micrograd_ 2
January 3, 2026

1 micrograd: construction d’une bibliotheque de rétropropagation
du gradient (partie 2)

Ce notebook est dérivé du travail d’Andrej Karpathy et reprend pas a pas les étapes exposées dans
sa premiere séance de cours sur la construction d’un outil en Python pour le calcul du gradient et
sa propagation arriere:

The spelled-out intro to neural networks and backpropagation: building micrograd
Voici les ressources originales associées a la vidéo youtube d’Andrej:

« micrograd on github: https://github.com/karpathy /micrograd

» notebook original: https://github.com/karpathy/nn-zero-to-
hero/tree/master/lectures/micrograd

o exercices: https://colab.research.google.com/drive/1FPTx1RXtBfc4AMaTk{7viZZD4U2F9gt KN ?usp=sharing

[1]: # Imports de la librairie standard Python

import math

Imports spécifiques (doivent étre présent dans l'environnement Python de cey
wnotebook)

import numpy as np

import matplotlib.pyplot as plt

Jmatplotlib inline

from graphviz import Digraph

1.1 Amélioration de classe Value
1.1.1 Rappels

[2]: class Value:

def __init__(self, data, children=(), op='"', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0
self._backward = lambda: None

https://karpathy.ai/
https://www.youtube.com/watch?v=VMj-3S1tku0&list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

def __repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

def __add__(self, other):
out = self.__class__(self.data + other.data, children=(self, other),
sop="'+")
def _backward():
self.grad = out.grad
other.grad = out.grad
out._backward = _backward
return out

def __mul__(self, other):
out = self._ _class__(self.data * other.data, children=(self, other),
~op="'%*")
def _backward():
self.grad = other.data * out.grad
other.grad = self.data * out.grad
out._backward = _backward

return out

def tanh(self):
X self.data
t (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
def _backward():

self.grad = (1 - t**2) * out.grad

out._backward _backward
return out

def backward(self):
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo . append (v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node. backward()

[3]: a = Value(2.0, label='a')
b = Value(-3.0, label='b")
c = Value(10.0, label='c')

e=a=xb

e.label = 'e'

d=e+c

d.label = 'd'

f = Value(-2.0, label='f"')
L=d=xf¢£

L.label = 'L'

[4]: def trace(root):
builds a set of all nodes and edges in a graph
nodes, edges = set(), set()
def build(v):
if v not in nodes:
nodes.add(v)
for child in v._prev:
edges.add((child, v))
build(child)
build(root)
return nodes, edges

def draw_dot(root):
dot = Digraph(format='svg', graph_attr={'rankdir': 'LR'}) # LR = left to right

nodes, edges = trace(root)
for n in nodes:
uid = str(id(n))
for any value in the graph, create a rectangular ('record') node for it
dot.node(name = uid, label = "{ %s | data %.4f | grad %.4f }" 7 (n.label, n.
~data, n.grad), shape='record')
if n._op:
1f this value s a result of some operation, create an op node for <t
dot.node(name = uid + n._op, label = n._op)
and connect this node to it
dot.edge(uid + n._op, uid)

for nl, n2 in edges:
connect nl1 to the op node of n2
dot.edge(str(id(n1)), str(id(n2)) + n2._op)

return dot

[5]: draw_dot(L)
[5]:

o o
i e

¢ | data 10.0000 | grad 0.0000
° data -6.0000 | grad 0.0000

H data 2.0000 | grad 0.0000
n £rad 0.0000

[6]: L.backward()

[7]: draw_dot(L)

[7]:
-dzlla 2.0000 -grad 6.0000) -dam 4.0000 -grad -2.0000
-dala -3.0000 -gmd -4.0000 ° H
1.1.2 Probléme de non-cumul des gradients
[8]: a = Value(-2.0, label='a')
b = Value(3.0, label='b')
d=a=x*xb ; d.label = 'd’'
e=a+b ; e.label = 'e!
f =4d x e ; f.label = 'f!

f .backward()

draw_dot (f)

[8l:
a | data -2.0000 | grad -6.0000 °
data 3.0000 | grad -6.0000 °

()
[}

data 1.0000 | grad -6.0000

*
-

data -6.0000 | grad 1.0000

o
[=9

data -6.0000 | grad 1.0000

Dans ce graphe un peu particulier, les valeurs des gradients pour a et b sont fausses. En effet, il
faut cumuler ces gradients lors du calcul, voir multivariable case (chain rule).

