[2]:

[3]:

neural final
January 3, 2026

1 Modele de langue neuronal

15 décembre 2025

Adapté du tutoriel d’A. Karphathy “Makemore”, deuxieme partie:
https://www.youtube.com/watch?v=PaCmpygFfXo

1.1 Jeu de données: les mots du code civil

words = open('civil mots.txt', 'r').read().splitlines()

chars = sorted(list(set(''.join(words))))

nb_chars = len(chars) + 1 # On ajoute 1 pour EOS

ctoi = {c:i+1 for i,c in enumerate(chars)}

ctoil['.'] =0

print ("CTOI =", ctoi)

Dictionnaire permettant permettant de passer d'un entier a4 son caractére

itoc = {i:s for s,i in ctoi.items()}

print("ITOC =", itoc)

CTOI = {"'": 1, '-': 2, 'a': 3, 'b': 4, 'c': 5, 'd': 6, 'e': 7, '£': 8, 'g': 9,

'h': 10, 'i': 11, 'j': 12, '1': 13, 'm': 14, 'n': 15, 'o': 16, 'p': 17, 'q': 18,
'r': 19, 's': 20, 't': 21, 'u': 22, 'v': 23, 'w': 24, 'x': 25, 'y': 26, 'z': 27,
'a': 28, 'a': 29, '¢': 30, 'é': 31, 'é': 32, 'é': 33, 'é': 34, '1': 35, 'i': 36,
'6': 37, 'a': 38, '4': 39, 'w': 40, '.': O}

IToC = {1: "', 2: '-', 3: 'a', 4: 'b', 5: 'c', 6: 'd', 7: 'e', 8: 'f', 9: 'g',

10: 'h', 11: 'i', 12: 'j', 13: '1', 14: 'm', 15: 'n', 16: 'o', 17: 'p', 18: 'q',
19: 'r', 20: 's', 21: 't', 22: 'u', 23: 'v', 24: 'w', 25: 'x', 26: 'y', 27: 'z',
28: 'a', 29: 'a', 30: '¢', 31: 'e', 32: 'é', 33: 'é', 34: 'é', 35: '1', 36: 'i',
37: '4', 38: 'u', 39: '4', 40: 'e', O0: '.'}

1.2 Approche par réseau de neurones reproduisant ’approche par comptage

1.2.1 Représentation des mots avec des vecteurs “one-hot”: exemple avec un seul
mot

import torch

Création d'un jeu d'entrainement de bigrams (z,y)
xs, ys = [, [

(4] :
[4]:
[5]:
[5]:

[6]:

[6]:

for w in [words[40]]:

chs = ['.'] + list(w) + ['.']

for chl, ch2 in zip(chs, chs[1:]):
ix1l = ctoilchil]
ix2 = ctoilch2]
print(chl, ch2, '->', ix1, ix2)
xs.append (ix1)
ys.append (ix2)

Xs = torch.tensor(xs)

ys = torch.tensor(ys)

print (words [40])

tensor_dims = len(words[40]) + 1
print("tensor_dims =", tensor_dims)

|

\
~N o1 o w O
~N 0o W

17

-> 17 21
é -> 21 32
e > 327
. =>T70
acceptée
tensor_dims = 9

3 0o 0 0 p -

®o o

XS
tensor([O, 3, 5, 5, 7, 17, 21, 32, 71)
ys

tensor([3, 5, 5, 7, 17, 21, 32, 7, 0]1)

Représentation de chaque caractére par un vecteur one—hot

seul une composante est a 1.0, correspondant a l'indice du

import torch.nn.functional as F
xenc = F.one_hot(xs, num_classes=nb_chars) .float()
xenc

tensor([[l., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0
0., 0., 0., 0., 0.1,
(0., o., 0., t., 0., 0., 0., 0., 0., 0., 0., 0., 0
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0
0., 0., 0., 0., 0.1,

numéro du

0., 0., 0
0., 0., 0
0., 0., 0
0., 0., 0

caractére

La premiére dimension est la dimension du tenseur exemple

[7]:

xenc .shape

torch.Size([9, 41])

[7]:

import matplotlib.pyplot as plt

%matplotlib inline

[8]:

plt.imshow(xenc)

<matplotlib.image.AxesImage at 0x10£450830>

[8]:

on va utiliser une matrice W des valeurs normales,

Pour motre réseau,

[9]:

~aléatoires comme

point de départ

[9]:

W =

torch.randn((nb_chars, tensor_dims))

suttlisera nb_chars x© nb_chars

W

tensor([[9.

™
|

— —
W NEFP, OO, WN W, WO Ww

— — —
| |
(o]

'l_|
)

[-4.

