
neural_final

January 3, 2026

1 Modèle de langue neuronal
15 décembre 2025

Adapté du tutoriel d’A. Karphathy “Makemore”, deuxième partie:
https://www.youtube.com/watch?v=PaCmpygFfXo

1.1 Jeu de données: les mots du code civil
[2]: words = open('civil_mots.txt', 'r').read().splitlines()

chars = sorted(list(set(''.join(words))))
nb_chars = len(chars) + 1 # On ajoute 1 pour EOS
ctoi = {c:i+1 for i,c in enumerate(chars)}
ctoi['.'] = 0
print("CTOI =", ctoi)
Dictionnaire permettant permettant de passer d'un entier à son caractère
itoc = {i:s for s,i in ctoi.items()}
print("ITOC =", itoc)

CTOI = {"'": 1, '-': 2, 'a': 3, 'b': 4, 'c': 5, 'd': 6, 'e': 7, 'f': 8, 'g': 9,
'h': 10, 'i': 11, 'j': 12, 'l': 13, 'm': 14, 'n': 15, 'o': 16, 'p': 17, 'q': 18,
'r': 19, 's': 20, 't': 21, 'u': 22, 'v': 23, 'w': 24, 'x': 25, 'y': 26, 'z': 27,
'à': 28, 'â': 29, 'ç': 30, 'è': 31, 'é': 32, 'ê': 33, 'ë': 34, 'î': 35, 'ï': 36,
'ô': 37, 'ù': 38, 'û': 39, 'œ': 40, '.': 0}
ITOC = {1: "'", 2: '-', 3: 'a', 4: 'b', 5: 'c', 6: 'd', 7: 'e', 8: 'f', 9: 'g',
10: 'h', 11: 'i', 12: 'j', 13: 'l', 14: 'm', 15: 'n', 16: 'o', 17: 'p', 18: 'q',
19: 'r', 20: 's', 21: 't', 22: 'u', 23: 'v', 24: 'w', 25: 'x', 26: 'y', 27: 'z',
28: 'à', 29: 'â', 30: 'ç', 31: 'è', 32: 'é', 33: 'ê', 34: 'ë', 35: 'î', 36: 'ï',
37: 'ô', 38: 'ù', 39: 'û', 40: 'œ', 0: '.'}

1.2 Approche par réseau de neurones reproduisant l’approche par comptage
1.2.1 Représentation des mots avec des vecteurs “one-hot”: exemple avec un seul

mot

[3]: import torch

Création d'un jeu d'entrainement de bigrams (x,y)
xs, ys = [], []

1

for w in [words[40]]:
chs = ['.'] + list(w) + ['.']
for ch1, ch2 in zip(chs, chs[1:]):
ix1 = ctoi[ch1]
ix2 = ctoi[ch2]
print(ch1, ch2, '->', ix1, ix2)
xs.append(ix1)
ys.append(ix2)

xs = torch.tensor(xs)
ys = torch.tensor(ys)
print(words[40])
tensor_dims = len(words[40]) + 1
print("tensor_dims =", tensor_dims)

. a -> 0 3
a c -> 3 5
c c -> 5 5
c e -> 5 7
e p -> 7 17
p t -> 17 21
t é -> 21 32
é e -> 32 7
e . -> 7 0
acceptée
tensor_dims = 9

[4]: xs

[4]: tensor([0, 3, 5, 5, 7, 17, 21, 32, 7])

[5]: ys

[5]: tensor([3, 5, 5, 7, 17, 21, 32, 7, 0])

[6]: # Représentation de chaque caractère par un vecteur one-hot
seul une composante est à 1.0, correspondant à l'indice du numéro du caractère
import torch.nn.functional as F
xenc = F.one_hot(xs, num_classes=nb_chars).float()
xenc

[6]: tensor([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],

2

[0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.]])

[7]: # La première dimension est la dimension du tenseur exemple
xenc.shape

[7]: torch.Size([9, 41])

[8]: import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(xenc)

[8]: <matplotlib.image.AxesImage at 0x10f450830>

[9]: # Pour notre réseau, on va utiliser une matrice W des valeurs normales␣
↪aléatoires comme

point de départ

3

W = torch.randn((nb_chars, tensor_dims)) # Quand on aura tous les mots, on␣
↪utilisera nb_chars x nb_chars

W

[9]: tensor([[9.1839e-01, -1.1502e+00, -8.3629e-01, 1.5226e+00, 8.4343e-01,
3.7099e-01, 1.8180e+00, -6.9873e-01, 1.1443e+00],

[-8.5412e-01, 9.1880e-01, 1.6299e+00, -9.2986e-02, 4.3231e-01,
3.4169e-01, 6.3554e-01, -2.3884e+00, -1.6909e-01],

[1.1750e+00, 9.7545e-01, 6.1806e-01, 2.2869e-01, -1.2293e+00,
8.1735e-01, -9.5131e-01, 1.2416e+00, 5.6462e-01],

