, 0, 3],
[0, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],
[15, 6, 16],

[ 6, 16, 15],
(16, 15, 15],
(15, 15, 32],
[15, 32, 20],

[0, 0, 0],
[0, 0, 3],
[0, 3, 4],
[ 3, 4, 3],
[ 4, 3, 15],
[ 3, 15, 6],
[15, 6, 16],
[ 6, 16, 15],

[16, 15, 2011)

tensor([ 3, 4, 3, 15, 6, 16, 15, 15, 32, 0, 3, 4, 3, 15, 6, 16, 15, 15,
32, 7, 0, 3, 4, 3, 15, 6, 16, 15, 15, 32, 7, 20, O, 3, 4, 3,
15, 6, 16, 15, 15, 32, 20, O, 3, 4, 3, 15, 6, 16, 15, 20, 01)

Nous avons donc Xd qui représentent des suites de trois tokens pour lesquels nous devrions obtenir
a la fin les Yd correspondants.



[8]:

1.4 Discussion: construction du réseau de neurones
1.4.1 Création de la matrice d’embeddings

Cette matrice est ce qui est appelé la lookup table dans Bengio et al. 2003. Elle sera de taille
nb_chars x e_dims, ol nb_chars est le nombre de caracteres différents de notre dataset (41) et
e_dims le nombre de dimensions (ici 2) que nous choisirons pour représenter chaque caractére dans
ce nouvel espace. Nous initialisons ici les valeurs de cette table de maniere aléatoire.

e_dims = 2 # Dimensions des embeddings
C = torch.randn((nb_chars, e_dims))

print(C)
tensor ([ .4806, 0.9659],
-0.9354, 0.8722],
.9186, 1.1885],

0

0

1

0.1595, -0.9922],
0.3260, 0.9572],
2.2385, -1.2704],
0.2007, -1.0860],
1.1423, -0.2115],
0.7590, -0.6401],
0.0339, -0.4439],
0.3950, -0.5841],
0.6752, -0.6698],
0.2760, 0.0204],
1.0637, 1.7657],
0.4892, -0.0236],
0.4793, 0.3979],
0.2206, 0.3598],
1.2669, .5495] ,
0
1
0
0
1
1
0
1
0
0
0
0
0
1
0
0
0
1

[y

.8553, 0.5060],
.1250, -1.6645],
.8648, -0.6060],
.8861, 0.9204],
.0055, .5119],
.2406, 0.1779],
.8390, -0.1560],
.1340, 1.0290],
.5181, -0.3230],
.4742, 0.2750],
.0866, 0.3084],
.1322, -0.6673],
.4096, 1.3299],
.5092, -0.4951],
.0418, 1.0244],
.3153, -0.57441]1,
.3304, -0.9862],
.9956, -1.8532],

[y


https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

[9]:

[10]:

[11]:

[11]:

[12]:

[12]:

[13]:

[13]:

[14]:

[ 0.2311, -0.9675],
[-0.6461, -0.8295],
[-0.7013, 1.7916],
[-1.1629, -1.5063],
[-0.6191, 0.1512]])

Pour utiliser cette “lookup table” sous la forme d’une matrice, on peut 'indexer avec le numéro du
caractere dont on souhaite obtenir I’embedding, par exemple ici & partir du token 5 correspondant
au caractere c:

emb_char_c = C[5] # 5: token correspondant d 'c'
print (emb_char_c)

tensor ([ 2.2385, -1.2704])

On peut également remarquer que l'on peut indexer un caractere a partir d’un vecteur “one-hot”
correspondant au méme caractere, en multipliant la matrice d’embeddings par ce vecteur:

c_one_hot = F.one_hot(torch.tensor(5), num_classes=nb_chars).float()
print (£f"{c_one_hot=}")

c_one_hot=tensor([0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., O.,
0., 0., 0.,

c_one_hot @ C

tensor ([ 2.2385, -1.2704])

La premiere couche linéaire de ce réseau de neurones, composé de cette matrice C, va étre activée
avec les indices des caracteres.