1839e-01,

.7099e-01,
.5412e-01,
.4169e-01,
.1750e+00,
.1735e-01,
.6404e-01,
.0535e-01,
.5070e+00,
.9776e-01,
.2613e-01,
.3034e+00,
.4914e-01,
.9423e-01,
.5824e-01,
.7317e-02,

3876e-02,

.1318e-01,
.T768e+00,
.6091e-01,
.4602e+00,
.8525e-01,
.6114e+00,
.8317e-01,
.1634e-01,
.1407e-01,
.0480e-01,
.2835e+00,
.3264e-01,
.5146e-01,
.8073e-01,

4.1034e-03,

.1802e-01,
.7984e-01,
.1454e+00,
.1711e-01,
.4835e+00,
.0443e+00,
.0946e+00,
.1862e+00,
.5384e+00,
.3887e+00,
.1072e-01,

-1
1
9
6

6.3311e-01,

.1502e+00,
.8180e+00,

.35564e-01,

.3563e-01,

.4913e+00, 2.
8.9753e-01, 1.
.1895e-01,
.7862e+00, 3.
.4526e-01,
9.8505e-01, 9.
.5083e-02,
.2482e-01, 1.
.8445e-01, 1.
.3677e-01,
.3988e-01, 1.
.6491e-01,
.5278e-01,
.2568e-01, 8.
.2155e-01,
.3771e-02, 7.
4.9134e-01,
.7733e-01, 1.
.6713e-01, 9.
.8042e-02, 5.
.3922e-01,
.6993e-01,
.2327e-01,
.9122e-01, 2.
.1788e-01,
.1150e-02,
.3676e-01, 2.
.4547e-01,
.6104e-01, 4.
.4911e+00,
.6824e-01,
.1647e-01,
.3752e-01,

.5963e-01,

.1381e+00,

.6243e-01,

.0735e-01,

.6308e-01,
.4132e-01,

.9811e-01,

.4104e-01,
.4407e-01,
.2490e+00,

.6061e-01,
.7999e-01,

.1936e-02,

.3830e-01,
.9337e+00,

.6717e-01,

.6056e-01, 4.
.1431e+00, 2.

.3629e-01,
.9873e-01,
.1880e-01, 1.
.3884e+00,
.7545e-01, 6.
.5131e-01, 1.
.0920e-01, 5.
.6206e-01,

6299e+00,
1806e-01,
2416e+00,
7622e-01,

9527e-01,
0222e+00,

5024e-01,

0442e-01,

1375e+00,
6056e-01,

0934e+00,

3430e-01,

5206e-01,

.7166e-01,

7713e-01,
5935e-01,
8192e-01,

5957e-01,

2854e+00,

8580e-02,

8157e-01,
0399e+00,

1.5226e+00, 8.
1.1443e+00],
-9.2986e-02, 4.
-1.6909e-01],
2.2869e-01, -1
5.6462e-01],
1.4399e-01, 7.
3.5338e-01],
-4.1975e-01, -1.
-1.4788e+00] ,
-2.6217e+00, 4.
9.5713e-01],
3.8407e-01, -2
-5.1849e-01] ,
-1.5097e+00, 3.
-3.8334e-01],
-4.3068e-02, -4.
3.9790e-01],
8.8543e-01, -1.
-1.1863e+00],
-1.4347e+00, -1.
-1.0295e+00] ,
-2.9091e-03, 5.
-1.4175e+00],
-6.0395e-01, 7.
1.4325e-01],
-7.8019e-01, 1.
-3.0040e+00],
4.7470e-01, -1
-2.6355e+00] ,
1.4730e+00, 5.
-1.8716e-01],
1.5692e+00, -1.
1.0829e+00] ,
1.1893e+00, 4.
1.2236e-01],
-2.6155e+00, -1.
3.5307e-01],
2.3089e-01, 1.
-1.3749e+00] ,
1.2570e+00, -5.
-4.1506e-01],
-5.5736e-01, 6.

Quand on aura tous les mots,

4343e-01,

3231e-01,

.2293e+00,

6392e-01,

4888e+00,

3825e-01,

.9689e-02,

3365e-01,

3082e-01,

2180e+00,

5626e+00,

5972e-01,

2573e-01,

6251e+00,

.7250e+00,

8836e-01,

1461e+00,

0966e-01,

4138e-01,

1514e-03,

8681e-01,

7684e-01,

ony,

-6.8097e-01, -8.7569e-01, -1.2483e+00, 7.7616e-01],

[-2.6649e-01, 7.9188e-01, 7.2701e-01, 1.7280e+00, -1.1796e+00,
.2148e-01, -6.1184e-01, 3.1035e-01, 9.7009e-01],

