
micrograd_2

January 3, 2026

1 micrograd: construction d’une bibliothèque de rétropropagation
du gradient (partie 2)

Ce notebook est dérivé du travail d’Andrej Karpathy et reprend pas à pas les étapes exposées dans
sa première séance de cours sur la construction d’un outil en Python pour le calcul du gradient et
sa propagation arrière:

The spelled-out intro to neural networks and backpropagation: building micrograd

Voici les ressources originales associées à la vidéo youtube d’Andrej:

• micrograd on github: https://github.com/karpathy/micrograd
• notebook original: https://github.com/karpathy/nn-zero-to-

hero/tree/master/lectures/micrograd
• exercices: https://colab.research.google.com/drive/1FPTx1RXtBfc4MaTkf7viZZD4U2F9gtKN?usp=sharing

[1]: # Imports de la librairie standard Python
import math
Imports spécifiques (doivent être présent dans l'environnement Python de ce␣

↪notebook)
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from graphviz import Digraph

1.1 Amélioration de classe Value

1.1.1 Rappels

[2]: class Value:

def __init__(self, data, children=(), op='', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0
self._backward = lambda: None

1

https://karpathy.ai/
https://www.youtube.com/watch?v=VMj-3S1tku0&list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

def __repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

def __add__(self, other):
out = self.__class__(self.data + other.data, children=(self, other),␣

↪op='+')
def _backward():

self.grad = out.grad
other.grad = out.grad

out._backward = _backward
return out

def __mul__(self, other):
out = self.__class__(self.data * other.data, children=(self, other),␣

↪op='*')
def _backward():

self.grad = other.data * out.grad
other.grad = self.data * out.grad

out._backward = _backward
return out

def tanh(self):
x = self.data
t = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
def _backward():

self.grad = (1 - t**2) * out.grad
out._backward = _backward
return out

def backward(self):
topo = []
visited = set()
def build_topo(v):

if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)

topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()

[3]: a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')

2

e = a * b
e.label = 'e'
d = e + c
d.label = 'd'
f = Value(-2.0, label='f')
L = d * f
L.label = 'L'

[4]: def trace(root):
builds a set of all nodes and edges in a graph
nodes, edges = set(), set()
def build(v):

if v not in nodes:
nodes.add(v)
for child in v._prev:
edges.add((child, v))
build(child)

build(root)
return nodes, edges

def draw_dot(root):
dot = Digraph(format='svg', graph_attr={'rankdir': 'LR'}) # LR = left to right

nodes, edges = trace(root)
for n in nodes:
uid = str(id(n))
for any value in the graph, create a rectangular ('record') node for it
dot.node(name = uid, label = "{ %s | data %.4f | grad %.4f }" % (n.label, n.

↪data, n.grad), shape='record')
if n._op:

if this value is a result of some operation, create an op node for it
dot.node(name = uid + n._op, label = n._op)
and connect this node to it
dot.edge(uid + n._op, uid)

for n1, n2 in edges:
connect n1 to the op node of n2
dot.edge(str(id(n1)), str(id(n2)) + n2._op)

return dot

[5]: draw_dot(L)
[5]:

d data 4.0000 grad 0.0000

*

+a data 2.0000 grad 0.0000

*

c data 10.0000 grad 0.0000

b data -3.0000 grad 0.0000

e data -6.0000 grad 0.0000

L data -8.0000 grad 0.0000

f data -2.0000 grad 0.0000

3

[6]: L.backward()

[7]: draw_dot(L)
[7]:

d data 4.0000 grad -2.0000

*

+a data 2.0000 grad 6.0000

*

c data 10.0000 grad -2.0000

b data -3.0000 grad -4.0000

e data -6.0000 grad -2.0000

L data -8.0000 grad 1.0000

f data -2.0000 grad 4.0000

1.1.2 Problème de non-cumul des gradients

[8]: a = Value(-2.0, label='a')
b = Value(3.0, label='b')
d = a * b ; d.label = 'd'
e = a + b ; e.label = 'e'
f = d * e ; f.label = 'f'

f.backward()

draw_dot(f)
[8]:

e data 1.0000 grad -6.0000

*

+

f data -6.0000 grad 1.0000

a data -2.0000 grad -6.0000

* d data -6.0000 grad 1.0000b data 3.0000 grad -6.0000

Dans ce graphe un peu particulier, les valeurs des gradients pour 𝑎 et 𝑏 sont fausses. En effet, il
faut cumuler ces gradients lors du calcul, voir multivariable case (chain rule).