L’indexation avec des tenseurs Pytorch est tres flexible, ce qui permet de récupérer plusiers lignes,
par exemple correspondant a la suite de lettres c, a, b (soit 5,3,4):

CL[5,3,4]1]

tensor([[ 2.2385, -1.2704],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]11]1)

Cllctoil'c']l, ctoil['a'l, ctoil['b']]1]

tensor ([[ 2.2385, -1.2704],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]11)

On peut également indexer avec un tenseur:

C[torch.tensor([5,3,4])]

10



[14]: tensor([[ 2.2385, -1.2704],
[ 0.1595, -0.9922],
[-0.3260, 0.9572]11)

Ce tenseur peut étre multi-dimensionnel, comme par exemple Xd:

[15]: C[Xd]

[15]: temsor([[[ 0.4806, 0.9659],
[ 0.4806, 0.9659],
[ 0.4806, 0.96591]1,

[[ 0.4806, 0.9659],
.4806, 0.9659],
.1595, -0.9922]1],

,_|
o O

.4806, 0.9659],
.1595, -0.9922],
.3260, 0.9572]17,

O O O

[ 0.1595, -0.9922],
[-0.3260, 0.9572],
[ 0.1595, -0.9922]],

0.3260, 0.9572],
0.1595, -0.9922],
0.4793, 0.3979]1],

[ 0.1595, -0.9922],
[-0.4793, 0.3979],
[-0.2007, -1.08601]1,

[-0.4793, 0.3979],
[-0.2007, -1.0860],
[-0.2206, 0.3598]1],

[-0.2007, -1.0860],
[-0.2206, 0.3598],
[-0.4793, 0.3979]1],

[-0.2206, 0.3598],
[-0.4793, 0.3979],
[-0.4793, 0.3979]],

.4793, 0.3979],

[-0
[-0.4793, 0.3979],
[-0.0418, 1.0244]17,

11



—/ /o
o O O

L B s N e |

o O O

O O O

/M /o
o O O

.4806, O.
.96591]1,

.4806, O

.4806, O.

.4806, O.
.4806, O.
.9922]117,

.1595,

.4806, O.
.9922],

.1595,

.3260, O.

.1595,

.3260, O.
.9922]17,

.1595,

.3260, O.
.9922],
.397911,

.1595,
.4793, O

.1595,

.2007,

.4793, O.
.08601],

.2007,

.2206, O.

.2007,

.2206, O.
.4793, O.
.4793, O.

.4793, O.
0.3979],
.0418, 1.

.4793,

.4793,

.0418, 1.
.2115]17,

.1423,

.4806, O.
.4806, O.
.4806, O.

96591,
9659]1,
9659],
96591,
9659],

957211,

.9922],

9572],

9572],

.9922],
.4793, O.
.086011,

39791,

39791,

3598]1,

.0860],
.2206, O.
.4793, 0.

3598],
397911,

3598],
39791,
397911,
39791,

024411,

0.3979],

02447,

96591,
9659],
965911,



[ B B
o O O

o O O

.4793,
.0418, 1.
.1423, -0

.4806, O
.4806, O.
.1595, -0.

.4806, O.
.1595, -0.
.3260, O.

.1595, -0.
.3260, O.
.1595, -0.

.3260, O.
.1595, -0.
.4793, O.

.1595, -0.
.4793, O
.2007, -1.

.4793, 0.
.2007, -1.
.2206, O.

.2007, -1.
.2206, O.
.4793, O.

.2206, O.
.4793, 0.
.4793, O.

.4793, O.
L4793,
.0418, 1.

.0418, 1.
.1423, -0.
.8648, -0.

.4806, O.
0.4806, O.

.96591],

96591,
9922]1],

96591,
9922],
957217,

9922],
9572],
992211,

9572],
9922],
397911,

9922],

.39791,

086011,

39791,
08601,
3598]1,

0860],
35981,
397911,

3598],
39791,
397911,

39791,

0.3979],

024411,

0.3979],

0244],

.2115]117,

02447,
21157,
606011,

96591,
96591,

13
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e e
o O O

O O O

m/ /o
o O O

L4793,
.0418, 1
.8648, -0.

4806, O.

.4806, O.
.4806, O.
.1595, -0.

.4806, O.
.1595, -0.
.3260, O.

.15695, -0.
.3260, O.
.1595, -0.

.3260, O.
.1595, -0.
.4793, O.

.1595, -0
.4793, O.
.2007, -1

.4793, 0.
.2007, -1.
.2206, O.

.2007, -1.
.2206, O.
.4793, O.

.2206, O.
.4793, O.
.4793, O.

.4793, O.
.4793,
.0418, 1.

.4806, O.
.4806, O.
.4806, O.

.4806, O.