[9]: class Value:

def __init__(self, data, children=(), op='"', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0
self._backward = lambda: None

def __repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

https://en.wikipedia.org/wiki/Chain_rule#Multivariable_case

def __add__(self, other):
out = self.__class__(self.data + other.data, children=(self, other),
sop="'+")
def _backward():
self.grad += out.grad
other.grad += out.grad
out._backward = _backward
return out

def __mul__(self, other):
out = self._ class__(self.data * other.data, children=(self, other),
wop="'*")
def backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out

def tanh(self):
x = self.data
t = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
def _backward():

self.grad += (1 - t**2) * out.grad

out._backward = _backward
return out

def backward(self):
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo.append (v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node. backward()

[10]: 'a = Value(-2.0, label='a')
b = Value(3.0, label='b')
d=a=x*xb ; d.label = 'd’'
e=a+b ; e.label = 'e'
f=d=x*xe ; £.label = 'f!

f . backward()

draw_dot (f)

data -2.0000 | grad -3.0000 °
data 3.0000 | grad -8.0000 °

[10]:

(5]
«

data 1.0000 | grad -6.0000

*
-

data -6.0000 | grad 1.0000

o
(=%

data -6.0000 | grad 1.0000

1.1.3 Ajout de nouvelles fonctions

Support des constantes Pour __add__ et mul__, on ajoute une instruction permettant

d’utiliser des constructions comme b = a + 1, en transformant 1 en Value(1.0).

[11]: class Value:

def __init__(self, data, children=(), op='"', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0
self._backward = lambda: None

def __repr__(self):
return f'"Value(data={self.data}, label={self.labell}, grad={self.grad})"

def __add__(self, other):
other = other if isinstance(other, Value) else Value(other) # a + 1
out = self._ _class__(self.data + other.data, children=(self, other),
sop="'+")
def _backward():
self.grad += out.grad
other.grad += out.grad
out._backward = _backward
return out

def __mul__(self, other):
other = other if isinstance(other, Value) else Value(other) # a * 1
out = self.__class__(self.data * other.data, children=(self, other),
rAop='>|<')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward

return out

def tanh(self):
X self.data
t (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
def _backward():

self.grad += (1 - t**2) * out.grad

out._backward = _backward
return out

def backward(self):
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo . append (v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node. backward()

Commutativité Pour __add__et __mul__, support indiférencié dea + 1 oul + a, en déclarant
les méthodes __radd__ et __rmul__.

[12]: |def __rmul__(self, other): # other * self
return self * other
Value.__rmul__ = __rmul__

[13]: |def __radd__(self, other): # other * self
return self + other
Value.__radd__ = __radd__

Implémentation de ’exponentielle, de la négation, de la puissance et de la division
[14]: class Value:

def __init__(self, data, children=(), op='"', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0
self._backward = lambda: None

https://docs.python.org/3.12/reference/datamodel.html#object.__radd__
https://docs.python.org/3.12/reference/datamodel.html#object.__rmul__

def

def

__repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

__add__(self, other):
other = other if isinstance(other, Value) else Value(other) # a + 1
out = self. class__(self.data + other.data, children=(self, other),

wop="+")

def

def backward():
self.grad += out.grad
other.grad += out.grad
out._backward = _backward
return out