[9]: class Value:

def __init__(self, data, children=(), op='', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0
self._backward = lambda: None

def __repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

4

https://en.wikipedia.org/wiki/Chain_rule#Multivariable_case

def __add__(self, other):
out = self.__class__(self.data + other.data, children=(self, other),␣

↪op='+')
def _backward():

self.grad += out.grad
other.grad += out.grad

out._backward = _backward
return out

def __mul__(self, other):
out = self.__class__(self.data * other.data, children=(self, other),␣

↪op='*')
def _backward():

self.grad += other.data * out.grad
other.grad += self.data * out.grad

out._backward = _backward
return out

def tanh(self):
x = self.data
t = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
def _backward():

self.grad += (1 - t**2) * out.grad
out._backward = _backward
return out

def backward(self):
topo = []
visited = set()
def build_topo(v):

if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)

topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()

[10]: a = Value(-2.0, label='a')
b = Value(3.0, label='b')
d = a * b ; d.label = 'd'
e = a + b ; e.label = 'e'
f = d * e ; f.label = 'f'

5

f.backward()

draw_dot(f)
[10]:

e data 1.0000 grad -6.0000

*

+a data -2.0000 grad -3.0000

* d data -6.0000 grad 1.0000

f data -6.0000 grad 1.0000

b data 3.0000 grad -8.0000

1.1.3 Ajout de nouvelles fonctions

Support des constantes Pour __add__ et __mul__, on ajoute une instruction permettant
d’utiliser des constructions comme b = a + 1, en transformant 1 en Value(1.0).

[11]: class Value:

def __init__(self, data, children=(), op='', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0
self._backward = lambda: None

def __repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

def __add__(self, other):
other = other if isinstance(other, Value) else Value(other) # a + 1
out = self.__class__(self.data + other.data, children=(self, other),␣

↪op='+')
def _backward():

self.grad += out.grad
other.grad += out.grad

out._backward = _backward
return out

def __mul__(self, other):
other = other if isinstance(other, Value) else Value(other) # a * 1
out = self.__class__(self.data * other.data, children=(self, other),␣

↪op='*')
def _backward():

self.grad += other.data * out.grad
other.grad += self.data * out.grad

out._backward = _backward

6

return out

def tanh(self):
x = self.data
t = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
def _backward():

self.grad += (1 - t**2) * out.grad
out._backward = _backward
return out

def backward(self):
topo = []
visited = set()
def build_topo(v):

if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)

topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()

Commutativité Pour __add__ et __mul__, support indiférencié de a + 1 ou 1 + a, en déclarant
les méthodes __radd__ et __rmul__.

[12]: def __rmul__(self, other): # other * self
return self * other

Value.__rmul__ = __rmul__

[13]: def __radd__(self, other): # other * self
return self + other

Value.__radd__ = __radd__

Implémentation de l’exponentielle, de la négation, de la puissance et de la division
[14]: class Value:

def __init__(self, data, children=(), op='', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0
self._backward = lambda: None

7

https://docs.python.org/3.12/reference/datamodel.html#object.__radd__
https://docs.python.org/3.12/reference/datamodel.html#object.__rmul__

def __repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

def __add__(self, other):
other = other if isinstance(other, Value) else Value(other) # a + 1
out = self.__class__(self.data + other.data, children=(self, other),␣

↪op='+')
def _backward():

self.grad += out.grad
other.grad += out.grad

out._backward = _backward
return out

def __mul__(self, other):
other = other if isinstance(other, Value) else Value(other) # a * 1
out = self.__class__(self.data * other.data, children=(self, other),␣

↪op='*')
def _backward():

self.grad += other.data * out.grad
other.grad += self.data * out.grad

out._backward = _backward
return out

def tanh(self):
x = self.data
t = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
def _backward():

self.grad += (1 - t**2) * out.grad
out._backward = _backward
return out

def __rmul__(self, other): # other * self
return self * other

def __radd__(self, other): # other * self
return self + other

def __pow__(self, other):
assert isinstance(other, (int, float)), "only supporting int/float␣

↪powers for now"
out = Value(self.data**other, (self,), f'**{other}')
def _backward():

self.grad += other * (self.data ** (other - 1)) * out.grad
out._backward = _backward
return out

8

def __truediv__(self, other): # self / other
return self * other**-1

def __neg__(self): # -self
return self * -1

def __sub__(self, other): # self - other
return self + (-other)

def exp(self):
x = self.data
out = Value(math.exp(x), (self,), 'exp')
def _backward():
self.grad += out.data * out.grad

out._backward = _backward
return out

def backward(self):
topo = []
visited = set()
def build_topo(v):

if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)

topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()

Exemples d’utilisation
[15]: # inputs x1,x2

x1 = Value(2.0, label='x1')
x2 = Value(0.0, label='x2')
weights w1,w2
w1 = Value(-3.0, label='w1')
w2 = Value(1.0, label='w2')
bias of the neuron
b = Value(6.8813735870195432, label='b')
x1*w1 + x2*w2 + b
x1w1 = x1*w1; x1w1.label = 'x1*w1'
x2w2 = x2*w2; x2w2.label = 'x2*w2'
x1w1x2w2 = x1w1 + x2w2; x1w1x2w2.label = 'x1*w1 + x2*w2'
n = x1w1x2w2 + b; n.label = 'n'
o = n.tanh(); o.label = 'o'
o.backward()