[2.6404e-01, -1.0920e-01, 5.7622e-01, 1.4399e-01, 7.6392e-01,
3.0535e-01, -7.3563e-01, -9.6206e-01, 3.5338e-01],

[1.5070e+00, 1.4913e+00, 2.9527e-01, -4.1975e-01, -1.4888e+00,
6.9776e-01, 8.9753e-01, 1.0222e+00, -1.4788e+00],

[1.2613e-01, 8.5963e-01, -7.1895e-01, -2.6217e+00, 4.3825e-01,
2.3034e+00, -1.7862e+00, 3.5024e-01, 9.5713e-01],

[-3.4914e-01, 1.1381e+00, -8.4526e-01, 3.8407e-01, -2.9689e-02,
-8.9423e-01, 9.8505e-01, 9.0442e-01, -5.1849e-01],
[6.5824e-01, -7.6243e-01, -8.5083e-02, -1.5097e+00, 3.3365e-01,
-4.7317e-02, -5.2482e-01, 1.1375e+00, -3.8334e-01],
[-4.3876e-02, 9.8445e-01, 1.6056e-01, -4.3068e-02, -4.3082e-01,
-2.1318e-01, -4.0735e-01, -8.3677e-01, 3.9790e-01],
[-1.7768e+00, -9.3988e-01, 1.0934e+00, 8.8543e-01, -1.2180e+00,
-7.6091e-01, 5.6308e-01, -6.6491e-01, -1.1863e+00],
[-1.4602e+00, 4.4132e-01, -3.5278e-01, -1.4347e+00, -1.5626e+00,

6.8525e-01, 4.2568e-01, 8.3430e-01, -1.0295e+00],
[-1.6114e+00, -5.9811e-01, -6.2155e-01, -2.9091e-03, 5.5972e-01,
-7.8317e-01, -8.3771e-02, 7.5206e-01, -1.4175e+00],
[8.1634e-01, 4.9134e-01, -2.7166e-01, -6.0395e-01, 7.2573e-01,

7.1407e-01, 1.7733e-01, 1.7713e-01, 1.4325e-01],
[7.0480e-01, -1.6713e-01, 9.5935e-01, -7.8019e-01, 1.6251e+00,

1.2835e+00, 4.8042e-02, 5.8192e-01, -3.0040e+00],
[6.3264e-01, 2.4104e-01, -7.3922e-01, 4.7470e-01, -1.7250e+00,
-7.5146e-01, -9.4407e-01, -8.6993e-01, -2.6355e+00],
[-1.8073e-01, -1.2490e+00, -8.2327e-01, 1.4730e+00, 5.8836e-01,

4.1034e-03, 9.9122e-01, 2.5957e-01, -1.8716e-01],
[9.1802e-01, -3.6061e-01, -8.1788e-01, 1.5692e+00, -1.1461e+00,
-5.7984e-01, 6.7999e-01, -4.1150e-02, 1.0829e+00],
[1.1454e+00, -4.3676e-01, 2.2854e+00, 1.1893e+00, 4.0966e-01,
-1.1711e-01, -2.1936e-02, -8.4547e-01, 1.2236e-01],
[1.4835e+00, -1.6104e-01, 4.8580e-02, -2.6155e+00, -1.4138e-01,

1.0443e+00, -2.3830e-01, -1.4911e+00, 3.5307e-01],
[2.0946e+00, 1.9337e+00, -2.6824e-01, 2.3089e-01, 1.1514e-03,

2.1862e+00, 6.3311e-01, -6.1647e-01, -1.3749e+00],
[1.5384e+00, -7.6717e-01, -7.3752e-01, 1.2570e+00, -5.8681e-01,

1.3887e+00, -9.6056e-01, 4.8157e-01, -4.1506e-01],
[1.1072e-01, 1.1431e+00, 2.0399e+00, -5.5736e-01, 6.7684e-01,

4

-6.8097e-01, -8.7569e-01, -1.2483e+00, 7.7616e-01],
[-2.6649e-01, 7.9188e-01, 7.2701e-01, 1.7280e+00, -1.1796e+00,

5.2148e-01, -6.1184e-01, 3.1035e-01, 9.7009e-01],
[-8.3095e-01, -1.6064e+00, 2.3667e+00, -1.2204e+00, 4.1136e-01,
-1.4684e+00, 6.3564e-02, -1.5051e+00, -2.2001e-01],
[-5.2230e-01, 8.1375e-01, 6.1553e-01, -4.2599e-02, 1.7301e-01,
-1.2271e-01, -2.0114e+00, -7.8907e-01, -1.2734e+00],
[6.8031e-01, -3.0871e-01, -3.0772e-01, 6.3263e-01, 1.5590e+00,