__mul__(self, other):
other = other if isinstance(other, Value) else Value(other) # a * 1
out = self._ _class__(self.data * other.data, children=(self, other),

wop="'*")

def

def

def

def

def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out

tanh(self):
b:¢ self.data
t = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
def _backward():

self.grad += (1 - t**2) * out.grad
out._backward = _backward
return out

__rmul__(self, other): # other * self
return self * other

__radd__(self, other): # other * self
return self + other

__pow__(self, other):
assert isinstance(other, (int, float)), "only supporting int/float

~powers for now"

out = Value(self.data**other, (self,), f'**x{otherl}')
def _backward():
self.grad += other * (self.data #** (other - 1)) * out.grad
out._backward = _backward
return out

def __truediv__(self, other): # self / other
return self * other*xx-1

def __neg__(self): # -self
return self *x -1

def __sub__(self, other): # self - other
return self + (-other)

def exp(self):
x = self.data
out = Value(math.exp(x), (self,), 'exp')
def _backward():
self.grad += out.data * out.grad
out._backward = _backward
return out

def backward(self):
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo . append (v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node. backward()

Exemples d’utilisation
[15]: # <inputs z1,z2
x1 = Value(2.0, label='x1"')
x2 = Value(0.0, label='x2"')
weights wi,w2
wl = Value(-3.0, label='wl')
w2 = Value(1.0, label='w2"')
bias of the meuron
b = Value(6.8813735870195432, label='b')
xl*xwl + z2%w2 + b
xlwl = x1*wl; xlwl.label = 'xlxwl'
x2w2 = x2*w2; x2w2.label = 'x2*w2'
x1wlx2w2 = xlwl + x2w2; x1lwlx2w2.label = 'xl*wl + x2*w2'
x1lwlx2w2 + b; n.label = 'n'
o = n.tanh(); o.label = 'o'
o.backward()

n

[16]: draw_dot(o)

[16]: I e
wl | data -3.0000 gmd|000ﬂ

b | data 6.8814 | grad 0.5

®——| xI*wl + x2%w2 | data -6.0000 | 2rad 0.5000 |

——

data 0.8814 | grad 0.5000 H data 0.7071 | grad 1.0000

[17]: | # inputs =z1,z2
x1 = Value(2.0, label='x1")
x2 = Value(0.0, label='x2")
weights wi,w2
wl = Value(-3.0, label='wl"')
w2 = Value(1.0, label='w2')
bias of the meuron
b = Value(6.8813735870195432, label='b')
xl*xwl + x2%w2 + b
xlwl = x1*wl; xlwl.label 'x1*xwl'
x2w2 = x2*w2; x2w2.label 'x2xw2'
x1lwlx2w2 = xlwl + x2w2; xlwlx2w2.label = 'xl*wl + x2*w2'

n = xlwlx2w2 + b; n.label = 'n'
—_———

e = (2xn).exp()

o=(-1)/ (e +1)

————

o.label = 'o'

o.backward()

draw_dot (o)

[18]: print(o.data)

0.7071067811865477

Expression équivalente avec Pytorch Pour que cette section fonctionne, il est nécessaire que
PyTorch soit installé sur la machine faisant tourner Jupyter (pip install torch).

[19]: import torch

x1 = torch.Tensor([2.0]) .double() ; xl.requires_grad = True
x2 = torch.Tensor([0.0]).double() ; x2.requires_grad = True
wl = torch.Tensor([-3.0]) .double() ; wl.requires_grad = True
w2 = torch.Tensor ([1.0]) .double() ; w2.requires_grad = True

10

b = torch.Tensor([6.8813735870195432]) .double() ; b.requires_grad = True
x1*wl + x2%w2 + Db
torch.tanh(n)

o B
]

print(o.data.item())
o.backward ()

print('---")

print('x2', x2.grad.item())
print('w2', w2.grad.item())
print('xl', xl.grad.item())
print('wl', wl.grad.item())

0.7071066904050358

x2 0.5000001283844369
w2 0.0

x1 -1.5000003851533106
wl 1.0000002567688737

[20] : | print(x1)
tensor([2.], dtype=torch.float64, requires_grad=True)
[21]: print(xl.grad)

tensor ([-1.5000], dtype=torch.float64)

2 MLP: Multi Layer Perceptron

2.1 Modélisation d’un neurone

Dessin issu de “neural networks: representation” de Jeremy Jordan.