9

[16]: draw_dot(o)
[16]:

x2*w2 data 0.0000 grad 0.5000

+

*

w1 data -3.0000 grad 1.0000

* n data 0.8814 grad 0.5000 tanh+x1*w1 data -6.0000 grad 0.5000

w2 data 1.0000 grad 0.0000

x2 data 0.0000 grad 0.5000

x1 data 2.0000 grad -1.5000

x1*w1 + x2*w2 data -6.0000 grad 0.5000

o data 0.7071 grad 1.0000

b data 6.8814 grad 0.5000

[17]: # inputs x1,x2
x1 = Value(2.0, label='x1')
x2 = Value(0.0, label='x2')
weights w1,w2
w1 = Value(-3.0, label='w1')
w2 = Value(1.0, label='w2')
bias of the neuron
b = Value(6.8813735870195432, label='b')
x1*w1 + x2*w2 + b
x1w1 = x1*w1; x1w1.label = 'x1*w1'
x2w2 = x2*w2; x2w2.label = 'x2*w2'
x1w1x2w2 = x1w1 + x2w2; x1w1x2w2.label = 'x1*w1 + x2*w2'
n = x1w1x2w2 + b; n.label = 'n'

e = (2*n).exp()
o = (e - 1) / (e + 1)

o.label = 'o'
o.backward()
draw_dot(o)

[17]:

x2*w2 data 0.0000 grad 0.5000

+

*

 data 2.0000 grad 0.2203

*

 data 1.0000 grad -0.1036

+ data 0.1464 grad 4.8284

*

**-1n data 0.8814 grad 0.5000+

x1*w1 + x2*w2 data -6.0000 grad 0.5000

 data 1.7627 grad 0.2500 exp

w2 data 1.0000 grad 0.0000

 data -1.0000 grad 0.1464

+w1 data -3.0000 grad 1.0000

*

 data 5.8284 grad 0.0429

x1 data 2.0000 grad -1.5000

o data 0.7071 grad 1.0000

x1*w1 data -6.0000 grad 0.5000

b data 6.8814 grad 0.5000

 data 6.8284 grad -0.1036

x2 data 0.0000 grad 0.5000

 data 4.8284 grad 0.1464

[18]: print(o.data)

0.7071067811865477

Expression équivalente avec Pytorch Pour que cette section fonctionne, il est nécessaire que
PyTorch soit installé sur la machine faisant tourner Jupyter (pip install torch).

[19]: import torch
x1 = torch.Tensor([2.0]).double() ; x1.requires_grad = True
x2 = torch.Tensor([0.0]).double() ; x2.requires_grad = True
w1 = torch.Tensor([-3.0]).double() ; w1.requires_grad = True
w2 = torch.Tensor([1.0]).double() ; w2.requires_grad = True

10

b = torch.Tensor([6.8813735870195432]).double() ; b.requires_grad = True
n = x1*w1 + x2*w2 + b
o = torch.tanh(n)

print(o.data.item())
o.backward()

print('---')
print('x2', x2.grad.item())
print('w2', w2.grad.item())
print('x1', x1.grad.item())
print('w1', w1.grad.item())

0.7071066904050358

x2 0.5000001283844369
w2 0.0
x1 -1.5000003851533106
w1 1.0000002567688737

[20]: print(x1)

tensor([2.], dtype=torch.float64, requires_grad=True)

[21]: print(x1.grad)

tensor([-1.5000], dtype=torch.float64)

2 MLP: Multi Layer Perceptron
2.1 Modélisation d’un neurone
Dessin issu de “neural networks: representation” de Jeremy Jordan.

11

https://www.jeremyjordan.me/intro-to-neural-networks/

Source: https://www.jeremyjordan.me/content/images/2018/01/single_neuron.jpg

Par défaut, dans la classe Neuron ci-dessous, on initialise les poids avec une valeur aléatoire (dis-
tribution de probabilité uniforme) comprise entre -1 et 1.

[22]: import random

class Neuron:

def __init__(self, nin):
self.w = [Value(random.uniform(-1,1), label=f'w{i}') for i in␣

↪range(nin)]
self.b = Value(random.uniform(-1,1), label='b')

def __call__(self, x):
tanh(w * x + b)
act = sum((wi*xi for wi, xi in zip(self.w, x)), self.b)
out = act.tanh() # Fonction d'activation
out.label = 'out'
return out

def parameters(self):
return self.w + [self.b]

[23]: n = Neuron(5)
n((0.2,0.2,0.3,0.4,0.5))

[23]: Value(data=-0.8514542857879747, label=out, grad=0.0)

12

https://www.jeremyjordan.me/content/images/2018/01/single_neuron.jpg

[24]: n.parameters()

[24]: [Value(data=-0.8039598110691475, label=w0, grad=0.0),
Value(data=0.5874188380995722, label=w1, grad=0.0),
Value(data=-0.2589112549460806, label=w2, grad=0.0),
Value(data=-0.9122108656376093, label=w3, grad=0.0),
Value(data=0.24446900172649078, label=w4, grad=0.0),
Value(data=-0.8977855630313485, label=b, grad=0.0)]