965911,

96591,
9659],
9922]1,

96591,
99227,
957211,

9922],
9572],
992211,

9572],
9922],
397911,

.9922],

39791,

.086011,

39791,
086017,
3598]1,

08601,
3598],
397911,

3598],
3979],
397911,

39791,

0.3979],

024411,

0.3979],
.0244],

606011,
9659],
9659],
965911,

96591,

14



.4806, 0.9659],
.1595, -0.9922]17,

]
o O

.4806, 0.9659],
.15695, -0.9922],
.3260, 0.9572]7,

O O O

[ 0.1595, -0.9922],
[-0.3260, 0.9572],
[ 0.1595, -0.9922]],

[[-0.3260, 0.9572],
[ 0.1595, -0.9922],
[-0.4793, 0.39791]1,

[ .15695, -0.9922],

Lo
[-0.4793, 0.3979],
[-0.2007, -1.0860]],

[-0.4793, 0.3979],
[-0.2007, -1.0860],
[-0.2206, 0.3598]],

[-0.2007, -1.0860],
[-0.2206, 0.3598],
[-0.4793, 0.3979]],

[ 2206, 0.3598],

[-0.
[-0.4793, 0.3979],
[ 0.8648, -0.6060]111)

[16]: C[Xd].shape

[16]: torch.Size([53, 3, 2])

Ce qui nous permet de créer tous les embeddings sur notre jeu de données de “démo”, un tenseur
d’ordre 3 de dimensions 53 x 3 x 2.

[17]: emb = C[Xd]
emb . shape

[17]: torch.Size([53, 3, 21)

1.5 Création de la couche cachée

La couche cachée sera composée d’une couche avec context_size * e_dims entrées et un nombre
de neurones hidden_layer_size a définir (prenons ici 100), avec pour chaque neurone un poids et
un biais, poids et biais qui seront définis dans une matrice W1 et un vecteur bi:

15



[18]:

[18]:

[19]:

[20]:

[20] :

[21]:

[21]:

[22]:

[22]:
[23]:
[23]:
[24]:

[24] :

[25] :

[25]:

hidden_layer_size = 100

W1l = torch.randn((context_size * e_dims, hidden_layer_size))
bl torch.randn(hidden_layer_size)

W1l.shape, bl.shape

(torch.Size([6, 100]), torch.Size([100]))

Nous souhaiterions donc maintenant multiplier les entrées par les poids et ajouter les biais, ce qui
ne va pas étre possibles car les tenseurs ne sont pas compatibles.

# emb @ W1 + bl # Décommenter pour voir l'erreur

Il faudrait passer pour emb d’une forme [53, 3, 2] & une forme [53, 6].

On peut le faire avec PyTorch en concaténant en dimension 1 avec cat:
torch.cat([emb[:, 0, :], emb[:, 1, :], emb[:, 2, :1], 1).shape
torch.Size([53, 6])

Mais cette approche n’est pas tres propre car difficilement généralisable. On peut également utiliser
unbind qui est plus simple:

torch.cat(torch.unbind(emb, 1), 1).shape
torch.Size([53, 6])

Mais il y a une approche plus efficace consistant a utiliser la méthode view() d’un tenseur, perme-
ttant de “réorganiser” les éléments d’un tenseur selon différentes formes et dimensions, a condition
que le nombre d’éléments soit identique:

a = torch.arange(18)

a

tensor([ O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17])
a.shape

torch.Size([18])

a.view(2, 9)

tensor([[ O, 1, 2, 3, 4, 5, 6, 7, 8],
[ 9, 10, 11, 12, 13, 14, 15, 16, 17]1]1)

a.view(9, 2)

tensor([[ O, 117,
[ 2, 3],
[ 4, 5],
[e6, 71,
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https://pytorch.org/docs/stable/generated/torch.Tensor.view.html

[26]:

[26] :

[27]:

[28]:

[28]:

a.view(3, 3,

[ 8,
(10,
(12,
(14,
(16,

9],
117,
131,
1571,
1711)

2)

tensor([[[ 0, 1],
[ 2, 31,
[ 4, 511,

# a.untyped_storage()

(le, 71,
[ 8, 9]’
(10, 1111,

[[12, 13],
[14, 15],
[16, 17111)

Avec nos embeddings emb, il est donc possible d’utiliser view ainsi:

emb.view(53, 6)

tensor ([

4806, O
.4806, O.
.4806, O
.1595, -0.
.3260, O.
.1595, -0.
.4793, 0.
.2007, -1.
.2206, O
.4793, O
.4806, O.
.4806, O
.4806, O
.1595, -0.
.3260, O.
.1595, -0.
.4793, 0.
.2007, -1.
.2206, O
.4793, O
.4793, 0.
.4806, O

.9659, O
9659, O.
.9659, O
9922, -0.
9572, 0.
9922, -0.
3979, -0.
0860, -0.
.3598, -0.
.3979, -0.
9659, O.
.9659, O.
.9659, O.
9922, -0.
9572, O.
9922, -0.
3979, -0.
0860, -0.
.3598, -0.
.3979, -0.
3979, -0.
.9659, O.

