
micrograd_1

January 3, 2026

1 micrograd: construction d’une bibliothèque de rétropropagation
du gradient (partie 1)

Ce notebook est dérivé du travail d’Andrej Karpathy et reprend pas à pas les étapes exposées dans
sa première séance de cours sur la construction d’un outil en Python pour le calcul du gradient et
sa propagation arrière:

The spelled-out intro to neural networks and backpropagation: building micrograd

Voici les ressources originales associées à la vidéo youtube d’Andrej:

• micrograd on github: https://github.com/karpathy/micrograd
• notebook original: https://github.com/karpathy/nn-zero-to-

hero/tree/master/lectures/micrograd
• exercices: https://colab.research.google.com/drive/1FPTx1RXtBfc4MaTkf7viZZD4U2F9gtKN?usp=sharing

1.1 Importation de paquetages tiers

[1]: # Imports de la librairie standard Python
import math

[2]: # Imports spécifiques (doivent être présent dans l'environnement Python de ce␣
↪notebook)

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from graphviz import Digraph

1.2 Introduction
[3]: # Définissons une fonction y <- f(x) arbitraire

def f(x):
return 3 * x**2 - 4*x + 5

[4]: f(3.0)

[4]: 20.0

1

https://karpathy.ai/
https://www.youtube.com/watch?v=VMj-3S1tku0&list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

[5]: # Tableaux de points entre -5 et 5 pour les valeurs de x, avec un pas de 0.25
xs = np.arange(-5, 5, 0.25)
xs

[5]: array([-5. , -4.75, -4.5 , -4.25, -4. , -3.75, -3.5 , -3.25, -3. ,
-2.75, -2.5 , -2.25, -2. , -1.75, -1.5 , -1.25, -1. , -0.75,
-0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 ,
1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75,
4. , 4.25, 4.5 , 4.75])

[6]: # Calcul des y pour ces points
ys = f(xs)
ys

[6]: array([100. , 91.6875, 83.75 , 76.1875, 69. , 62.1875,
55.75 , 49.6875, 44. , 38.6875, 33.75 , 29.1875,
25. , 21.1875, 17.75 , 14.6875, 12. , 9.6875,
7.75 , 6.1875, 5. , 4.1875, 3.75 , 3.6875,
4. , 4.6875, 5.75 , 7.1875, 9. , 11.1875,
13.75 , 16.6875, 20. , 23.6875, 27.75 , 32.1875,
37. , 42.1875, 47.75 , 53.6875])

[7]: # Traçé de la parabole
plt.plot(xs,ys)

[7]: [<matplotlib.lines.Line2D at 0x10e758980>]

2

1.3 Dérivations
1.3.1 Pente de la tangente

𝑡𝑥(ℎ) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

Taux d’accroissement: comment une fonction répond-elle quand on accroit 𝑥 d’un petit pas ℎ?

[8]: def pente(fct, x, h):
print(f"f(x) = {fct(x)}")
print(f"f(x + h) = {fct(x + h)}")
print(f"f(x + h) - f(x) = {fct(x + h) - fct(x)}")
print(f"(f(x + h) - f(x)) / h= {(fct(x + h) - fct(x)) / h}")
return (fct(x + h) - fct(x)) / h

[9]: f = lambda x: 3 * x**2 - 4*x + 5
pente(f, 3.0, 0.00000001)

f(x) = 20.0
f(x + h) = 20.00000014
f(x + h) - f(x) = 1.400000009255109e-07
(f(x + h) - f(x)) / h= 14.00000009255109

3

https://fr.wikipedia.org/wiki/Dérivée

[9]: 14.00000009255109

[10]: pente(f, -3.0, 0.00000001)

f(x) = 44.0
f(x + h) = 43.999999779999996
f(x + h) - f(x) = -2.200000039920269e-07
(f(x + h) - f(x)) / h= -22.00000039920269

[10]: -22.00000039920269

[11]: pente(f, 2/3, 0.00000001)

f(x) = 3.666666666666667
f(x + h) = 3.666666666666667
f(x + h) - f(x) = 0.0
(f(x + h) - f(x)) / h= 0.0

[11]: 0.0

1.3.2 Expression arithmétique plus complexe

[12]: # Prenons une expression arithmétique plus complexe
a = 2.0
b = -3.0
c = 10.0
f = lambda x, y, z: x*y + z
print(f(a,b,c))

4.0

[13]: # Dérivée de f par rapport à a, b, c?
h = 0.0001
Entrées
a = 2.0
b = -3.0
c = 10.0