11

https://www.jeremyjordan.me/intro-to-neural-networks/

Z(wo

*® synapse
axon from a neuron
WoI)

cell body f Z w;T; + b
w11 i
> w;T; +b >
;) f output axon
activation
Wo Lo function

Source: https://www.jeremyjordan.me/content/images/2018/01/single_neuron. jpg

Par défaut, dans la classe Neuron ci-dessous, on initialise les poids avec une valeur aléatoire (dis-
tribution de probabilité uniforme) comprise entre -1 et 1.

[22] : | import random
class Neuron:

def __init__(self, nin):

self.w = [Value(random.uniform(-1,1), label=f'w{i}') for i in,
~range(nin)]
self.b = Value(random.uniform(-1,1), label='b')

def __call__(self, x):
tanh(w * T + b)
act = sum((wi*xi for wi, xi in zip(self.w, x)), self.b)
out = act.tanh() # Fonction d'activation
out.label = 'out'
return out

def parameters(self):
return self.w + [self.b]

[23]: n = Neuron(b)
n((0.2,0.2,0.3,0.4,0.5))

[23]: Value(data=-0.8514542857879747, label=out, grad=0.0)

12

https://www.jeremyjordan.me/content/images/2018/01/single_neuron.jpg

[24]: |n.parameters()

[24]: [Value(data=-0.8039598110691475, label=w0, grad=0.0),
Value(data=0.5874188380995722, label=wl, grad=0.0),
Value(data=-0.2589112549460806, label=w2, grad=0.0),
Value(data=-0.9122108656376093, label=w3, grad=0.0),
Value (data=0.24446900172649078, label=w4, grad=0.0),
Value (data=-0.8977855630313485, label=b, grad=0.0)]

[25]: draw_dot(n((0.2,0.2,0.3,0.4,0.5)))
[25]:

2.2 Couche de neurones
[26]: class Layer:

def __init__(self, nin, nout):
self .neurons = [Neuron(nin) for _ in range(nout)]

def __call__(self, x):
outs = [n(x) for n in self.neurons]
return outs[0] if len(outs) == 1 else outs

def parameters(self):
return [p for neuron in self.neurons for p in neuron.parameters()]

[27]: 1 = Layer(2,3)
1((0.2,0.3))

[27]: [Value(data=0.3213930604635117, label=out, grad=0.0),
Value (data=0.31464203078000524, label=out, grad=0.0),
Value(data=-0.858850222206831, label=out, grad=0.0)]

2.3 Multicouches
[28]: class MLP:
def __init__(self, nin, nouts):

sz = [nin] + nouts
self.layers = [Layer(sz[i], sz[i+1]) for i in range(len(nouts))]

13

def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x

def parameters(self):
return [p for layer in self.layers for p in layer.parameters()]

[29]: x [2.0, 3.0, -1.0]
n = MLP(3, [4, 4, 1])
n(x)

[29]: Value(data=0.5428321376017807, label=out, grad=0.0)

https://cs231n.github.io/neural-networks-1/

put layer

input layer
hidden layer 1 hidden layer 2

Source: https://cs231n.github.io/assets/nnl/neural_net2. jpeg

[30]: draw_dot(n(x))
[30]:

14

https://cs231n.github.io/assets/nn1/neural_net2.jpeg

3 Apprentissage

3.1 Définition d’une fonction de perte

[31]: | # Jeu d'entrainement
xs = [

[2.0, 3.0, -1.0], # exemple 1
[3.0, -1.0, 0.5], # ezemple 2
[0.5, 1.0, 1.0], # exemple 3
[1.0, 1.0, -1.0], # exzemple 4

]

ys = [1.0, -1.0, -1.0, 1.0] # desired targets
ypred = [n(x) for x in xs] # sortie

ypred

[31]: [Value(data=0.5428321376017807, label=out, grad=0.0),
Value(data=0.8825476224698201, label=out, grad=0.0),
Value (data=0.24590509211930503, label=out, grad=0.0),
Value(data=0.4050940086029426, label=out, grad=0.0)]

A ce stade, les valeurs de sortie du réseau ne sont pas bonnes, ce qui est normal car nous n’avons
réglé aucun parametre. Nous allons définir une fonction que nous allons chercher & optimiser, ici a
minimiser: une fonction de perte utilisant I'erreur quadratique moyenne.