[-8.3095e-01, -1.6064e+00, 2.3667e+00, -1.2204e+00, 4.1136e-01,

-1.4684e+00, 6.3564e-02, -1.5051e+00, -2.2001e-01],

[-5.2230e-01, 8.1375e-01, 6.1553e-01, -4.2599e-02, 1.7301e-01,

-1.2271e-01, -2.0114e+00, -7.8907e-01, -1.2734e+00],

[6.8031e-01, -3.0871e-01, -3.0772e-01, 6.3263e-01, 1.5590e+00,
.7520e-01, -1.0685e+00, 2.7201e-01, 9.9093e-01],

[9.2734e-02, -1.3574e+00, 4.0598e-01, 4.9756e-01, 5.6375e-01,

-1.1143e+00, 5.2196e-01, 1.4329e-01, -3.9328e-01],

[2.9002e-01, 2.9804e-01, 2.2331e+00, 2.1968e+00, -5.0351e-01,
.5336e-01, 4.6150e-02, 1.7698e+00, -2.8478e-01],

[1.2679e+00, -5.9689e-01, -1.3967e+00, 1.0058e+00, 2.8197e-01,
.0780e+00, -5.4874e-01, -5.0334e-01, -2.8814e-01],

[2.1569e+00, 6.2626e-01, 1.9641e-01, -1.5439e+00, 5.7199e-01,

-9.1998e-01, -1.1759e+00, -7.0328e-01, 3.1153e-01],

[-2.3782e-01, 1.5635e+00, -9.9518e-01, 3.7845e-01, -1.5209e+00,

-7.1817e-01, 3.5974e-01, 1.7197e-01, 3.6362e-01],

[2.2835e-01, -1.5459e+00, -9.5902e-01, -1.1907e+00, -3.7331e-01,
.8753e-01, -1.4671e+00, -3.0594e-01, 8.4065e-01],

[1.1026e+00, -8.7721e-01, 1.5426e+00, 4.4972e-01, 3.1010e-01,
.7017e-01, 7.8906e-01, 1.0092e+00, 2.0941e+00],

[-1.7965e+00, 1.8701e-01, 4.3996e-01, 4.6749e-01, 4.0462e-01,
.2346e-02, -1.9932e+00, 7.7445e-01, 7.0330e-01],

[1.0255e+00, 1.0959e+00, 2.6846e-01, -1.3541e+00, -6.1543e-02,

-3.2624e-01, -7.2100e-01, -4.0800e-01, 9.1167e-01],

[1.0763e+00, -1.4209e+00, -5.9040e-01, -1.2943e+00, 2.4534e-01,

-9.7199e-01, -1.7028e+00, -1.6392e+00, -1.0653e+00],

[2.0118e-01, -2.0262e+00, 1.3364e+00, -1.7834e+00, 6.5608e-01,

-1.3171e+00, 8.7381e-01, -2.6745e-01, 1.3398e-01],

[8.5316e-01, 8.4795e-01, -1.1855e-01, -3.7457e-02, 2.4010e-01,
.7003e-01, 1.1791e+00, 1.0496e+00, 1.6055e+00],

[-1.3566e+00, -8.5464e-01, 8.9450e-01, 1.3328e+00, 2.9470e-01,

-6.0269e-01, -9.7720e-01, 4.0491e-01, 1.5337e+00],

[1.5095e+00, 2.3863e-01, 1.1418e+00, -7.8052e-01, -2.4659e-01,

-8.4775e-01, 3.0722e-01, 6.8697e-01, 8.0159e-02],

[-1.3932e+00, -6.0093e-01, -8.3311e-01, 2.6036e-01, -6.4276e-01,
.4897e-01, -1.7955e+00, -7.9129e-01, 1.5356e-01]]1)

[10]: # En multipliant ces "poids" par nos vecteurs one-hot organisés en matrice..

On obtient des valeurs que l'on va "interpréter” comme des logs (log-counts).

En utilisant l'exponentielle de ces waleurs, on va retrouver quelque chose

d'équivalent da la matrice N que nous avions définie précédemment dans la
—méthode

par comptage.

xenc @ W

[10]:

[11]:

[11]:

[12]:

tensor ([[

[

[

[

logits

0.9184, -1.1502,
1.1443],
0.2640, -0.1092,
0.3534],
0.1261, 0.8596,
0.9571],
0.1261, 0.8596,
0.9571],
0.6582, -0.7624,
0.3833],
1.1454, -0.4368,
0.1224],
0.1107, 1.1431,
0.7762],
1.1026, -0.8772,
2.0941],
0.6582, -0.7624,
0.383311)

-0.8363,

0.5762,

-0.7190,

-0.7190,

-0.0851,

2.2854,

2.0399,

1.5426,

-0.0851,

xenc @ W # log—-counts

1.6226, O.
0.1440, O.
-2.6217, 0.
-2.6217, 0.
-1.5097, O.
1.1893, O.
-0.5574, O.
0.4497, O.
-1.5097, O.

counts = logits.exp() # statut équivalent d N
probs = counts / counts.sum(l, keepdims=True) #

o (equ. a
probs

tensor ([[0
0.1467],

(0.