[25]: draw_dot(n((0.2,0.2,0.3,0.4,0.5)))
[25]:

 data -0.9411 grad 0.0000

+

+

data 0.3000 grad 0.0000

*

w1 data 0.5874 grad 0.0000 *

w2 data -0.2589 grad 0.0000 data -0.0777 grad 0.0000

w3 data -0.9122 grad 0.0000

*

 data -1.0188 grad 0.0000

+

data -0.1608 grad 0.0000

+

*

w4 data 0.2445 grad 0.0000

*

data 0.4000 grad 0.0000 data -0.3649 grad 0.0000

b data -0.8978 grad 0.0000

 data -1.3837 grad 0.0000

+

 data 0.5000 grad 0.0000 data 0.1222 grad 0.0000

 data -1.2614 grad 0.0000 tanh

 data 0.2000 grad 0.0000

w0 data -0.8040 grad 0.0000

out data -0.8515 grad 0.0000

 data 0.2000 grad 0.0000

 data -1.0586 grad 0.0000

data 0.1175 grad 0.0000

2.2 Couche de neurones
[26]: class Layer:

def __init__(self, nin, nout):
self.neurons = [Neuron(nin) for _ in range(nout)]

def __call__(self, x):
outs = [n(x) for n in self.neurons]
return outs[0] if len(outs) == 1 else outs

def parameters(self):
return [p for neuron in self.neurons for p in neuron.parameters()]

[27]: l = Layer(2,3)
l((0.2,0.3))

[27]: [Value(data=0.3213930604635117, label=out, grad=0.0),
Value(data=0.31464203078000524, label=out, grad=0.0),
Value(data=-0.858850222206831, label=out, grad=0.0)]

2.3 Multicouches
[28]: class MLP:

def __init__(self, nin, nouts):
sz = [nin] + nouts
self.layers = [Layer(sz[i], sz[i+1]) for i in range(len(nouts))]

13

def __call__(self, x):
for layer in self.layers:

x = layer(x)
return x

def parameters(self):
return [p for layer in self.layers for p in layer.parameters()]

[29]: x = [2.0, 3.0, -1.0]
n = MLP(3, [4, 4, 1])
n(x)

[29]: Value(data=0.5428321376017807, label=out, grad=0.0)

https://cs231n.github.io/neural-networks-1/

Source: https://cs231n.github.io/assets/nn1/neural_net2.jpeg

[30]: draw_dot(n(x))
[30]:

 data -0.5907 grad 0.0000

+

+

 data -0.5310 grad 0.0000*

 data -1.1216 grad 0.0000

+ data -0.1114 grad 0.0000*

 data -1.2330 grad 0.0000

+

data 0.8123 grad 0.0000 +*

 data -0.3399 grad 0.0000*

 data -1.5729 grad 0.0000 tanh

data 3.0000 grad 0.0000

*

out data -0.9175 grad 0.0000

*

 data -2.3252 grad 0.0000

+

 data -0.8101 grad 0.0000

+

*

data 1.5336 grad 0.0000

 data -1.7146 grad 0.0000 +

 data -0.7916 grad 0.0000

+

data 0.1814 grad 0.0000

*

 data -1.0000 grad 0.0000 *

 data -1.5332 grad 0.0000 +

 data -0.7134 grad 0.0000

 data -0.0586 grad 0.0000

*

 data -1.5051 grad 0.0000
tanh

 data -1.5919 grad 0.0000

+

out data -0.9061 grad 0.0000

*

*

*

 data 0.1944 grad 0.0000*

data 2.0000 grad 0.0000

*

 data -1.3975 grad 0.0000 tanh

 data -0.6221 grad 0.0000

+

out data -0.8848 grad 0.0000 *

 data 0.0230 grad 0.0000

+

*

 data -0.0593 grad 0.0000 +

 data 0.9275 grad 0.0000
+

data 3.0000 grad 0.0000 *

w0 data 0.4062 grad 0.0000

 data -2.9253 grad 0.0000

 data 0.1562 grad 0.0000*

 data 1.0837 grad 0.0000 +

 data -2.9845 grad 0.0000

+

 data -1.0000 grad 0.0000

*

 data 0.2767 grad 0.0000

 data 1.3604 grad 0.0000

+

 data -0.3086 grad 0.0000

w1 data -0.7751 grad 0.0000

 data -3.2931 grad 0.0000 tanh

w2 data 0.7134 grad 0.0000

 data -0.7522 grad 0.0000

 data 0.6082 grad 0.0000 tanh

out data -0.9972 grad 0.0000

*

*b data 0.7213 grad 0.0000

out data 0.5428 grad 0.0000

w0 data -0.3111 grad 0.0000

data 2.0000 grad 0.0000

*

w1 data -0.9751 grad 0.0000

data 0.3195 grad 0.0000 +

w2 data 0.3086 grad 0.0000

 data 1.1849 grad 0.0000 +

b data 0.5629 grad 0.0000

data 3.0000 grad 0.0000

* data 0.3631 grad 0.0000

w0 data 0.1597 grad 0.0000

 data 1.5480 grad 0.0000 +

w1 data 0.1210 grad 0.0000

w2 data 0.8124 grad 0.0000

* data -1.0000 grad 0.0000 data -0.8124 grad 0.0000b data 0.8655 grad 0.0000

 data 0.7356 grad 0.0000

tanh

w0 data -0.3484 grad 0.0000

*

out data 0.6265 grad 0.0000 *

*

w1 data 0.4790 grad 0.0000

*

w2 data 0.6168 grad 0.0000

*

data 2.0000 grad 0.0000

 data -0.6968 grad 0.0000 +

b data -0.9786 grad 0.0000

w0 data 0.8916 grad 0.0000

 data -1.6754 grad 0.0000 +

w1 data -0.9839 grad 0.0000

 data 3.0000 grad 0.0000

 data 2.0000 grad 0.0000

w2 data -0.8065 grad 0.0000

 data 1.4370 grad 0.0000

 data -0.2384 grad 0.0000

+

w3 data 0.6833 grad 0.0000

*

b data 0.7788 grad 0.0000

+

 data -1.0000 grad 0.0000 data -0.6168 grad 0.0000

w0 data 0.2294 grad 0.0000

 data -0.8552 grad 0.0000 tanh

w1 data 0.2730 grad 0.0000

out data -0.6938 grad 0.0000

*

w2 data -0.8702 grad 0.0000 data -0.8079 grad 0.0000

w3 data 0.4821 grad 0.0000

 data -0.0291 grad 0.0000 +

b data -0.7638 grad 0.0000

+

data 0.9812 grad 0.0000

w0 data 0.5015 grad 0.0000

 data 0.9521 grad 0.0000

+

w1 data 0.5324 grad 0.0000

 data -0.5053 grad 0.0000

w2 data -0.1778 grad 0.0000

 data 0.4469 grad 0.0000

+

w3 data 0.4899 grad 0.0000

 data -0.4741 grad 0.0000

b data -0.1363 grad 0.0000

 data -0.0272 grad 0.0000 tanh

w0 data 0.8941 grad 0.0000

out data -0.0272 grad 0.0000

w1 data -0.1819 grad 0.0000

 data -0.2079 grad 0.0000

w2 data -0.0936 grad 0.0000

 data -0.9716 grad 0.0000 +

w3 data -0.2801 grad 0.0000

 data -0.2722 grad 0.0000

b data -0.9046 grad 0.0000

w0 data -0.8468 grad 0.0000

 data -1.2438 grad 0.0000

+ data -0.5452 grad 0.0000

w1 data -0.1607 grad 0.0000

 data -1.7890 grad 0.0000

+

w2 data -0.3016 grad 0.0000

 data -0.3345 grad 0.0000

w3 data 0.8501 grad 0.0000

b data 0.9045 grad 0.0000 data -2.1235 grad 0.0000 tanh out data -0.9718 grad 0.0000

 data -0.4544 grad 0.0000

14

https://cs231n.github.io/assets/nn1/neural_net2.jpeg

3 Apprentissage
3.1 Définition d’une fonction de perte

[31]: # Jeu d'entrainement
xs = [

[2.0, 3.0, -1.0], # exemple 1
[3.0, -1.0, 0.5], # exemple 2
[0.5, 1.0, 1.0], # exemple 3
[1.0, 1.0, -1.0], # exemple 4

]
ys = [1.0, -1.0, -1.0, 1.0] # desired targets
ypred = [n(x) for x in xs] # sortie
ypred

[31]: [Value(data=0.5428321376017807, label=out, grad=0.0),
Value(data=0.8825476224698201, label=out, grad=0.0),
Value(data=0.24590509211930503, label=out, grad=0.0),
Value(data=0.4050940086029426, label=out, grad=0.0)]

À ce stade, les valeurs de sortie du réseau ne sont pas bonnes, ce qui est normal car nous n’avons
réglé aucun paramètre. Nous allons définir une fonction que nous allons chercher à optimiser, ici à
minimiser: une fonction de perte utilisant l’erreur quadratique moyenne.

[32]: [(yout - ygt)**2 for ygt, yout in zip(ys, ypred)]

[32]: [Value(data=0.20900245440975715, label=, grad=0.0),
Value(data=3.5439855508667724, label=, grad=0.0),
Value(data=1.5522794985688142, label=, grad=0.0),
Value(data=0.3539131386001157, label=, grad=0.0)]

[33]: loss = sum((yout - ygt)**2 for ygt, yout in zip(ys, ypred))
loss

[33]: Value(data=5.65918064244546, label=, grad=0.0)

C’est cette valeur que l’on va chercher à minimiser.

3.2 Reprise des étapes: apprentissage manuel

[45]: # Architecture de notre réseau
n = MLP(3, [4, 4, 1])

Données exemple
xs = [

[2.0, 3.0, -1.0], # exemple 1
[3.0, -1.0, 0.5], # exemple 2
[0.5, 1.0, 1.0], # exemple 3
[1.0, 1.0, -1.0], # exemple 4

15

]

Cible
ys = [1.0, -1.0, -1.0, 1.0] # desired targets

[46]: # forward pass
ypred = [n(x) for x in xs]
loss = sum((yout - ygt)**2 for ygt, yout in zip(ys, ypred))

backward pass
for p in n.parameters():

p.grad = 0.0
loss.backward()

update
for p in n.parameters():

p.data += -0.1 * p.grad

print(list(map(lambda x: x.data, ypred)))
print(loss.data)