2.7520e-01, -1.0685e+00, 2.7201e-01, 9.9093e-01],
[9.2734e-02, -1.3574e+00, 4.0598e-01, 4.9756e-01, 5.6375e-01,
-1.1143e+00, 5.2196e-01, 1.4329e-01, -3.9328e-01],
[2.9002e-01, 2.9804e-01, 2.2331e+00, 2.1968e+00, -5.0351e-01,

1.5336e-01, 4.6150e-02, 1.7698e+00, -2.8478e-01],
[1.2679e+00, -5.9689e-01, -1.3967e+00, 1.0058e+00, 2.8197e-01,

1.0780e+00, -5.4874e-01, -5.0334e-01, -2.8814e-01],
[2.1569e+00, 6.2626e-01, 1.9641e-01, -1.5439e+00, 5.7199e-01,
-9.1998e-01, -1.1759e+00, -7.0328e-01, 3.1153e-01],
[-2.3782e-01, 1.5635e+00, -9.9518e-01, 3.7845e-01, -1.5209e+00,
-7.1817e-01, 3.5974e-01, 1.7197e-01, 3.6362e-01],
[2.2835e-01, -1.5459e+00, -9.5902e-01, -1.1907e+00, -3.7331e-01,

5.8753e-01, -1.4671e+00, -3.0594e-01, 8.4065e-01],
[1.1026e+00, -8.7721e-01, 1.5426e+00, 4.4972e-01, 3.1010e-01,

9.7017e-01, 7.8906e-01, 1.0092e+00, 2.0941e+00],
[-1.7965e+00, 1.8701e-01, 4.3996e-01, 4.6749e-01, 4.0462e-01,

9.2346e-02, -1.9932e+00, 7.7445e-01, 7.0330e-01],
[1.0255e+00, 1.0959e+00, 2.6846e-01, -1.3541e+00, -6.1543e-02,
-3.2624e-01, -7.2100e-01, -4.0800e-01, 9.1167e-01],
[1.0763e+00, -1.4209e+00, -5.9040e-01, -1.2943e+00, 2.4534e-01,
-9.7199e-01, -1.7028e+00, -1.6392e+00, -1.0653e+00],
[2.0118e-01, -2.0262e+00, 1.3364e+00, -1.7834e+00, 6.5608e-01,
-1.3171e+00, 8.7381e-01, -2.6745e-01, 1.3398e-01],
[8.5316e-01, 8.4795e-01, -1.1855e-01, -3.7457e-02, 2.4010e-01,

2.7003e-01, 1.1791e+00, 1.0496e+00, 1.6055e+00],
[-1.3566e+00, -8.5464e-01, 8.9450e-01, 1.3328e+00, 2.9470e-01,
-6.0269e-01, -9.7720e-01, 4.0491e-01, 1.5337e+00],
[1.5095e+00, 2.3863e-01, 1.1418e+00, -7.8052e-01, -2.4659e-01,
-8.4775e-01, 3.0722e-01, 6.8697e-01, 8.0159e-02],
[-1.3932e+00, -6.0093e-01, -8.3311e-01, 2.6036e-01, -6.4276e-01,

3.4897e-01, -1.7955e+00, -7.9129e-01, 1.5356e-01]])

[10]: # En multipliant ces "poids" par nos vecteurs one-hot organisés en matrice...
On obtient des valeurs que l'on va "interpréter" comme des logs (log-counts).
En utilisant l'exponentielle de ces valeurs, on va retrouver quelque chose
d'équivalent à la matrice N que nous avions définie précédemment dans la␣

↪méthode
par comptage.
xenc @ W

5

[10]: tensor([[0.9184, -1.1502, -0.8363, 1.5226, 0.8434, 0.3710, 1.8180, -0.6987,
1.1443],

[0.2640, -0.1092, 0.5762, 0.1440, 0.7639, 0.3053, -0.7356, -0.9621,
0.3534],

[0.1261, 0.8596, -0.7190, -2.6217, 0.4382, 2.3034, -1.7862, 0.3502,
0.9571],

[0.1261, 0.8596, -0.7190, -2.6217, 0.4382, 2.3034, -1.7862, 0.3502,
0.9571],

[0.6582, -0.7624, -0.0851, -1.5097, 0.3336, -0.0473, -0.5248, 1.1375,
-0.3833],
[1.1454, -0.4368, 2.2854, 1.1893, 0.4097, -0.1171, -0.0219, -0.8455,

0.1224],
[0.1107, 1.1431, 2.0399, -0.5574, 0.6768, -0.6810, -0.8757, -1.2483,

0.7762],
[1.1026, -0.8772, 1.5426, 0.4497, 0.3101, 0.9702, 0.7891, 1.0092,

2.0941],
[0.6582, -0.7624, -0.0851, -1.5097, 0.3336, -0.0473, -0.5248, 1.1375,
-0.3833]])