0.1304],

(0.

0.1315],

(0.

0.1315],

(0.

0.0663],

(0.

0.0518],

(0.

0.12161,

(0.

0.3036],

(0.

o

.0663]1)

p)

.1170, 0.0148, 0.

1192, 0.0821, 0.

0573, 0.1193, O.

0573, 0.1193, O.

1879, 0.0454, 0.

1439, 0.0296, 0.

0625, 0.1756, O.

1126, 0.01566, O.

1879, 0.0454, 0.

0202, 0.

1629, 0.

0246, 0.

0246, 0.

0893, 0.

4501, 0.

4304, 0.

1749, 0.

0893, 0.

Réseau de neurones sur cet exemple

2141,

1057,

0037,

0037,

0215,

1504,

0321,

0586,

0215,

.1086,

.1965,

.0783,

.0783,

.1358,

.0690,

.1101,

.05610,

.1358,

8434, 0.
7639, O.
4382, 2.
4382, 2.
3336, -0.
4097, -0.
6768, -0.
3101, O.
3336, 0.

3710, 1.

3053, -0.

3034, -1.

3034, -1.

0473, -0.

1171, -0.

6810, -0.

9702, O.

0473, -0.

8180,

7356,

7862,

7862,

5248,

0219,

8757,

7891,

5248,

-0.6987,

-0.9621,

0.3502,

0.3502,

1.1375,

-0.8455,

-1.2483,

1.0092,

1.1375,

distribution de probabilités,

0.0677,

0.1243,

0.5053,

0.5053,

0.0928,

0.0407,

0.0283,

0.0987,

0.0928,

Initialisation de "nb_chars" poids de meurones
g = torch.Generator() .manual_seed(2147483647)

0.2877,

0.0439,

0.0085,

0.0085,

0.0576,

0.0448,

0.0233,

0.0823,

0.0576,

.0232,

.0350,

.0717,

.0717,

.3034,

.0197,

.0161,

.1026,

.3034,

W = torch.randn((nb_chars, nb_chars), generator=g, requires_grad=True)

[13]: # Réseau d une couche (probs)

xenc = F.one_hot(xs, num_classes=nb_chars) .float() # input to the network:
~one—hot encoding

logits = xenc @ W # predict log-counts

counts = logits.exp() # counts, equivalent to N

probs = counts / counts.sum(l, keepdims=True) # probabilities for nezty
—character

btw: the last 2 lines here are together called a 'softmaz'’

[14]: nlls = torch.zeros(5)
for i in range(5):
1-th bigram:
x = xs[i].item() # input character indez
y = ys[il.item() # label character index

print('-------- ")

print(f'bigram example {i+1}: {itoc[x]}{itoc[yl} (indexes {x},{y})')
print('input to the neural net:', x)

print ('output probabilities from the neural net:', probs[i])

print('label (actual next character):', y)

p = probs[i, y]

print ('probability assigned by the net to the the correct character:', p.
~item())

logp = torch.log(p)

print('log likelihood:', logp.item())

nll = -logp

print('negative log likelihood:', nll.item())

nlls[i] = nll

bigram example 1: .a (indexes 0,3)

input to the neural net: O

output probabilities from the neural net: tensor([0.0495, 0.0081, 0.0100,

0.0034, 0.0137, 0.0100, 0.0022, 0.0189, 0.0112,
0.0255, 0.0064, 0.0227, 0.0074, 0.0067, 0.0407, 0.1939, 0.0492, 0.0020,
0.0203, 0.0045, 0.0276, 0.0089, 0.0023, 0.0162, 0.0096, 0.1253, 0.1189,
0.0053, 0.0030, 0.0140, 0.0035, 0.0214, 0.0109, 0.0382, 0.0046, 0.0044,
0.0017, 0.0361, 0.0030, 0.0348, 0.0039], grad_fn=<SelectBackward0>)

label (actual next character): 3

probability assigned by the net to the the correct character:

0.003431369084864855

log likelihood: -5.674796104431152

negative log likelihood: 5.674796104431152

bigram example 2: ac (indexes 3,5)

input to the neural net: 3

output probabilities from the neural net: tensor([0.0017, 0.0064, 0.0258,

0.0032, 0.0085, 0.0247, 0.0371, 0.0103, 0.0104,
0.0024, 0.0027, 0.0207, 0.0226, 0.0620, 0.0193, 0.0406, 0.1549, 0.0225,
0.0073, 0.0261, 0.0076, 0.0234, 0.0546, 0.0178, 0.0089, 0.0141, 0.0084,
0.0245, 0.0226, 0.0035, 0.0713, 0.0167, 0.0378, 0.0234, 0.0390, 0.0021,
0.0092, 0.0017, 0.0368, 0.0490, 0.0181], grad_fn=<SelectBackward0>)

label (actual next character): 5

probability assigned by the net to the the correct character:

0.024747123941779137

log likelihood: -3.6990458965301514

negative log likelihood: 3.6990458965301514

bigram example 3: cc (indexes 5,5)

input to the neural net: b

output probabilities from the neural net: tensor([0.0355, 0.0383, 0.0081,

0.0299, 0.0039, 0.0132, 0.0410, 0.0156, 0.0065,
0.0104, 0.0081, 0.0344, 0.0140, 0.0583, 0.0237, 0.0640, 0.0057, 0.0073,
0.0205, 0.0083, 0.0115, 0.0048, 0.0567, 0.0031, 0.0105, 0.0059, 0.0147,
0.0128, 0.0543, 0.0087, 0.0325, 0.0304, 0.1164, 0.0116, 0.0171, 0.0283,
0.0362, 0.0034, 0.0144, 0.0673, 0.0128], grad_fn=<SelectBackward0>)

label (actual next character): 5

probability assigned by the net to the the correct character:

0.013233082368969917

log likelihood: -4.325035572052002

negative log likelihood: 4.325035572052002

bigram example 4: ce (indexes 5,7)

input to the neural net: 5

output probabilities from the neural net: tensor([0.0355, 0.0383, 0.0081,

0.0299, 0.0039, 0.0132, 0.0410, 0.0156, 0.0065,
0.0104, 0.0081, 0.0344, 0.0140, 0.0583, 0.0237, 0.0640, 0.0057, 0.0073,
0.0205, 0.0083, 0.0115, 0.0048, 0.0567, 0.0031, 0.0105, 0.0059, 0.0147,
0.0128, 0.0543, 0.0087, 0.0325, 0.0304, 0.1164, 0.0116, 0.0171, 0.0283,
0.0362, 0.0034, 0.0144, 0.0673, 0.0128], grad_fn=<SelectBackward0>)

label (actual next character): 7

probability assigned by the net to the the correct character:

0.01563512347638607

log likelihood: -4.158235549926758

negative log likelihood: 4.158235549926758

bigram example 5: ep (indexes 7,17)

input to the neural net: 7

output probabilities from the neural net: tensor([0.0579, 0.0032, 0.0506,

0.0075, 0.0371, 0.0182, 0.0344, 0.0079, 0.0179,
0.0157, 0.0043, 0.0297, 0.0035, 0.0061, 0.0524, 0.0082, 0.0414, 0.0450,
0.0362, 0.0097, 0.0044, 0.0414, 0.0829, 0.0135, 0.0096, 0.0334, 0.0228,

[36]:

[37]:

[38]:

[39]:

[40] :

0.0134, 0.0243, 0.0257, 0.0424, 0.0110, 0.0411, 0.0228, 0.0270, 0.0017,
0.0121, 0.0113, 0.0182, 0.0468, 0.0071], grad_fn=<SelectBackward0>)
label (actual next character): 17
probability assigned by the net to the the correct character:
0.04502563923597336
log likelihood: -3.1005232334136963
negative log likelihood: 3.1005232334136963

average negative log likelihood, i.e. loss = 4.191527366638184

Optimization sur un mot

forward pass

xenc = F.one_hot(xs, num_classes=nb_chars) .float() # input to the network:
~one—hot encoding

logits = xenc @ W # predict log-counts

counts = logits.exp() # counts, equivalent to N

probs = counts / counts.sum(l, keepdims=True) # probabilities for next character

loss = -probs[torch.arange(tensor_dims), ys].log().mean()

print(loss.item())

3.725316047668457

backward pass
W.grad = None # set to zero the gradient
loss.backward()

W.data += -0.1 * W.grad
=7 loop above from forward pass and see loss decreasing

1.2.2 Syntheése: apprentissage complet

#
Générateur des mots selon notre modéle de langue génératif bigrams par réseauy
~de meurones

#
import torch

Lecture des données

EOS="'."
words = open('civil mots.txt', 'r').read().splitlines()
chars = sorted(list(set(''.join(words))))

nb_chars = len(chars) + 1 # On ajoute 1 pour EOS

Dictionnaires caractére <-> entier

ctoi = {c:i+1 for i,c in enumerate(chars)}

ctoi['.'] =0

itoc = {i:c for c,i in ctoi.items()}# Création du dataset avec tous les mots

[41] :