[0.4020920928583902, -0.1894861802920144, -0.05922087190814421,
0.2550894154311267]
2.4543836642161017

3.3 Automatisation de l’apprentissage

[49]: for k in range(100):
forward pass
ypred = [n(x) for x in xs]
loss = sum((yout - ygt)**2 for ygt, yout in zip(ys, ypred))

backward pass
for p in n.parameters():

p.grad = 0.0
loss.backward()

update
for p in n.parameters():

p.data += -0.1 * p.grad

print(f"{k} loss={loss.data} {list(map(lambda x: x.data, ypred))}")

0 loss=0.00027815740115110454 [0.9947032216496835, -0.9913560575993751,
-0.9900334740555171, 0.9912792110086672]
1 loss=0.0002778910086773501 [0.9947058577753756, -0.9913601868709156,
-0.9900382219334123, 0.9912833679881876]
2 loss=0.0002776251162239342 [0.9947084901418856, -0.9913643103734111,

16

-0.9900429631794665, 0.991287519178031]
3 loss=0.0002773597223959083 [0.9947111187580135, -0.9913684281201739,
-0.9900476978089977, 0.9912916645915285]
4 loss=0.00027709482580351365 [0.9947137436325303, -0.9913725401244734,
-0.990052425837274, 0.9912958042419678]
5 loss=0.0002768304250621039 [0.9947163647741786, -0.9913766463995367,
-0.9900571472795149, 0.9912999381425945]
6 loss=0.0002765665187921489 [0.9947189821916727, -0.9913807469585485,
-0.9900618621508906, 0.9913040663066116]
7 loss=0.00027630310561922066 [0.9947215958936985, -0.9913848418146511,
-0.9900665704665226, 0.9913081887471796]
8 loss=0.00027604018417393545 [0.9947242058889137, -0.9913889309809447,
-0.9900712722414844, 0.9913123054774174]
9 loss=0.00027577775309196634 [0.9947268121859485, -0.9913930144704878,
-0.9900759674908006, 0.9913164165104016]
10 loss=0.00027551581101400513 [0.9947294147934046, -0.9913970922962964,
-0.9900806562294483, 0.9913205218591671]
11 loss=0.0002752543565857338 [0.9947320137198563, -0.991401164471346,
-0.9900853384723558, 0.9913246215367074]
12 loss=0.0002749933884578092 [0.9947346089738499, -0.99140523100857,
-0.9900900142344047, 0.9913287155559745]
13 loss=0.00027473290528583504 [0.9947372005639045, -0.991409291920861,
-0.9900946835304283, 0.9913328039298793]
14 loss=0.0002744729057303457 [0.9947397884985115, -0.99141334722107,
-0.9900993463752135, 0.9913368866712914]
15 loss=0.0002742133884567916 [0.9947423727861351, -0.9914173969220075,
-0.9901040027834986, 0.9913409637930397]
16 loss=0.00027395435213548193 [0.9947449534352122, -0.9914214410364433,
-0.9901086527699767, 0.9913450353079123]
17 loss=0.000273695795441608 [0.9947475304541527, -0.9914254795771064,
-0.9901132963492928, 0.9913491012286568]
18 loss=0.00027343771705518716 [0.9947501038513393, -0.9914295125566853,
-0.9901179335360464, 0.9913531615679803]
19 loss=0.00027318011566106204 [0.9947526736351281, -0.9914335399878288,
-0.9901225643447896, 0.9913572163385497]
20 loss=0.0002729229899488548 [0.9947552398138483, -0.9914375618831455,
-0.9901271887900291, 0.991361265552992]
21 loss=0.00027266633861298164 [0.9947578023958024, -0.9914415782552033,
-0.9901318068862255, 0.991365309223894]
22 loss=0.00027241016035259026 [0.9947603613892664, -0.9914455891165311,
-0.9901364186477934, 0.9913693473638031]
23 loss=0.0002721544538715773 [0.9947629168024897, -0.9914495944796184,
-0.9901410240891017, 0.9913733799852267]
24 loss=0.00027189921787852537 [0.9947654686436956, -0.9914535943569147,
-0.9901456232244743, 0.9913774071006332]
25 loss=0.000271644451086726 [0.9947680169210811, -0.9914575887608305,
-0.9901502160681893, 0.9913814287224514]
26 loss=0.0002713901522141172 [0.9947705616428171, -0.9914615777037371,