[11]: logits = xenc @ W # log-counts
counts = logits.exp() # statut équivalent à N
probs = counts / counts.sum(1, keepdims=True) # distribution de probabilités␣

↪(equ. à p)
probs

[11]: tensor([[0.1170, 0.0148, 0.0202, 0.2141, 0.1086, 0.0677, 0.2877, 0.0232,
0.1467],

[0.1192, 0.0821, 0.1629, 0.1057, 0.1965, 0.1243, 0.0439, 0.0350,
0.1304],

[0.0573, 0.1193, 0.0246, 0.0037, 0.0783, 0.5053, 0.0085, 0.0717,
0.1315],

[0.0573, 0.1193, 0.0246, 0.0037, 0.0783, 0.5053, 0.0085, 0.0717,
0.1315],

[0.1879, 0.0454, 0.0893, 0.0215, 0.1358, 0.0928, 0.0576, 0.3034,
0.0663],

[0.1439, 0.0296, 0.4501, 0.1504, 0.0690, 0.0407, 0.0448, 0.0197,
0.0518],

[0.0625, 0.1756, 0.4304, 0.0321, 0.1101, 0.0283, 0.0233, 0.0161,
0.1216],

[0.1126, 0.0156, 0.1749, 0.0586, 0.0510, 0.0987, 0.0823, 0.1026,
0.3036],

[0.1879, 0.0454, 0.0893, 0.0215, 0.1358, 0.0928, 0.0576, 0.3034,
0.0663]])

Réseau de neurones sur cet exemple
[12]: # Initialisation de "nb_chars" poids de neurones

g = torch.Generator().manual_seed(2147483647)

6

W = torch.randn((nb_chars, nb_chars), generator=g, requires_grad=True)

[13]: # Réseau à une couche (probs)
xenc = F.one_hot(xs, num_classes=nb_chars).float() # input to the network:␣

↪one-hot encoding
logits = xenc @ W # predict log-counts
counts = logits.exp() # counts, equivalent to N
probs = counts / counts.sum(1, keepdims=True) # probabilities for next␣

↪character
btw: the last 2 lines here are together called a 'softmax'

[14]: nlls = torch.zeros(5)
for i in range(5):

i-th bigram:
x = xs[i].item() # input character index
y = ys[i].item() # label character index
print('--------')
print(f'bigram example {i+1}: {itoc[x]}{itoc[y]} (indexes {x},{y})')
print('input to the neural net:', x)
print('output probabilities from the neural net:', probs[i])
print('label (actual next character):', y)
p = probs[i, y]
print('probability assigned by the net to the the correct character:', p.

↪item())
logp = torch.log(p)
print('log likelihood:', logp.item())
nll = -logp
print('negative log likelihood:', nll.item())
nlls[i] = nll

print('=========')
print('average negative log likelihood, i.e. loss =', nlls.mean().item())

bigram example 1: .a (indexes 0,3)
input to the neural net: 0
output probabilities from the neural net: tensor([0.0495, 0.0081, 0.0100,
0.0034, 0.0137, 0.0100, 0.0022, 0.0189, 0.0112,

0.0255, 0.0064, 0.0227, 0.0074, 0.0067, 0.0407, 0.1939, 0.0492, 0.0020,
0.0203, 0.0045, 0.0276, 0.0089, 0.0023, 0.0162, 0.0096, 0.1253, 0.1189,
0.0053, 0.0030, 0.0140, 0.0035, 0.0214, 0.0109, 0.0382, 0.0046, 0.0044,
0.0017, 0.0361, 0.0030, 0.0348, 0.0039], grad_fn=<SelectBackward0>)

label (actual next character): 3
probability assigned by the net to the the correct character:
0.003431369084864855
log likelihood: -5.674796104431152
negative log likelihood: 5.674796104431152

7

bigram example 2: ac (indexes 3,5)
input to the neural net: 3
output probabilities from the neural net: tensor([0.0017, 0.0064, 0.0258,
0.0032, 0.0085, 0.0247, 0.0371, 0.0103, 0.0104,

0.0024, 0.0027, 0.0207, 0.0226, 0.0620, 0.0193, 0.0406, 0.1549, 0.0225,
0.0073, 0.0261, 0.0076, 0.0234, 0.0546, 0.0178, 0.0089, 0.0141, 0.0084,
0.0245, 0.0226, 0.0035, 0.0713, 0.0167, 0.0378, 0.0234, 0.0390, 0.0021,
0.0092, 0.0017, 0.0368, 0.0490, 0.0181], grad_fn=<SelectBackward0>)

label (actual next character): 5
probability assigned by the net to the the correct character:
0.024747123941779137
log likelihood: -3.6990458965301514
negative log likelihood: 3.6990458965301514

bigram example 3: cc (indexes 5,5)
input to the neural net: 5
output probabilities from the neural net: tensor([0.0355, 0.0383, 0.0081,
0.0299, 0.0039, 0.0132, 0.0410, 0.0156, 0.0065,