Génération du jeu d'entrainement
xs, ys = [1, [I
for w in words:
chs = ['".'] + list(w) + ['.']
for chl, ch2 in zip(chs, chs[1:]):
ixl = ctoilchi1]
ctoil[ch2]
xs.append (ix1)
ys.append (ix2)
xs = torch.tensor(xs)
ys = torch.tensor(ys)
num = xs.nelement ()
print('NB exemples:', num)

ix2

Initialisation du réseau (une seule couche de neurones sans biais)
g = torch.Generator() .manual_seed(2147483647)
W = torch.randn((nb_chars, nb_chars), generator=g, requires_grad=True)

NB exemples: 67652

Apprentissage: descente du gradient
for k in range(600):

Forward pass

xenc = F.one_hot(xs, num_classes=nb_chars).float() # input to the network:
~one—hot encoding

logits = xenc @ W # predict log-counts (logits)

counts = logits.exp() # counts, equivalent to N

probs = counts / counts.sum(l, keepdims=True) # probabilities for next,
~character

loss = -probs[torch.arange(num), ys].log().mean() + 0.01x(W+*2) .mean() # + 0.

<01... for smoothing the model
print(loss.item())

backward pass
W.grad = None # set to zero the gradient
loss.backward()

update
W.data += -50 * W.grad

.268752574920654
.8354008197784424
.5137295722961426
.2882258892059326
.136672258377075
.0282742977142334

W wWwwwws

10

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.9461023807525635
.881960153579712
.830700159072876
.788752555847168
.75366473197937
.723792552947998
.69801926612854
.6755597591400146
.65568377742767334
.6384148597717285
.622948169708252
.609158754348755
.5968127250671387
.5856711717605591
.575685501098633
.566587209701538
.5582938194274902
.5506985187530518
.543713331222534
.537261962890625
.5312814712524414
.5257174968719482
.52056249786376953
.5156655311584473
.5111048221588135
.5068154335021973
.5027718544006348
.498953342437744
.495340585708618
.491917610168457
.4886693954467773
.4855830669403076
.482647657394409
.4798519611358643
.477186679840088
.4746437072753906
.472215175628662
.4698939323425293
.4676730632781982
.4655468463897705
.463510274887085
.461557626724243
.459684371948242
.457886219024658
.4561588764190674
.454498529434204
.452902317047119
.4513659477233887

11

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.4498867988586426
.4484617710113525
.4470887184143066
.4457643032073975
.4444868564605713
.443253517150879
.4420626163482666
.4409120082855225
.4397995471954346
.4387240409851074
.43768310546875
.436675786972046
.4357004165649414
.434755325317383
.4338393211364746
.4329514503479004
.4320902824401855
.4312546253204346
.430443286895752
.4296555519104004
.4288904666900635
.4281468391418457
.4274234771728516
.4267208576202393
.4260365962982178
.425370693206787
.424722671508789
.424091339111328
.423476219177246
.422877311706543
.422293186187744
.4217233657836914
.4211676120758057
.4206252098083496
.4200961589813232
.419579029083252
.419074296951294
.4185681247329712
.4180994033813477
.417628526687622
.4171676635742188
.416717529296875
.4162769317626953
.4158456325531006
.415423631668091
.415010690689087
.4146060943603516
.4142098426818848

12

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.4138216972351074
.4134411811828613
.4130687713623047
.412703275680542
.4123449325561523
.4119937419891357
.411648750305176
.4113104343414307
.4109785556793213
.4106526374816895
.4103331565856934
.4100189208984375
.4097108840942383
.4094078540802
.4091103076934814
.408817768096924
.4085307121276855
.4082484245300293
.407970905303955
.407698392868042
.4074296951293945
.407166004180908
.4069066047668457
.406651258468628
.406399965286255
.4061529636383057
.405909776687622
.405670404434204
.4054346084594727
.405202627182007
.4049742221832275
.404749631881714
.4045279026031494
.4043097496032715
.404094696044922
.4038827419281006
.403674364089966
.4034688472747803
.403266191482544
.403066396713257
.402869462966919
.4026753902435303
.402484178543091
.4022953510284424
.4021096229553223
.401926040649414
.401745080947876
.401566743850708

13

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.401390790939331
.401216983795166
.40104603767395
.400876998901367
.400709867477417
.400545597076416
.4003829956054688
.4002227783203125
.40006422996521
.3999080657958984
.399754047393799
.399601936340332
.39945125579834
.3993031978607178
.3991565704345703
.3990116119384766
.3988687992095947
.3987278938293457
.3985884189605713
.3984506130218506
.3983144760131836
.3981800079345703
.3980472087860107
.397916078567505
.3977863788604736
.397658348083496
.39756319862365723
.3974063396453857
.3972833156585693
.3971610069274902
.397040367126465
.396921157836914
.396803140640259
.396686315536499
.396571159362793
.3964574337005615
.3963444232940674
.396233320236206
.396122932434082
.3960142135620117
.3959062099456787
.3957996368408203
.3956944942474365
.3956590305328369
.39564873085021973
.39563850269317627
.3956284414291382
.3951847553253174