.4806, O.
4806, O.
.1595, -0.
3260, O.
1595, -0.
4793, O.
2007, -1.

2206,
4793,

4806,
4806,

2206,
4793,

0418,
4806,

9659,
9659,
9922,
9572,
9922,
3979,
0860,

0.3598,
0.3979,
4793, O.
0
0

3979,

.9659,
.9659,
1595, -0.
3260, O.
1595, -0.
4793, O.
2007, -1.
0.3598,
0.3979,
4793, 0.
1
0

9922,
9572,
9922,
3979,
0860,

3979,

.0244,
.9659,
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0.4806, 0.9659],
0.1595, -0.9922],
-0.3260, 0.9572],
0.1595, -0.9922],
-0.4793, 0.3979],
-0.2007, -1.0860],
-0.2206, 0.3598],
-0.4793, 0.3979],
-0.4793, 0.3979],
-0.0418, 1.0244],
0.4806, 0.9659],
0.1595, -0.9922],
-0.3260, 0.9572],
0.1595, -0.9922],
-0.4793, 0.3979],
-0.2007, -1.0860],
-0.2206, 0.3598],
-0.4793, 0.3979],
-0.4793, 0.3979],
-0.0418, 1.0244],
1.1423, -0.2115],
0.4806, 0.9659],



.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],

-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
-0.4793, 0.3979, -0.0418, 1.0244, 1.1423, -0.2115],
-0.0418, 1.0244, 1.1423, -0.2115, 0.8648, -0.6060],
.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],

0

.4806, .9659, 0.1595, -0.9922, -0.3260, 0.9572],
.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
.2206, .3598, -0.4793, 0.3979, -0.4793, 0.3979],
L4793, .3979, -0.4793, 0.3979, -0.0418, 1.0244],

1

0

0

0
0
.4793, 0.3979, -0.0418, .0244, 0.8648, -0.6060],
.4806, 0.9659, 0.4806, .9659, 0.4806, 0.9659],
.4806, 0.9659, 0.4806, .9659, 0.1595, -0.9922],
.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
.2206, 0.3598, -0.4793, 0.3979, 0.8648, -0.6060]]1)

I_|l_|l_|l_|l_\l_|l_|l_|l_|l_|l_|l_|l_|I_|l_|IT\l_|I_|l_|I_|I_|l_|I_|l_|I_|I_|I_\I_|I_|I_|I_|
O O O O O O O O OO OO OO OO OO0 O0OO0OO0OOOOOOoOOoOOoO oo

ou avec la valeur spéciale -1 qui permet de ne pas avoir & spécifier la taille du premier ordre du
tenseur:

[29]: emb.view(-1, 6)
[29]: tensor([[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
0.4793, 0.3979, -0.4793, O 1

0.4806, O 0 0

.3979, -0.0418,
.9659, 0.4806,

.0244],

.9659, 0.4806, .9659],
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[30]:

[ 0.4806, O.
[ 0.4806, O.
[ 0.1595, -0.
[-0.3260, O.
[ 0.1595, -0.
[-0.4793, O.
[-0.2007, -1.
[-0.2206, O
[-0.4793, 0
[-0.4793, O.
[ 0.4806, 0
[ 0.4806, O
[ 0.4806, O
[ 0.1595, -0.
[-0.3260, O.
[ 0.1595, -0.
[-0.4793, O.
[-0.2007, -1.
[-0.2206, O
[-0.4793, 0
[-0.4793, O
[-0.0418, 1.
[ 0.4806, O
[ 0.4806, ©
[ 0.4806, O
[ 0.1595, -0.
[-0.3260, O.
[ 0.1595, -0.
[-0.4793, O.
[-0.2007, -1.
[-0.2206, O
[-0.4793, O
[-0.4793, 0
[ 0.4806, O.
[ 0.4806, ©
[ 0.4806, O
[ 0.1595, -0.
[-0.3260, O.
[ 0.1595, -0.
[-0.4793, O.
[-0.2007, -1.
[-0.2206, O.