0.0104, 0.0081, 0.0344, 0.0140, 0.0583, 0.0237, 0.0640, 0.0057, 0.0073,
0.0205, 0.0083, 0.0115, 0.0048, 0.0567, 0.0031, 0.0105, 0.0059, 0.0147,
0.0128, 0.0543, 0.0087, 0.0325, 0.0304, 0.1164, 0.0116, 0.0171, 0.0283,
0.0362, 0.0034, 0.0144, 0.0673, 0.0128], grad_fn=<SelectBackward0>)

label (actual next character): 5
probability assigned by the net to the the correct character:
0.013233082368969917
log likelihood: -4.325035572052002
negative log likelihood: 4.325035572052002

bigram example 4: ce (indexes 5,7)
input to the neural net: 5
output probabilities from the neural net: tensor([0.0355, 0.0383, 0.0081,
0.0299, 0.0039, 0.0132, 0.0410, 0.0156, 0.0065,

0.0104, 0.0081, 0.0344, 0.0140, 0.0583, 0.0237, 0.0640, 0.0057, 0.0073,
0.0205, 0.0083, 0.0115, 0.0048, 0.0567, 0.0031, 0.0105, 0.0059, 0.0147,
0.0128, 0.0543, 0.0087, 0.0325, 0.0304, 0.1164, 0.0116, 0.0171, 0.0283,
0.0362, 0.0034, 0.0144, 0.0673, 0.0128], grad_fn=<SelectBackward0>)

label (actual next character): 7
probability assigned by the net to the the correct character:
0.01563512347638607
log likelihood: -4.158235549926758
negative log likelihood: 4.158235549926758

bigram example 5: ep (indexes 7,17)
input to the neural net: 7
output probabilities from the neural net: tensor([0.0579, 0.0032, 0.0506,
0.0075, 0.0371, 0.0182, 0.0344, 0.0079, 0.0179,

0.0157, 0.0043, 0.0297, 0.0035, 0.0061, 0.0524, 0.0082, 0.0414, 0.0450,
0.0362, 0.0097, 0.0044, 0.0414, 0.0829, 0.0135, 0.0096, 0.0334, 0.0228,

8

0.0134, 0.0243, 0.0257, 0.0424, 0.0110, 0.0411, 0.0228, 0.0270, 0.0017,
0.0121, 0.0113, 0.0182, 0.0468, 0.0071], grad_fn=<SelectBackward0>)

label (actual next character): 17
probability assigned by the net to the the correct character:
0.04502563923597336
log likelihood: -3.1005232334136963
negative log likelihood: 3.1005232334136963
=========
average negative log likelihood, i.e. loss = 4.191527366638184

Optimization sur un mot
[36]: # forward pass

xenc = F.one_hot(xs, num_classes=nb_chars).float() # input to the network:␣
↪one-hot encoding

logits = xenc @ W # predict log-counts
counts = logits.exp() # counts, equivalent to N
probs = counts / counts.sum(1, keepdims=True) # probabilities for next character
loss = -probs[torch.arange(tensor_dims), ys].log().mean()

[37]: print(loss.item())

3.725316047668457

[38]: # backward pass
W.grad = None # set to zero the gradient
loss.backward()

[39]: W.data += -0.1 * W.grad
^^ loop above from forward pass and see loss decreasing

1.2.2 Synthèse: apprentissage complet

[40]: #
Générateur des mots selon notre modèle de langue génératif bigrams par réseau␣

↪de neurones
#
import torch

Lecture des données
EOS='.'
words = open('civil_mots.txt', 'r').read().splitlines()
chars = sorted(list(set(''.join(words))))
nb_chars = len(chars) + 1 # On ajoute 1 pour EOS

Dictionnaires caractère <-> entier
ctoi = {c:i+1 for i,c in enumerate(chars)}
ctoi['.'] = 0
itoc = {i:c for c,i in ctoi.items()}# Création du dataset avec tous les mots

9

Génération du jeu d'entraînement
xs, ys = [], []
for w in words:

chs = ['.'] + list(w) + ['.']
for ch1, ch2 in zip(chs, chs[1:]):

ix1 = ctoi[ch1]
ix2 = ctoi[ch2]
xs.append(ix1)
ys.append(ix2)

xs = torch.tensor(xs)
ys = torch.tensor(ys)
num = xs.nelement()
print('NB exemples:', num)

Initialisation du réseau (une seule couche de neurones sans biais)
g = torch.Generator().manual_seed(2147483647)
W = torch.randn((nb_chars, nb_chars), generator=g, requires_grad=True)

NB exemples: 67652

[41]: # Apprentissage: descente du gradient
for k in range(600):

Forward pass
xenc = F.one_hot(xs, num_classes=nb_chars).float() # input to the network:␣

↪one-hot encoding
logits = xenc @ W # predict log-counts (logits)
counts = logits.exp() # counts, equivalent to N
probs = counts / counts.sum(1, keepdims=True) # probabilities for next␣

↪character
loss = -probs[torch.arange(num), ys].log().mean() + 0.01*(W**2).mean() # + 0.