14

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.3950858116149902
.394988536834717
.3948915004730225
.3947958946228027
.3947017192840576
.3946080207824707
.3945152759552
.394423723220825
.3943333625793457
.3942437171936035
.3941547870635986
.39406681060791
.393979787826538
.3938939571380615
.393808364868164
.393724203109741
.3936407566070557
.39356577869415283
.3934762477874756
.393394708633423
.3933145999908447
.393235206604004
.3931565284729004
.393078327178955
.3930013179779053
.3929250240325928
.3928489685058594
.3927741050720215
.392699718475342
.3926267623901367
.3925535678863525
.3924813270568848
.3924098014831543
.3923392295837402
.392268657684326
.3921995162963867
.3921306133270264
.3920624256134033
.3919947147369385
.391927719116211
.3918612003326416
.3917956352233887
.3917300701141357
.391665458679199
.391601324081421
.3915638381576538
.391475200653076
.3914127349853516

15

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.3913512229919434
.3912899494171143
.3912291526794434
.3911690711975098
.391108989715576
.391049861907959
.390991449356079
.3909332752227783
.3908755779266357
.3908183574676514
.390761613845825
.3907055854797363
.3906497955322266
.3905694959259033
.39056396461486816
.3904852867126465
.3904316425323486
.390378475189209
.3903253078460693
.390272378921509
.3902206420898438
.3901686668395996
.3901174068450928
.390066623687744
.3900163173675537
.3899660110473633
.38991641998291
.389867067337036
.3898181915283203
.3897697925567627
.389721632003784
.389674186706543
.3896265029907227
.3895797729492188
.3895633042907715
.38948655128479
.3894405364990234
.3893954753875732
.389349937438965
.389305353164673
.38926100730896
.389216899871826
.3891727924346924
.389129161834717
.3890860080718994
.3890435695648193
.389000654220581
.38895845413208

16

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.3889169692993164
.3888752460479736
.388834238052368
.3887929916381836
.3887522220611572
.388712167739868
.388671875
.388632297515869
.38856927200317383
.3885533809661865
.388514757156372
.3884763717651367
.3884377479553223
.388399600982666
.388362169265747
.388324499130249
.3882875442504883
.3882505893707275
.3882133960723877
.3881771564483643
.388140916824341
.3881051540374756
.3880693912506104
.3880341053009033
.3879990577697754
.3879637718200684
.3879292011260986
.387895107269287
.3878607749938965
.387826681137085
.3877930641174316
.3877594470977783
.387726306915283
.387693405151367
.387660503387451
.387627601623535
.3875954151153564
.3875629901885986
.387531280517578
.3874995708465576
.3874683380126953
.387436628341675
.3874058723449707
.3873748779296875
.3873443603515625
.3873136043548584
.3872838020324707
.3872532844543457

17

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.387223720550537
.3871941566467285
.387164354324341
.3871355056762695
.38710618019104
.3870770931243896
.3870487213134766
.3870201110839844
.386991500854492
.3869638442993164
.3869357109069824
.3869078159332275
.3868801593780518
.386852741241455
.3868257999420166
.386798858642578
.3867716789245605
.386744976043701
.386718511581421
.3866920471191406
.3866658210754395
.3866398334503174
.386613368988037
.3865880966186523
.3865625858306885
.3865370750427246
.38651180267334
.386486530303955
.3864617347717285
.386437177658081
.3864123821258545
.386388063430786
.386363983154297
.3863391876220703
.3863158226013184
.386291265487671
.38626766204834
.386244058609009
.386220932006836
.386197566986084
.386174440383911
.3861513137817383
.3861281871795654
.386105537414551
.3860831260681152
.3860607147216797
.386038303375244
.3860161304473877

18

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.38569941959381104
.3856972023010254
.385695032691955657
.3859286308288574
.3856906934738159
.385885715484619
.38568642578125
.38584303855896
.3856822057723999
.385801076889038
.3857805728912354
.3857595920562744
.385739326477051
.385718584060669
.3856985569000244
.3856678291320801
.385658025741577
.38566382369995117
.385618209838867
.3855984210968018
.3855788707733154
.385559320449829
.3856540246963501
.3855206966400146
.385656013847351074
.3854825496673584
.38564634761810303
.385444402694702
.3854258060455322
.385406970977783
.38563886127471924
.38563702545166016
.38563516578674316
.3856333776473999
.3856315418243408
.3852975368499756
.385279655456543
.38562617740631104
.3852438926696777
.3856226249694824
.38520884513855
.385190963745117
.385173797607422
.3851566314697266
.3851394653320312
.385122537612915
.3851053714752197
.3850882053375244