9659, 0.
9659, O.
9922, -0.
9572, 0.
9922, -0.
3979, -0.
0860, -0.
.3598, -0.
.3979, -0.
3979, -0.
.9659, 0.
.9659, 0.
.9659, 0.
9922, -0.
9572, 0.
9922, -0.
3979, -0.
0860, -0.
.3598, -0.
.3979, -0.
.3979, -0.
0244, 1.
.9659, 0.
.9659, 0.
.9659, 0.
9922, -0.
9572, 0.
9922, -0.
3979, -0.
0860, -0.
.3598, -0.
.3979, -0.
.3979, -0.
9659, 0.
.9659, 0.
.9659, 0.
9922, -0.
9572, O.
9922, -0.
3979, -0.
0860, -0.
3598, -0.

4806, O.
1595, -0.
3260, O.
1595, -0.
4793, 0.
2007, -1.

2206,
4793,

0418,
4806,
4806,

1595, -0.
3260, O.
1595, -0.
4793, 0.
2007, -1.
2206, 0.
4793, O.
4793, O.
0418, 1.
1423, -0.
4806, O.
4806, O.
1595, -0.
3260, O.
1595, -0.
4793, O.
2007, -1.

2206,
4793,

0418,
4806,
4806,

1595, -0.
3260, O.
1595, -0.
4793, O.
2007, -1.
2206, O.
4793, 0.

0
0
4793, O.
1
0
0

0
0
4793, O.
1
0
0

De maniere générique, nous pouvons donc écrire:

emb.view(-1, context_size * e_dims)
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9659, 0.1595, -0.9922],
9922, -0.3260, 0.9572],
9572, 0.1595, -0.9922],
9922, -0.4793, 0.3979],
3979, -0.2007, -1.0860],
0860, -0.2206, 0.3598],
.3598, -0.4793, 0.3979],
.3979, -0.4793, 0.3979],
3979, -0.0418, 1.0244],
.0244, 1.1423, -0.2115],
.9659, 0.4806, 0.9659],
.9659, 0.1595, -0.9922],
9922, -0.3260, 0.9572],
9572, 0.1595, -0.9922],
9922, -0.4793, 0.3979],
3979, -0.2007, -1.0860],
0860, -0.2206, 0.3598],
3598, -0.4793, 0.3979],
3979, -0.4793, 0.3979],
3979, -0.0418, 1.0244],
0244, 1.1423, -0.2115],
2115, 0.8648, -0.6060],
9659, 0.4806, 0.9659],
9659, 0.1595, -0.9922],
9922, -0.3260, 0.9572],
9572, 0.1595, -0.9922],
9922, -0.4793, 0.3979],
3979, -0.2007, -1.0860],
0860, -0.2206, 0.3598],
.3598, -0.4793, 0.3979],
.3979, -0.4793, 0.3979],
3979, -0.0418, 1.0244],
.0244, 0.8648, -0.6060],
.9659, 0.4806, 0.9659],
.9659, 0.1595, -0.9922],
9922, -0.3260, 0.9572],
9572, 0.1595, -0.9922],
9922, -0.4793, 0.3979],
3979, -0.2007, -1.0860],
0860, -0.2206, 0.3598],
3598, -0.4793, 0.3979],
3979, 0.8648, -0.6060]1)



[30]: tensor([[ 0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
0.2206, .3598, -0.4793, 0.3979, -0.4793, 0.3979],
0.4793, .3979, -0.4793, 0.3979, -0.0418, 1.0244],
0.4793, .3979, -0.0418, 1.0244, 1.1423, -0.2115],
0.4806, .9659, 0.4806, 0.9659, 0.4806, 0.9659],
0.4806, .9659, 0.4806, 0.9659, 0.1595, -0.9922],
0.4806, .9659, 0.1595, -0.9922, -0.3260, 0.9572],
0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
0.4793, 0.3979, -0.0418, 1.0244, 1.1423, -0.2115],
0.0418, 1.0244, 1.1423, -0.2115, 0.8648, -0.6060],
0.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
0.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
0.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
0
0
0
0
0
0
0

-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
-0.2206, 0.3598, -0.4793, 0.3979, -0.4793, 0.3979],
-0.4793, 0.3979, -0.4793, 0.3979, -0.0418, 1.0244],
-0.4793, 0.3979, -0.0418, 1.0244, 0.8648, -0.6060],
.4806, 0.9659, 0.4806, 0.9659, 0.4806, 0.9659],
.4806, 0.9659, 0.4806, 0.9659, 0.1595, -0.9922],
.4806, 0.9659, 0.1595, -0.9922, -0.3260, 0.9572],
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[ 0.1595, -0.9922, -0.3260, 0.9572, 0.1595, -0.9922],
[-0.3260, 0.9572, 0.1595, -0.9922, -0.4793, 0.3979],
[ 0.1595, -0.9922, -0.4793, 0.3979, -0.2007, -1.0860],
[-0.4793, 0.3979, -0.2007, -1.0860, -0.2206, 0.3598],
[-0.2007, -1.0860, -0.2206, 0.3598, -0.4793, 0.3979],
[-0.2206, 0.3598, -0.4793, 0.3979, 0.8648, -0.6060]1])