↪01... for smoothing the model
print(loss.item())

backward pass
W.grad = None # set to zero the gradient
loss.backward()

update
W.data += -50 * W.grad

4.268752574920654
3.8354008197784424
3.5137295722961426
3.2882258892059326
3.136672258377075
3.0282742977142334

10

2.9461023807525635
2.881960153579712
2.830700159072876
2.788752555847168
2.75366473197937
2.723792552947998
2.69801926612854
2.6755597591400146
2.6558377742767334
2.6384148597717285
2.622948169708252
2.609158754348755
2.5968127250671387
2.585711717605591
2.575685501098633
2.566587209701538
2.5582938194274902
2.5506985187530518
2.543713331222534
2.537261962890625
2.5312814712524414
2.5257174968719482
2.5205249786376953
2.5156655311584473
2.5111048221588135
2.5068154335021973
2.5027718544006348
2.498953342437744
2.495340585708618
2.491917610168457
2.4886693954467773
2.4855830669403076
2.482647657394409
2.4798519611358643
2.477186679840088
2.4746437072753906
2.472215175628662
2.4698939323425293
2.4676730632781982
2.4655468463897705
2.463510274887085
2.461557626724243
2.459684371948242
2.457886219024658
2.4561588764190674
2.454498529434204
2.452902317047119
2.4513659477233887

11

2.4498867988586426
2.4484617710113525
2.4470887184143066
2.4457643032073975
2.4444868564605713
2.443253517150879
2.4420626163482666
2.4409120082855225
2.4397995471954346
2.4387240409851074
2.43768310546875
2.436675786972046
2.4357004165649414
2.434755325317383
2.4338393211364746
2.4329514503479004
2.4320902824401855
2.4312546253204346
2.430443286895752
2.4296555519104004
2.4288904666900635
2.4281468391418457
2.4274234771728516
2.4267208576202393
2.4260365962982178
2.425370693206787
2.424722671508789
2.424091339111328
2.423476219177246
2.422877311706543
2.422293186187744
2.4217233657836914
2.4211676120758057
2.4206252098083496
2.4200961589813232
2.419579029083252
2.419074296951294
2.418581247329712
2.4180994033813477
2.417628526687622
2.4171676635742188
2.416717529296875
2.4162769317626953
2.4158456325531006
2.415423631668091
2.415010690689087
2.4146060943603516
2.4142098426818848

12

2.4138216972351074
2.4134411811828613
2.4130687713623047
2.412703275680542
2.4123449325561523
2.4119937419891357
2.411648750305176
2.4113104343414307
2.4109785556793213
2.4106526374816895
2.4103331565856934
2.4100189208984375
2.4097108840942383
2.4094078540802
2.4091103076934814
2.408817768096924
2.4085307121276855
2.4082484245300293
2.407970905303955
2.407698392868042
2.4074296951293945
2.407166004180908
2.4069066047668457
2.406651258468628
2.406399965286255
2.4061529636383057
2.405909776687622
2.405670404434204
2.4054346084594727
2.405202627182007
2.4049742221832275
2.404749631881714
2.4045279026031494
2.4043097496032715
2.404094696044922
2.4038827419281006
2.403674364089966
2.4034688472747803
2.403266191482544
2.403066396713257
2.402869462966919
2.4026753902435303
2.402484178543091
2.4022953510284424
2.4021096229553223
2.401926040649414
2.401745080947876
2.401566743850708

13

2.401390790939331
2.401216983795166
2.40104603767395
2.400876998901367
2.400709867477417
2.400545597076416
2.4003829956054688
2.4002227783203125
2.40006422996521
2.3999080657958984
2.399754047393799
2.399601936340332
2.39945125579834
2.3993031978607178
2.3991565704345703
2.3990116119384766
2.3988687992095947
2.3987278938293457
2.3985884189605713
2.3984506130218506
2.3983144760131836
2.3981800079345703
2.3980472087860107
2.397916078567505
2.3977863788604736
2.397658348083496
2.3975319862365723
2.3974063396453857
2.3972833156585693
2.3971610069274902
2.397040367126465
2.396921157836914
2.396803140640259
2.396686315536499
2.396571159362793
2.3964574337005615
2.3963444232940674
2.396233320236206
2.396122932434082
2.3960142135620117
2.3959062099456787
2.3957996368408203
2.3956944942474365
2.395590305328369
2.3954873085021973
2.3953850269317627
2.395284414291382
2.3951847553253174