17

-0.9901548026344803, 0.9913854448630712]
27 loss=0.0002711363199832938 [0.9947731028170481, -0.9914655611979671,
-0.9901593829375357, 0.9913894555348436]
28 loss=0.00027088295312146973 [0.9947756404518935, -0.9914695392558139,
-0.9901639569914994, 0.9913934607500805]
29 loss=0.0002706300503604721 [0.9947781745554459, -0.9914735118895325,
-0.9901685248104705, 0.9913974605210554]
30 loss=0.00027037761043668615 [0.9947807051357732, -0.9914774791113397,
-0.9901730864085039, 0.9914014548600034]
31 loss=0.00027012563209108295 [0.9947832322009169, -0.9914814409334132,
-0.9901776417996107, 0.9914054437791211]
32 loss=0.0002698741140691602 [0.9947857557588934, -0.9914853973678934,
-0.9901821909977574, 0.991409427290567]
33 loss=0.0002696230551209477 [0.9947882758176937, -0.9914893484268822,
-0.990186734016867, 0.9914134054064616]
34 loss=0.0002693724540009601 [0.9947907923852835, -0.9914932941224436,
-0.9901912708708193, 0.9914173781388874]
35 loss=0.00026912230946821435 [0.994793305469603, -0.991497234466604,
-0.9901958015734496, 0.9914213454998895]
36 loss=0.00026887262028616176 [0.994795815078568, -0.9915011694713524,
-0.990200326138551, 0.991425307501475]
37 loss=0.0002686233852227112 [0.9947983212200685, -0.9915050991486403,
-0.9902048445798729, 0.9914292641556139]
38 loss=0.0002683746030501911 [0.9948008239019703, -0.9915090235103813,
-0.9902093569111221, 0.991433215474239]
39 loss=0.0002681262725453214 [0.9948033231321142, -0.9915129425684531,
-0.9902138631459623, 0.9914371614692457]
40 loss=0.0002678783924892086 [0.9948058189183161, -0.9915168563346958,
-0.9902183632980147, 0.9914411021524925]
41 loss=0.0002676309616673282 [0.9948083112683676, -0.991520764820912,
-0.9902228573808582, 0.9914450375358014]
42 loss=0.00026738397886947555 [0.9948108001900355, -0.9915246680388691,
-0.9902273454080298, 0.9914489676309572]
43 loss=0.0002671374428897925 [0.9948132856910629, -0.9915285660002966,
-0.9902318273930236, 0.9914528924497088]
44 loss=0.00026689135252670835 [0.9948157677791677, -0.9915324587168886,
-0.9902363033492926, 0.9914568120037681]
45 loss=0.00026664570658295 [0.9948182464620443, -0.9915363462003022,
-0.9902407732902473, 0.9914607263048112]
46 loss=0.00026640050386550387 [0.9948207217473627, -0.9915402284621586,
-0.9902452372292573, 0.9914646353644778]
47 loss=0.00026615574318559365 [0.9948231936427689, -0.9915441055140438,
-0.9902496951796503, 0.991468539194372]
48 loss=0.0002659114233586779 [0.9948256621558853, -0.9915479773675072,
-0.9902541471547133, 0.9914724378060616]
49 loss=0.0002656675432044268 [0.9948281272943102, -0.9915518440340627,
-0.9902585931676916, 0.9914763312110793]
50 loss=0.0002654241015467078 [0.9948305890656182, -0.9915557055251883,

18

-0.9902630332317898, 0.9914802194209219]
51 loss=0.0002651810972135345 [0.9948330474773605, -0.9915595618523279,
-0.9902674673601719, 0.9914841024470509]
52 loss=0.0002649385290371021 [0.9948355025370644, -0.9915634130268884,
-0.9902718955659612, 0.9914879803008926]
53 loss=0.00026469639585372163 [0.9948379542522342, -0.9915672590602432,
-0.9902763178622406, 0.991491852993838]
54 loss=0.0002644546965038287 [0.9948404026303508, -0.9915710999637297,
-0.9902807342620525, 0.9914957205372436]
55 loss=0.00026421342983196637 [0.9948428476788715, -0.9915749357486506,
-0.9902851447783994, 0.9914995829424305]
56 loss=0.00026397259468673195 [0.9948452894052309, -0.9915787664262744,
-0.9902895494242441, 0.9915034402206855]
57 loss=0.0002637321899208108 [0.9948477278168403, -0.9915825920078347,
-0.9902939482125089, 0.9915072923832606]
58 loss=0.00026349221439092536 [0.994850162921088, -0.9915864125045307,
-0.9902983411560771, 0.9915111394413736]
59 loss=0.0002632526669578241 [0.9948525947253397, -0.9915902279275273,
-0.9903027282677919, 0.9915149814062079]
60 loss=0.0002630135464862588 [0.994855023236938, -0.9915940382879552,
-0.990307109560458, 0.9915188182889126]
61 loss=0.0002627748518449845 [0.9948574484632029, -0.9915978435969114,
-0.9903114850468401, 0.9915226501006031]
62 loss=0.0002625365819067164 [0.994859870411432, -0.9916016438654587,
-0.9903158547396645, 0.9915264768523607]
63 loss=0.0002622987355481437 [0.9948622890889002, -0.9916054391046263,
-0.990320218651618, 0.991530298555233]
64 loss=0.0002620613116498816 [0.9948647045028599, -0.9916092293254094,
-0.9903245767953495, 0.9915341152202339]
65 loss=0.00026182430909647543 [0.9948671166605414, -0.9916130145387706,
-0.9903289291834682, 0.991537926858344]
66 loss=0.0002615877267763755 [0.9948695255691526, -0.991616794755638,
-0.9903332758285457, 0.9915417334805103]
67 loss=0.00026135156358190526 [0.9948719312358792, -0.9916205699869077,
-0.9903376167431156, 0.9915455350976468]
68 loss=0.0002611158184092889 [0.994874333667885, -0.9916243402434415,
-0.9903419519396724, 0.9915493317206341]
69 loss=0.00026088049015857975 [0.9948767328723116, -0.991628105536069,
-0.9903462814306735, 0.9915531233603202]
70 loss=0.0002606455777336732 [0.9948791288562789, -0.9916318658755867,
-0.9903506052285381, 0.99155691002752]
71 loss=0.00026041108004229614 [0.9948815216268849, -0.9916356212727587,
-0.9903549233456476, 0.9915606917330158]
72 loss=0.0002601769959959707 [0.9948839111912059, -0.9916393717383161,
-0.990359235794346, 0.9915644684875572]
73 loss=0.00025994332451001576 [0.9948862975562964, -0.9916431172829575,
-0.99036354258694, 0.9915682403018614]
74 loss=0.00025971006450350737 [0.9948886807291896, -0.9916468579173495,