Nous pouvons maintenant implémenter la couche cachée h compléetement:

[31]: h = torch.tanh(emb.view(-1, context_size*e_dims) @ W1 + bl)

h
[31]: tensor([[ 0.4931, 0.9997, -0.4131, .., -0.9919, 0.2336, 0.4416],
[-0.7059, 0.9476, -0.9881, .., -0.9353, 0.6110, -0.2495],
[ 0.7830, 0.8349, 0.9091, .., -0.7906, -0.6847, 0.9962],
[ 0.8753, 0.2654, -0.6717, .., -0.1456, -0.2736, 0.8699],
[ 0.7239, -0.0967, -0.9465, .., -0.8542, 0.5216, -0.9400],
[ 0.4366, 0.9808, -0.9875, .., -0.1445, -0.8273, 0.1011]11)

1.5.1 Couche de sortie

De maniére similaire a la couche cachée la couche de sortie va se composer d’une matrice de poids
W2 et d’'un vecteur de biais b2:

[32]: W2 = torch.randn((hidden_layer_size, nb_chars))
b2 = torch.randn(nb_chars)
W2.shape, b2.shape

[32]: (torch.Size([100, 41]), torch.Size([41]))

Le calcul des logits de sortie de la couche de sortie s’obtiennent en multipliant les valeurs de la
couche cachée par les poids W2 et en ajoutant les biais:

[33]: logits = h @ W2 + b2
logits.shape

[33]: torch.Size([53, 41])

Pour obtenir des probabilités a partir des logits (interprétés comme des logs), on utilise notre
fonction softmaz:

[34]: counts = logits.exp()
prob = counts / counts.sum(l, keepdims=True)

Nous pouvons vérifier que la somme de ces probabilités est également a 1:

[35]: prob[0].sum()

[35]: tensor(1.0000)
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A partir de ces probabilités, nous voulons maintenant obtenir la probabilité affectée & chacun des
caracteres attendus de Yd:

[36]: Yd

[36]: temnsor([ 3, 4, 3, 15, 6, 16, 15, 15, 32, O, 3, 4, 3, 15, 6, 16, 15, 15,
32, 7, o0, 3, 4, 3, 15, 6, 16, 15, 15, 32, 7, 20, O, 3, 4, 3,
15, 6, 16, 15, 15, 32, 20, o0, 3, 4, 3, 15, 6, 16, 15, 20, 01)

prob étant d’ordre 2, nous devons donc indexer par le “numéro” de I’exemple (torch.arange (53)
car il y a 53 exemples dans Yd) et le numéro du token, soit:

[37]: prob[torch.arange(53), Yd]

[37]: tensor([1.3885e-09, 2.0777e-06, 9.6970e-03, 4.8020e-15, 6.1410e-06, 8.1274e-15,
1.1853e-01, 8.5158e-09, 2.0254e-05, 1.6990e-04, 1.3885e-09, 2.0777e-06,
9.6970e-03, 4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09,
2.0254e-05, 5.7130e-06, 1.3612e-06, 1.3885e-09, 2.0777e-06, 9.6970e-03,
4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09, 2.0254e-05,
5.7130e-06, 6.4163e-10, 2.2806e-05, 1.3885e-09, 2.0777e-06, 9.6970e-03,
4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09, 2.0254e-05,
1.5092e-14, 9.4455e-08, 1.3885e-09, 2.0777e-06, 9.6970e-03, 4.8020e-15,
6.1410e-06, 8.1274e-15, 1.1853e-01, 1.0905e-14, 1.0875e-09])

Ou de manieére générique en utilisant size pour obtenir la taille de Yd:

[38]: probl[torch.arange(Yd.size(0)), Yd]

[38]: tensor([1.3885e-09, 2.0777e-06, 9.6970e-03, 4.8020e-15, 6.1410e-06, 8.1274e-15,
1.1853e-01, 8.5158e-09, 2.0254e-05, 1.6990e-04, 1.3885e-09, 2.0777e-06,
9.6970e-03, 4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09,
2.0254e-05, 5.7130e-06, 1.3612e-06, 1.3885e-09, 2.0777e-06, 9.6970e-03,
4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09, 2.0254e-05,
5.7130e-06, 6.4163e-10, 2.2806e-05, 1.3885e-09, 2.0777e-06, 9.6970e-03,
4.8020e-15, 6.1410e-06, 8.1274e-15, 1.1853e-01, 8.5158e-09, 2.0254e-05,
1.5092e-14, 9.4455e-08, 1.3885e-09, 2.0777e-06, 9.6970e-03, 4.8020e-15,
6.1410e-06, 8.1274e-15, 1.1853e-01, 1.0905e-14, 1.0875e-09])