14

2.3950858116149902
2.394988536834717
2.3948915004730225
2.3947958946228027
2.3947017192840576
2.3946080207824707
2.3945152759552
2.394423723220825
2.3943333625793457
2.3942437171936035
2.3941547870635986
2.39406681060791
2.393979787826538
2.3938939571380615
2.393808364868164
2.393724203109741
2.3936407566070557
2.3935577869415283
2.3934762477874756
2.393394708633423
2.3933145999908447
2.393235206604004
2.3931565284729004
2.393078327178955
2.3930013179779053
2.3929250240325928
2.3928489685058594
2.3927741050720215
2.392699718475342
2.3926267623901367
2.3925535678863525
2.3924813270568848
2.3924098014831543
2.3923392295837402
2.392268657684326
2.3921995162963867
2.3921306133270264
2.3920624256134033
2.3919947147369385
2.391927719116211
2.3918612003326416
2.3917956352233887
2.3917300701141357
2.391665458679199
2.391601324081421
2.391538381576538
2.391475200653076
2.3914127349853516

15

2.3913512229919434
2.3912899494171143
2.3912291526794434
2.3911690711975098
2.391108989715576
2.391049861907959
2.390991449356079
2.3909332752227783
2.3908755779266357
2.3908183574676514
2.390761613845825
2.3907055854797363
2.3906497955322266
2.390594959259033
2.3905396461486816
2.3904852867126465
2.3904316425323486
2.390378475189209
2.3903253078460693
2.390272378921509
2.3902206420898438
2.3901686668395996
2.3901174068450928
2.390066623687744
2.3900163173675537
2.3899660110473633
2.38991641998291
2.389867067337036
2.3898181915283203
2.3897697925567627
2.389721632003784
2.389674186706543
2.3896265029907227
2.3895797729492188
2.389533042907715
2.38948655128479
2.3894405364990234
2.3893954753875732
2.389349937438965
2.389305353164673
2.38926100730896
2.389216899871826
2.3891727924346924
2.389129161834717
2.3890860080718994
2.3890435695648193
2.389000654220581
2.38895845413208

16

2.3889169692993164
2.3888752460479736
2.388834238052368
2.3887929916381836
2.3887522220611572
2.388712167739868
2.388671875
2.388632297515869
2.3885927200317383
2.3885533809661865
2.388514757156372
2.3884763717651367
2.3884377479553223
2.388399600982666
2.388362169265747
2.388324499130249
2.3882875442504883
2.3882505893707275
2.3882133960723877
2.3881771564483643
2.388140916824341
2.3881051540374756
2.3880693912506104
2.3880341053009033
2.3879990577697754
2.3879637718200684
2.3879292011260986
2.387895107269287
2.3878607749938965
2.387826681137085
2.3877930641174316
2.3877594470977783
2.387726306915283
2.387693405151367
2.387660503387451
2.387627601623535
2.3875954151153564
2.3875629901885986
2.387531280517578
2.3874995708465576
2.3874683380126953
2.387436628341675
2.3874058723449707
2.3873748779296875
2.3873443603515625
2.3873136043548584
2.3872838020324707
2.3872532844543457

17

2.387223720550537
2.3871941566467285
2.387164354324341
2.3871355056762695
2.38710618019104
2.3870770931243896
2.3870487213134766
2.3870201110839844
2.386991500854492
2.3869638442993164
2.3869357109069824
2.3869078159332275
2.3868801593780518
2.386852741241455
2.3868257999420166
2.386798858642578
2.3867716789245605
2.386744976043701
2.386718511581421
2.3866920471191406
2.3866658210754395
2.3866398334503174
2.386613368988037
2.3865880966186523
2.3865625858306885
2.3865370750427246
2.38651180267334
2.386486530303955
2.3864617347717285
2.386437177658081
2.3864123821258545
2.386388063430786
2.386363983154297
2.3863391876220703
2.3863158226013184
2.386291265487671
2.38626766204834
2.386244058609009
2.386220932006836
2.386197566986084
2.386174440383911
2.3861513137817383
2.3861281871795654
2.386105537414551
2.3860831260681152
2.3860607147216797
2.386038303375244
2.3860161304473877

18

2.3859941959381104
2.385972023010254
2.3859503269195557
2.3859286308288574
2.385906934738159
2.385885715484619
2.3858642578125
2.38584303855896
2.385822057723999
2.385801076889038
2.3857805728912354
2.3857595920562744
2.385739326477051
2.385718584060669
2.3856985569000244
2.385678291320801
2.385658025741577
2.3856382369995117
2.385618209838867
2.3855984210968018
2.3855788707733154
2.385559320449829
2.385540246963501
2.3855206966400146
2.3855013847351074
2.3854825496673584
2.3854634761810303
2.385444402694702
2.3854258060455322
2.385406970977783
2.3853886127471924
2.3853702545166016
2.3853516578674316
2.385333776473999
2.385315418243408
2.3852975368499756
2.385279655456543
2.3852617740631104
2.3852438926696777
2.385226249694824
2.38520884513855
2.385190963745117
2.385173797607422
2.3851566314697266
2.3851394653320312
2.385122537612915
2.3851053714752197
2.3850882053375244