19

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.3850717544555664
.3850550651550293
.385038137435913
.385021686553955
.3850057125091553
.3849892616271973
.38497257232666
.3849565982818604
.3849403858184814
.3849244117736816
.384908437728882
.384892463684082
.3848769664764404
.3848612308502197
.384845733642578
.3848302364349365
.384814739227295
.3847994804382324
.3847837448120117
.3847687244415283
.384753704071045
.3847386837005615
.3847239017486572
.3847086429595947
.3846943378448486
.3846793174743652
.38466477394104
.384650468826294
.3846359252929688
.3846211433410645
.3846068382263184
.3845925331115723
.3845784664154053
.3845643997192383
.384549856185913
.3845362663269043
.3845224380493164
.3845083713531494
.3844945430755615
.3844809532165527
.384467124938965
.384453773498535
.3844399452209473
.3844265937805176
.384413480758667
.384399890899658
.3843865394592285
.384373426437378

20

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.3843603134155273
.384347438812256
.3843343257904053
.3843212127685547
.384308338165283
.3842954635620117
.3842833042144775
.384270429611206
.3842577934265137
.3842451572418213
.384232759475708
.3842198848724365
.3842077255249023
.384195327758789
.384183168411255
.3841710090637207
.3841586112976074
.3841466903686523
.384134531021118
.384122848510742
.384110450744629
.384098768234253
.384087085723877
.384075164794922
.384063482284546
.38405179977417
.384040355682373
.384028673171997
.3840174674987793
.3840057849884033
.3839943408966064
.3839831352233887
.383971929550171
.383960485458374
.383949041366577
.3839383125305176
.383927345275879
.3839163780212402
.3839049339294434
.3838939666748047
.383883476257324
.3838727474212646
.383861780166626
.3838508129119873
.383840322494507
.3838295936584473
.383819341659546
.3838088512420654

21

N NNDNDDNDDNDDNDDNDDNDNDNDNNDNNNNNDNDNDNDNDDNDNDNDMDNDNNNNNNNDNDNDNDNODNDNODDNODNDNNNNDNDNDNDDNDDNDDNDDN

.383798122406006
.3837876319885254
.383777141571045
.3837666511535645
.383756399154663
.383746385574341
.3837358951568604
.383725643157959
.3837156295776367
.3837058544158936
.383695602416992
.383685350418091
.3836755752563477
.3836655616760254
.383655548095703
.38364577293396
.383636236190796
.383626699447632
.3836166858673096
.3836071491241455
.3835973739624023
.3836878372192383
.383578300476074
.38356876373291
.383559465408325
.383549928665161
.383540630340576
.3835631332015991
.3835220336914062
.3835127353668213
.3835034370422363
.3834943771362305
.3834853172302246
.3834760189056396
.383467197418213
.383457899093628
.383448600769043
.3834400177001953
.3834309577941895
.383422374725342
.383413553237915
.383404493331909
.3833956718444824
.3833870887756348
.383378505706787
.3833696842193604
.3833611011505127
.383352279663086

22

.3833439350128174
.3833351135253906
.383326768875122
.3833186626434326
.3833096027374268
.3833014965057373
.3832931518554688
.3832848072052
.3832764625549316
.383268117904663
.3832600116729736
.383251667022705
.3832435607910156
.383235454559326
.3832273483276367
.3832192420959473
.383211135864258
.3832032680511475

N NDNDNNDNDNDRNONDNDNNDDNDNNDDNDNDNDDN

[42]: # finally, sample from the 'meural net' model
g = torch.Generator() .manual_seed(2147483647)

for i in range(5):

out = []

#p = Pliz]

xenc = F.one_hot (torch.tensor([ix]), num_classes=nb_chars).float()

logits = xenc @ W # predict log-counts

counts = logits.exp() # counts, equivalent to N

p = counts / counts.sum(l, keepdims=True) # probabilities for next character

ix = torch.multinomial (p, num_samples=1, replacement=True, generator=g).
~item()
out .append (itoc[ix])
if ix ==
break
print(''.join(out))

éssanée.
mexcororér.

23

monts.
ex.
moit.

On voit qu’on a les mémes mots que ceux générés par comptage, nous avons donc bati une méthode
neuronale équivalente a ce qu’on obtient par la méthode par comptage.

24

	Modèle de langue neuronal
	Jeu de données: les mots du code civil
	Approche par réseau de neurones reproduisant l'approche par comptage
	Représentation des mots avec des vecteurs ``one-hot'': exemple avec un seul mot
	Synthèse: apprentissage complet