1.5.2 Fonction de perte: cross-entropy

Nous pouvons maintenant estimer la “qualité” de notre modele partiel (sur 53 exemples) avec notre
fonction de perte:

[39]: loss = -prob[torch.arange(Yd.size(0)), Yd].log() .mean()
loss

[39]: tensor(16.6951)

Jusqu’a ce point, le réseau calcule des “logits”, qui sont passés dans un Softmax pour obtenir des
probabilités. La “Negative Log Likelihood” est calculée manuellement. Le calcul manuel peut-étre
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[42] :

[42] :

[43] :

[44] :

remplacé par la “cross-entropy”:

1. Plus efficace (opérations fusionnées, moins de tenseurs intermédiaires).

2. Plus simple pour la rétropropagation (backward pass).

3. Stabilité numérique: la “cross-entropy” gére mieux les trés grands nombres (qui causeraient
des NaN avec une exponentielle naive) en soustrayant le maximum des logits avant le calcul.

La methode cross_entropy de Pytorch permet de calculer plus efficacement le loss, tout en donnant
le méme résultat:

loss = F.cross_entropy(logits, Yd)
loss

tensor (16.6951)

Pour illustrer le fait d’utiliser des probabilités examinons ces deux exemples:

logits = torch.tensor([-2, -3, 0, 5])
counts = logits.exp()

probs = counts / counts.sum()

probs

tensor([9.0466e-04, 3.3281e-04, 6.6846e-03, 9.9208e-01])

logits = torch.tensor([-100, -3, 0, 100])
counts = logits.exp()

probs = counts / counts.sum()

probs

tensor([0., 0., 0., nan])

1.6 Reéseau complet “Feed Forward Netword”
1.6.1 Données

words = open('civil_mots.txt', 'r').read().splitlines()
nb_words = len(words)

chars = sorted(list(set(''.join(words))))

E0OS = '.!'

nb_chars = len(chars) + 1 # On ajoute 1 pour EOS

ctoi = {c:i+1 for i,c in enumerate(chars)}

ctoi[EOS] = O

itoc = {i:s for s,i in ctoi.items()}

1.6.2 Jeux d’entrainement, de développement et de test

# 807, 107, 107
import random

random.seed (42)
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random.shuffle (words)
nl = int(0.8 * len(words))
n2 = int(0.9 * len(words))

Xtr, Ytr = build_dataset(words[:nl1], context_size=context_size)
Xdev, Ydev = build_dataset(words[n1:n2], context_size=context_size)
Xte, Yte = build_dataset(words[n2:], context_size=context_size)

1.6.3 Hyperparametres

[45]: context_size = 3
e_dims = 2 # Dimensions des embeddings
hidden_layer_size = 100
mini_batch_size = 32
steps = 200000
seed = 2147483647

1.6.4 Architecture

[46]: g = torch.Generator () .manual_seed(seed) # for reproductbility
C = torch.randn((nb_chars, e_dims), generator=g)
W1l = torch.randn((context_size * e_dims, hidden_layer_size), generator=g)
bl = torch.randn(hidden_layer_size, generator=g)
W2 = torch.randn((hidden_layer_size, nb_chars), generator=g)
b2 = torch.randn(nb_chars, generator=g)

parameters = [C, W1, bl, W2, b2]
for p in parameters:
p.requires_grad = True

[47]: sum(p.nelement() for p in parameters) # number of parameters in total
[47]: 4923

1.7 Entralnement

(]
(]

[48]: lossi
stepi

[49]: for i in range(steps):
# mini-batch construct
ix = torch.randint (0, Xtr.shape[0], (mini_batch_size,))

# forward pass

emb = C[Xtr[ix]] # (mini_batch _size, context _size, e_dims)

h = torch.tanh(emb.view(-1, context_size * e_dims) @ W1 + bl) #,
< (mini_batch_size, hidden_layer_size)

logits = h @ W2 + b2 # (mini_batch_size, nb_chars)
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loss = F.cross_entropy(logits, Ytr[ix])

# backward pass

for p in parameters:
p.grad = None

loss.backward ()