19

2.3850717544555664
2.3850550651550293
2.385038137435913
2.385021686553955
2.3850057125091553
2.3849892616271973
2.38497257232666
2.3849565982818604
2.3849403858184814
2.3849244117736816
2.384908437728882
2.384892463684082
2.3848769664764404
2.3848612308502197
2.384845733642578
2.3848302364349365
2.384814739227295
2.3847994804382324
2.3847837448120117
2.3847687244415283
2.384753704071045
2.3847386837005615
2.3847239017486572
2.3847086429595947
2.3846943378448486
2.3846793174743652
2.38466477394104
2.384650468826294
2.3846359252929688
2.3846211433410645
2.3846068382263184
2.3845925331115723
2.3845784664154053
2.3845643997192383
2.384549856185913
2.3845362663269043
2.3845224380493164
2.3845083713531494
2.3844945430755615
2.3844809532165527
2.384467124938965
2.384453773498535
2.3844399452209473
2.3844265937805176
2.384413480758667
2.384399890899658
2.3843865394592285
2.384373426437378

20

2.3843603134155273
2.384347438812256
2.3843343257904053
2.3843212127685547
2.384308338165283
2.3842954635620117
2.3842833042144775
2.384270429611206
2.3842577934265137
2.3842451572418213
2.384232759475708
2.3842198848724365
2.3842077255249023
2.384195327758789
2.384183168411255
2.3841710090637207
2.3841586112976074
2.3841466903686523
2.384134531021118
2.384122848510742
2.384110450744629
2.384098768234253
2.384087085723877
2.384075164794922
2.384063482284546
2.38405179977417
2.384040355682373
2.384028673171997
2.3840174674987793
2.3840057849884033
2.3839943408966064
2.3839831352233887
2.383971929550171
2.383960485458374
2.383949041366577
2.3839383125305176
2.383927345275879
2.3839163780212402
2.3839049339294434
2.3838939666748047
2.383883476257324
2.3838727474212646
2.383861780166626
2.3838508129119873
2.383840322494507
2.3838295936584473
2.383819341659546
2.3838088512420654

21

2.383798122406006
2.3837876319885254
2.383777141571045
2.3837666511535645
2.383756399154663
2.383746385574341
2.3837358951568604
2.383725643157959
2.3837156295776367
2.3837058544158936
2.383695602416992
2.383685350418091
2.3836755752563477
2.3836655616760254
2.383655548095703
2.38364577293396
2.383636236190796
2.383626699447632
2.3836166858673096
2.3836071491241455
2.3835973739624023
2.3835878372192383
2.383578300476074
2.38356876373291
2.383559465408325
2.383549928665161
2.383540630340576
2.383531332015991
2.3835220336914062
2.3835127353668213
2.3835034370422363
2.3834943771362305
2.3834853172302246
2.3834760189056396
2.383467197418213
2.383457899093628
2.383448600769043
2.3834400177001953
2.3834309577941895
2.383422374725342
2.383413553237915
2.383404493331909
2.3833956718444824
2.3833870887756348
2.383378505706787
2.3833696842193604
2.3833611011505127
2.383352279663086

22

2.3833439350128174
2.3833351135253906
2.383326768875122
2.3833186626434326
2.3833096027374268
2.3833014965057373
2.3832931518554688
2.3832848072052
2.3832764625549316
2.383268117904663
2.3832600116729736
2.383251667022705
2.3832435607910156
2.383235454559326
2.3832273483276367
2.3832192420959473
2.383211135864258
2.3832032680511475

[42]: # finally, sample from the 'neural net' model
g = torch.Generator().manual_seed(2147483647)

for i in range(5):

out = []
ix = 0
while True:

Avec l'approche par comptage on utilisait:
#p = P[ix]

NOW:
xenc = F.one_hot(torch.tensor([ix]), num_classes=nb_chars).float()
logits = xenc @ W # predict log-counts
counts = logits.exp() # counts, equivalent to N
p = counts / counts.sum(1, keepdims=True) # probabilities for next character

ix = torch.multinomial(p, num_samples=1, replacement=True, generator=g).
↪item()

out.append(itoc[ix])
if ix == 0:

break
print(''.join(out))

éssanée.
mexcororér.

23

monts.
ex.
moût.

On voit qu’on a les mêmes mots que ceux générés par comptage, nous avons donc bâti une méthode
neuronale équivalente à ce qu’on obtient par la méthode par comptage.

24

	Modèle de langue neuronal
	Jeu de données: les mots du code civil
	Approche par réseau de neurones reproduisant l'approche par comptage
	Représentation des mots avec des vecteurs ``one-hot'': exemple avec un seul mot
	Synthèse: apprentissage complet