19

-0.9903678437356993, 0.9915720071866134]
75 loss=0.0002594772148992945 [0.9948910607168969, -0.9916505936521265,
-0.9903721392528556, 0.9915757691524658]
76 loss=0.00025924477462394707 [0.9948934375264088, -0.9916543244978904,
-0.990376429150605, 0.9915795262100391]
77 loss=0.0002590127426077744 [0.994895811164694, -0.9916580504652116,
-0.9903807134411053, 0.9915832783699219]
78 loss=0.0002587811177847791 [0.9948981816387003, -0.9916617715646288,
-0.9903849921364788, 0.991587025642671]
79 loss=0.0002585498990926639 [0.9949005489553541, -0.991665487806648,
-0.9903892652488109, 0.9915907680388114]
80 loss=0.0002583190854728064 [0.994902913121561, -0.9916691992017448,
-0.9903935327901501, 0.9915945055688365]
81 loss=0.00025808867587022986 [0.9949052741442054, -0.9916729057603626,
-0.9903977947725098, 0.9915982382432085]
82 loss=0.00025785866923361744 [0.994907632030151, -0.9916766074929136,
-0.9904020512078662, 0.9916019660723578]
83 loss=0.00025762906451527224 [0.9949099867862405, -0.991680304409779,
-0.99040630210816, 0.991605689066684]
84 loss=0.0002573998606711118 [0.994912338419296, -0.9916839965213087,
-0.9904105474852961, 0.9916094072365551]
85 loss=0.0002571710566606487 [0.994914686936119, -0.9916876838378215,
-0.9904147873511436, 0.9916131205923086]
86 loss=0.00025694265144697635 [0.9949170323434902, -0.9916913663696055,
-0.9904190217175362, 0.9916168291442506]
87 loss=0.00025671464399674884 [0.99491937464817, -0.9916950441269184,
-0.9904232505962718, 0.9916205329026572]
88 loss=0.00025648703328018396 [0.9949217138568983, -0.9916987171199864,
-0.9904274739991137, 0.991624231877773]
89 loss=0.00025625981827102136 [0.9949240499763948, -0.9917023853590058,
-0.9904316919377895, 0.9916279260798128]
90 loss=0.000256032997946528 [0.9949263830133587, -0.9917060488541427,
-0.9904359044239917, 0.9916316155189605]
91 loss=0.00025580657128748024 [0.9949287129744692, -0.991709707615532,
-0.9904401114693784, 0.9916353002053699]
92 loss=0.0002555805372781285 [0.9949310398663853, -0.9917133616532797,
-0.9904443130855728, 0.9916389801491646]
93 loss=0.0002553548949062144 [0.9949333636957461, -0.9917170109774607,
-0.9904485092841633, 0.9916426553604384]
94 loss=0.000255129643162935 [0.9949356844691708, -0.9917206555981201,
-0.9904527000767042, 0.9916463258492546]
95 loss=0.0002549047810429273 [0.9949380021932585, -0.9917242955252741,
-0.9904568854747148, 0.9916499916256472]
96 loss=0.0002546803075442763 [0.9949403168745884, -0.9917279307689078,
-0.9904610654896808, 0.99165365269962]
97 loss=0.00025445622166846534 [0.9949426285197206, -0.9917315613389777,
-0.9904652401330535, 0.9916573090811478]
98 loss=0.0002542325224203795 [0.9949449371351949, -0.9917351872454109,

20

-0.9904694094162505, 0.9916609607801753]
99 loss=0.0002540092088083135 [0.9949472427275319, -0.991738808498104,
-0.9904735733506552, 0.9916646078066182]

[]:

21

	micrograd: construction d'une bibliothèque de rétropropagation du gradient (partie 2)
	Amélioration de classe Value
	Rappels
	Problème de non-cumul des gradients
	Ajout de nouvelles fonctions

	MLP: Multi Layer Perceptron
	Modélisation d'un neurone
	Couche de neurones
	Multicouches

	Apprentissage
	Définition d'une fonction de perte
	Reprise des étapes: apprentissage manuel
	Automatisation de l'apprentissage