# update
lr = 0.16 if i < 100000 else 0.016
for p in parameters:

p.data += -1r * p.grad

# track stats
stepi.append (i)
lossi.append(loss.logl0() .item())

[50]: plt.plot(stepi, lossi)

[50]: [<matplotlib.lines.Line2D at 0x1184e81a0>]
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[61]: emb = C[Xtr] # (batch _size, context size , e_dims)
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[52] :

[52]:

[63]:

h = torch.tanh(emb.view(-1, context_size * e_dims) @ W1 + bl) # (batch_size,
~hidden_layer_size)

logits = h @ W2 + b2 # (batch_size, nb_chars)

loss = F.cross_entropy(logits, Ytr)

loss

tensor(1.8583, grad_fn=<NllLossBackward0>)

emb = C[Xdev] # (batch_size, context_size , e_dims)

h = torch.tanh(emb.view(-1, context size * e _dims) @ W1 + bl) # (batch _size,,
~hidden_layer_size)

logits = h @ W2 + b2 # (batch_size, nb_chars)

loss = F.cross_entropy(logits, Ydev)

loss

tensor(1.9103, grad_fn=<NllLossBackward0>)

# visualize dimensions 0 and 1 of the embedding matrixz C for all characters
plt.figure(figsize=(8,8))
plt.scatter(C[:,0] .data, C[:,1].data, s=200)
for i in range(C.shape[0]):
plt.text(C[i,0].item(), C[i,1].item(), itoc[i], ha="center", va="center",
wcolor="'white')
plt.grid('minor")
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[54] :

[54]:

[65]:

1.8 Utilisation du modele: génération de mots

context = [0] * context_size
Cltorch.tensor([context])].shape

torch.Size([1, 3, 2])

# sample from the model
g = torch.Generator() .manual_seed(seed)

for _ in range(20):

out = []
context = [0] * context_size # initialize with all ...
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while True:
emb = C[torch.tensor([context])] # (1, context size, e_dims)
h = torch.tanh(emb.view(l, -1) @ W1 + bi)
logits = h @ W2 + b2
probs = F.softmax(logits, dim=1)
ix = torch.multinomial (probs, num_samples=1, generator=g).item()
context = context[1:] + [ix]
if ix == 0:
break
out .append (ix)
print(''.join(itoc[i] for i in out))
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1.9 Exercice

Modifier les hyperparametres de I’entrainement pour battre le score courant de test.

[66]: emb = C[Xte] # (batch _size, context size , e_dims)
h = torch.tanh(emb.view(-1, context_size * e_dims) @ W1 + bl) # (batch_size,,
shidden_layer_size)
logits = h @ W2 + b2 # (batch_size, nb_chars)
loss = F.cross_entropy(logits, Yte)
loss

[56]: tensor(1.9492, grad_fn=<NllLossBackward0>)
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1.10 Post-cours: détermination d’un “bon” Ir

[67]: g = torch.Generator() .manual_seed(seed) # for reproducibility

C = torch.randn((nb_chars, e_dims), generator=g)

W1l = torch.randn((context_size * e_dims, hidden_layer_size), generator=g)
bl = torch.randn(hidden_layer_size, generator=g)

W2 = torch.randn((hidden_layer_size, nb_chars), generator=g)

b2 = torch.randn(nb_chars, generator=g)

parameters = [C, W1, bl, W2, b2]
for p in parameters:
p.requires_grad = True

lre = torch.linspace(-3, 0, 1000)
lrs = 10**1re

lossi = []

stepi = []

1ri = []

lrei = []

for i in range(1000):
# mini-batch construct
ix = torch.randint(0, Xtr.shape[0], (mini_batch_size,))

# forward pass

emb = C[Xtr[ix]] # (mini_batch_size, context_size, e_dims)

h = torch.tanh(emb.view(-1, context _size * e dims) @ W1 + bl) #,
o (mini_batch_size, hidden_layer_size)

logits = h @ W2 + b2 # (mini_batch_size, nb_chars)

loss = F.cross_entropy(logits, Ytr[ix])

# backward pass

for p in parameters:
p.-grad = None

loss.backward()

# update

1r = 1lrs[i]

for p in parameters:
p.data += -1r * p.grad

# track stats

lrei.append(1lre[i])
1ri.append(1r)

stepi.append (i)
lossi.append(loss.logl0() .item())

[68]: plt.plot(lri, lossi)
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[58]: [<matplotlib.lines.Line2D at 0x11863£230>]
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[59]: plt.plot(lrei, lossi)

[59]: [<matplotlib.lines.Line2D at 0x1129d7770>]
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