[32]: [(yout - ygt)**2 for ygt, yout in zip(ys, ypred)]

[32]: [Value(data=0.20900245440975715, label=, grad=0.0),
Value (data=3.5439855508667724, label=, grad=0.0),
Value(data=1.5522794985688142, label=, grad=0.0),
Value(data=0.3539131386001157, label=, grad=0.0)]

[33]: loss = sum((yout - ygt)**2 for ygt, yout in zip(ys, ypred))
loss

[33]: Value(data=5.65918064244546, label=, grad=0.0)

C’est cette valeur que 'on va chercher & minimiser.

3.2 Reprise des étapes: apprentissage manuel

[45]: | # Architecture de notre réseau
n = MLP(3, [4, 4, 11)

Données exemple

xs = [
[2.0, 3.0, -1.0], # exemple 1
[3.0, -1.0, 0.5], # exzemple 2
(0.5, 1.0, 1.0], #
[1.0, 1.0, -1.0], #

eremple 3
ezemple 4

15

Cible
ys = [1.0, -1.0, -1.0, 1.0] # desired targets

[46]: # forward pass
ypred = [n(x) for x in xs]
loss = sum((yout - ygt)**2 for ygt, yout in zip(ys, ypred))

backward pass

for p in n.parameters():
p.grad = 0.0

loss.backward()

update
for p in n.parameters():
p.data += -0.1 * p.grad

print (list (map(lambda x: x.data, ypred)))
print(loss.data)

[0.4020920928583902, -0.1894861802920144, -0.05922087190814421,
0.2550894154311267]
2.4543836642161017

3.3 Automatisation de 'apprentissage

[49]: for k in range(100):
forward pass
ypred = [n(x) for x in xs]
loss = sum((yout - ygt)**2 for ygt, yout in zip(ys, ypred))

backward pass

for p in n.parameters():
p-grad = 0.0

loss.backward ()

update
for p in n.parameters():
p.data += -0.1 * p.grad

print (f"{k} loss={loss.data} {list(map(lambda x: x.data, ypred))}")

0 1loss=0.00027815740115110454 [0.9947032216496835, -0.9913560575993751,
-0.9900334740555171, 0.9912792110086672]
1 10ss=0.0002778910086773501 [0.9947058577753756, -0.9913601868709156,
-0.9900382219334123, 0.9912833679881876]
2 1oss=0.0002776251162239342 [0.9947084901418856, -0.9913643103734111,

16

-0.9900429631794665, 0.991287519178031]

3 1oss=0.0002773597223959083 [0.9947111187580135, -0.9913684281201739,
-0.9900476978089977, 0.9912916645915285]

4 1oss=0.00027709482580351365 [0.9947137436325303, -0.9913725401244734,
-0.990052425837274, 0.9912958042419678]

5 1oss=0.0002768304250621039 [0.9947163647741786, -0.9913766463995367,
-0.9900571472795149, 0.9912999381425945]

6 loss=0.0002765665187921489 [0.9947189821916727, -0.9913807469585485,
-0.9900618621508906, 0.9913040663066116]

7 loss=0.00027630310561922066 [0.9947215958936985, -0.9913848418146511,
-0.9900665704665226, 0.9913081887471796]

8 loss=0.00027604018417393545 [0.9947242058889137, -0.9913889309809447,
-0.9900712722414844, 0.9913123054774174]

9 1o0ss=0.00027577775309196634 [0.9947268121859485, -0.9913930144704878,
-0.9900759674908006, 0.9913164165104016]

10 1loss=0.00027551581101400513 [0.9947294147934046, -0.9913970922962964,
-0.9900806562294483, 0.9913205218591671]

11 loss=0.0002752543565857338 [0.9947320137198563, -0.991401164471346,
-0.9900853384723558, 0.9913246215367074]

12 1loss=0.0002749933884578092 [0.9947346089738499, -0.99140523100857,
-0.9900900142344047, 0.9913287155559745]

13 1loss=0.00027473290528583504 [0.9947372005639045, -0.991409291920861,
-0.9900946835304283, 0.9913328039298793]

14 1oss=0.0002744729057303457 [0.9947397884985115, -0.99141334722107,
-0.9900993463752135, 0.9913368866712914]

15 loss=0.0002742133884567916 [0.9947423727861351, -0.9914173969220075,
-0.9901040027834986, 0.9913409637930397]

16 loss=0.00027395435213548193 [0.9947449534352122, -0.9914214410364433,
-0.9901086527699767, 0.9913450353079123]

17 1loss=0.000273695795441608 [0.9947475304541527, -0.9914254795771064,
-0.9901132963492928, 0.9913491012286568]

18 1loss=0.00027343771705518716 [0.9947501038513393, -0.9914295125566853,
-0.9901179335360464, 0.9913531615679803]

19 1oss=0.00027318011566106204 [0.9947526736351281, -0.9914335399878288,
-0.9901225643447896, 0.9913572163385497]

20 loss=0.0002729229899488548 [0.9947552398138483, -0.9914375618831455,
-0.9901271887900291, 0.991361265552992]

21 loss=0.00027266633861298164 [0.9947578023958024, -0.9914415782552033,
-0.9901318068862255, 0.991365309223894]

22 loss=0.00027241016035259026 [0.9947603613892664, -0.9914455891165311,
-0.9901364186477934, 0.9913693473638031]

23 loss=0.0002721544538715773 [0.9947629168024897, -0.9914495944796184,
-0.9901410240891017, 0.9913733799852267]

24 1oss=0.00027189921787852537 [0.9947654686436956, -0.9914535943569147,
-0.9901456232244743, 0.9913774071006332]

25 loss=0.000271644451086726 [0.9947680169210811, -0.9914575887608305,
-0.9901502160681893, 0.9913814287224514]

26 loss=0.0002713901522141172 [0.9947705616428171, -0.9914615777037371,

17

.9901548026344803, 0.9913854448630712]

loss=0.0002711363199832938 [0.9947731028170481, -0.9914655611979671,

.9901593829375357, 0.9913894555348436]

loss=0.00027088295312146973 [0.9947756404518935, -0.9914695392558139,

.9901639569914994, 0.9913934607500805]

loss=0.0002706300503604721 [0.9947781745554459, -0.9914735118895325,

.9901685248104705, 0.9913974605210554]

loss=0.00027037761043668615 [0.9947807051357732, -0.9914774791113397,

.9901730864085039, 0.9914014548600034]

loss=0.00027012563209108295 [0.9947832322009169, -0.9914814409334132,

.9901776417996107, 0.9914054437791211]

loss=0.0002698741140691602 [0.9947857557588934, -0.9914853973678934,

.9901821909977574, 0.9914094272905671]

loss=0.0002696230551209477 [0.9947882758176937, -0.9914893484268822,

.990186734016867, 0.9914134054064616]

loss=0.0002693724540009601 [0.9947907923852835, -0.9914932941224436,

.9901912708708193, 0.9914173781388874]

loss=0.00026912230946821435 [0.994793305469603, -0.991497234466604,

.9901958015734496, 0.9914213454998895]

loss=0.00026887262028616176 [0.994795815078568, -0.9915011694713524,

.990200326138551, 0.991425307501475]

loss=0.0002686233852227112 [0.9947983212200685, -0.9915050991486403,

.9902048445798729, 0.9914292641556139]

loss=0.0002683746030501911 [0.9948008239019703, -0.9915090235103813,

.9902093569111221, 0.991433215474239]

loss=0.0002681262725453214 [0.9948033231321142, -0.9915129425684531,

.9902138631459623, 0.9914371614692457]

loss=0.0002678783924892086 [0.9948058189183161, -0.9915168563346958,

.9902183632980147, 0.9914411021524925]

loss=0.0002676309616673282 [0.9948083112683676, -0.991520764820912,

.9902228573808582, 0.9914450375358014]

loss=0.00026738397886947555 [0.9948108001900355, -0.9915246680388691,

.9902273454080298, 0.9914489676309572]

loss=0.0002671374428897925 [0.9948132856910629, -0.9915285660002966,

.9902318273930236, 0.9914528924497088]

loss=0.00026689135252670835 [0.9948157677791677, -0.9915324587168886,

.9902363033492926, 0.9914568120037681]

1loss=0.00026664570658295 [0.9948182464620443, -0.9915363462003022,

.9902407732902473, 0.9914607263048112]

loss=0.00026640050386550387 [0.9948207217473627, -0.9915402284621586,

.9902452372292573, 0.9914646353644778]

loss=0.00026615574318559365 [0.9948231936427689, -0.9915441055140438,

.9902496951796503, 0.991468539194372]

loss=0.0002659114233586779 [0.9948256621558853, -0.9915479773675072,

.9902541471547133, 0.9914724378060616]

loss=0.0002656675432044268 [0.9948281272943102, -0.9915518440340627,

.9902585931676916, 0.9914763312110793]

loss=0.0002654241015467078 [0.9948305890656182, -0.9915557055251883,

18

.9902630332317898, 0.9914802194209219]

loss=0.0002651810972135345 [0.9948330474773605, -0.9915595618523279,

.9902674673601719, 0.9914841024470509]

loss=0.0002649385290371021 [0.9948355025370644, -0.9915634130268884,

.9902718955659612, 0.9914879803008926]

loss=0.00026469639585372163 [0.9948379542522342, -0.9915672590602432,

.9902763178622406, 0.991491852993838]

loss=0.0002644546965038287 [0.9948404026303508, -0.9915710999637297,

.9902807342620525, 0.9914957205372436]

loss=0.00026421342983196637 [0.9948428476788715, -0.9915749357486506,

.9902851447783994, 0.9914995829424305]

loss=0.00026397259468673195 [0.9948452894052309, -0.9915787664262744,

.9902895494242441, 0.9915034402206855]

1loss=0.0002637321899208108 [0.9948477278168403, -0.9915825920078347,

.9902939482125089, 0.9915072923832606]

loss=0.00026349221439092536 [0.994850162921088, -0.9915864125045307,

.9902983411560771, 0.9915111394413736]

loss=0.0002632526669578241 [0.9948525947253397, -0.9915902279275273,

.9903027282677919, 0.9915149814062079]

loss=0.0002630135464862588 [0.994855023236938, -0.9915940382879552,

.990307109560458, 0.9915188182889126]

loss=0.0002627748518449845 [0.9948574484632029, -0.9915978435969114,

.9903114850468401, 0.9915226501006031]

loss=0.0002625365819067164 [0.994859870411432, -0.9916016438654587,

.9903158547396645, 0.9915264768523607]

loss=0.0002622987355481437 [0.9948622890889002, -0.9916054391046263,

.990320218651618, 0.991530298555233]

loss=0.0002620613116498816 [0.9948647045028599, -0.9916092293254094,

.9903245767953495, 0.9915341152202339]

loss=0.00026182430909647543 [0.9948671166605414, -0.9916130145387706,

.9903289291834682, 0.991537926858344]

loss=0.0002615877267763755 [0.9948695255691526, -0.991616794755638,

.9903332758285457, 0.9915417334805103]

loss=0.00026135156358190526 [0.9948719312358792, -0.9916205699869077,

.9903376167431156, 0.9915455350976468]

1loss=0.0002611158184092889 [0.994874333667885, -0.9916243402434415,

.9903419519396724, 0.9915493317206341]

loss=0.00026088049015857975 [0.9948767328723116, -0.991628105536069,

.9903462814306735, 0.9915531233603202]

loss=0.0002606455777336732 [0.9948791288562789, -0.9916318658755867,

.9903506052285381, 0.99155691002752]

loss=0.00026041108004229614 [0.9948815216268849, -0.9916356212727587,

.9903549233456476, 0.9915606917330158]

loss=0.0002601769959959707 [0.9948839111912059, -0.9916393717383161,

.990359235794346, 0.9915644684875572]

loss=0.00025994332451001576 [0.9948862975562964, -0.9916431172829575,

.99036354258694, 0.9915682403018614]

loss=0.00025971006450350737 [0.9948886807291896, -0.9916468579173495,

19

.9903678437356993, 0.9915720071866134]

loss=0.0002594772148992945 [0.9948910607168969, -0.9916505936521265,

.9903721392528556, 0.9915757691524658]

loss=0.00025924477462394707 [0.9948934375264088, -0.9916543244978904,

.990376429150605, 0.9915795262100391]

loss=0.0002590127426077744 [0.994895811164694, -0.9916580504652116,

.9903807134411053, 0.9915832783699219]

loss=0.0002587811177847791 [0.9948981816387003, -0.9916617715646288,

.9903849921364788, 0.991587025642671]

loss=0.0002585498990926639 [0.9949005489553541, -0.991665487806648,

.9903892652488109, 0.9915907680388114]

loss=0.0002583190854728064 [0.994902913121561, -0.9916691992017448,

.9903935327901501, 0.9915945055688365]

loss=0.00025808867587022986 [0.9949052741442054, -0.9916729057603626,

.9903977947725098, 0.9915982382432085]

loss=0.00025785866923361744 [0.994907632030151, -0.9916766074929136,

.9904020512078662, 0.9916019660723578]

loss=0.00025762906451527224 [0.9949099867862405, -0.991680304409779,

.99040630210816, 0.991605689066684]

loss=0.0002573998606711118 [0.994912338419296, -0.9916839965213087,

.9904105474852961, 0.9916094072365551]

loss=0.0002571710566606487 [0.994914686936119, -0.9916876838378215,

.9904147873511436, 0.9916131205923086]

loss=0.00025694265144697635 [0.9949170323434902, -0.9916913663696055,

.9904190217175362, 0.9916168291442506]

loss=0.00025671464399674884 [0.99491937464817, -0.9916950441269184,

.9904232505962718, 0.9916205329026572]

loss=0.00025648703328018396 [0.9949217138568983, -0.9916987171199864,

.9904274739991137, 0.991624231877773]

loss=0.00025625981827102136 [0.9949240499763948, -0.9917023853590058,

.9904316919377895, 0.9916279260798128]

loss=0.000256032997946528 [0.9949263830133587, -0.9917060488541427,

.9904359044239917, 0.9916316155189605]

loss=0.00025580657128748024 [0.9949287129744692, -0.991709707615532,

.9904401114693784, 0.9916353002053699]

loss=0.0002555805372781285 [0.9949310398663853, -0.9917133616532797,

.9904443130855728, 0.9916389801491646]

loss=0.0002553548949062144 [0.9949333636957461, -0.9917170109774607,

.9904485092841633, 0.9916426553604384]

loss=0.000255129643162935 [0.9949356844691708, -0.9917206555981201,

.9904527000767042, 0.9916463258492546]

loss=0.0002549047810429273 [0.9949380021932585, -0.9917242955252741,

.9904568854747148, 0.9916499916256472]

loss=0.0002546803075442763 [0.9949403168745884, -0.9917279307689078,

.9904610654896808, 0.99165365269962]

loss=0.00025445622166846534 [0.9949426285197206, -0.9917315613389777,

.9904652401330535, 0.9916573090811478]

loss=0.0002542325224203795 [0.9949449371351949, -0.9917351872454109,

20

[]:

-0.9904694094162505, 0.9916609607801753]
99 loss=0.0002540092088083135 [0.9949472427275319, -0.991738808498104,
-0.9904735733506552, 0.9916646078066182]

21

	micrograd: construction d'une bibliothèque de rétropropagation du gradient (partie 2)
	Amélioration de classe Value
	Rappels
	Problème de non-cumul des gradients
	Ajout de nouvelles fonctions

	MLP: Multi Layer Perceptron
	Modélisation d'un neurone
	Couche de neurones
	Multicouches

	Apprentissage
	Définition d'une fonction de perte
	Reprise des étapes: apprentissage manuel
	Automatisation de l'apprentissage