[14]: # Dérivée de f par rapport à a
f_1 = f(a, b, c)
f_2 = f(a+h, b, c)
print(f_1)
print(f_2)
print("pente", (f_2-f_1)/h)

4.0
3.999699999999999
pente -3.000000000010772

4

[15]: # Dérivée de f par rapport à b
f_1 = f(a, b, c)
f_2 = f(a, b+h, c)
print(f_1)
print(f_2)
print("pente", (f_2-f_1)/h)

4.0
4.0002
pente 2.0000000000042206

[16]: # Dérivée de f par rapport à c
f_1 = f(a, b, c)
f_2 = f(a, b, c+h)
print(f_1)
print(f_2)
print("pente", (f_2-f_1)/h)

4.0
4.0001
pente 0.9999999999976694

1.4 Création d’une classe Value
1.4.1 Première version

[17]: class Value:

def __init__(self, data):
self.data = data

def __repr__(self):
return f"Value(data={self.data})"

[18]: a = Value(2.0)
a

[18]: Value(data=2.0)

[19]: b = Value(-3.0)
b

[19]: Value(data=-3.0)

5

1.4.2 Addition

[20]: class Value:

def __init__(self, data):
self.data = data

def __repr__(self):
return f"Value(data={self.data})"

def __add__(self, other):
return self.__class__(self.data + other.data)

[21]: a = Value(2.0)
b = Value(-3.0)
a + b

[21]: Value(data=-1.0)

1.4.3 Multiplication

[21]: class Value:

def __init__(self, data):
self.data = data

def __repr__(self):
return f"Value(data={self.data})"

def __add__(self, other):
return self.__class__(self.data + other.data)

def __mul__(self, other):
return self.__class__(self.data * other.data)

[22]: a = Value(2.0)
b = Value(-3.0)
a * b

[22]: Value(data=-6.0)

[23]: c = Value(10.0)
a*b + c

[23]: Value(data=4.0)

6

1.4.4 Construction d’un graphe correspondant à l’expression

[24]: class Value:

def __init__(self, data, children=(), op=''):
self.data = data
self._prev = set(children)
self._op = op

def __repr__(self):
return f"Value(data={self.data})"

def __add__(self, other):
return self.__class__(self.data + other.data, children=(self, other),␣

↪op='+')

def __mul__(self, other):
return self.__class__(self.data * other.data, children=(self, other),␣

↪op='*')

[25]: a = Value(2.0)
b = Value(-3.0)
c = Value(10.0)
d = a * b + c
d

[25]: Value(data=4.0)

[26]: d._prev

[26]: {Value(data=-6.0), Value(data=10.0)}

1.4.5 Affichage du graphe avec graphviz

[30]: a = Value(2.0)
b = Value(-3.0)
c = Value(10.0)
d = a * b + c

[31]: def trace(root):
builds a set of all nodes and edges in a graph
nodes, edges = set(), set()
def build(v):

if v not in nodes:
nodes.add(v)
for child in v._prev:
edges.add((child, v))
build(child)

7

build(root)
return nodes, edges

def draw_dot(root):
dot = Digraph(format='svg', graph_attr={'rankdir': 'LR'}) # LR = left to right

nodes, edges = trace(root)
for n in nodes:
uid = str(id(n))
for any value in the graph, create a rectangular ('record') node for it
dot.node(name = uid, label = "{ data %.4f }" % n.data, shape='record')
if n._op:

if this value is a result of some operation, create an op node for it
dot.node(name = uid + n._op, label = n._op)
and connect this node to it
dot.edge(uid + n._op, uid)

for n1, n2 in edges:
connect n1 to the op node of n2
dot.edge(str(id(n1)), str(id(n2)) + n2._op)

return dot

[32]: draw_dot(d)
[32]:

data -6.0000

+

*

data 2.0000

data -3.0000

data 10.0000

data 4.0000

1.4.6 Amélioration de l’affichage avec un label

[33]: class Value:

def __init__(self, data, children=(), op='', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label

def __repr__(self):

8

return f"Value(data={self.data}, label={self.label})"

def __add__(self, other):
return self.__class__(self.data + other.data, children=(self, other),␣

↪op='+')

def __mul__(self, other):
return self.__class__(self.data * other.data, children=(self, other),␣

↪op='*')

[34]: def draw_dot(root):
dot = Digraph(format='svg', graph_attr={'rankdir': 'LR'}) # LR = left to right

nodes, edges = trace(root)
for n in nodes:
uid = str(id(n))
for any value in the graph, create a rectangular ('record') node for it
dot.node(name = uid, label = "{ %s | data %.4f }" % (n.label, n.data),␣

↪shape='record')
if n._op:

if this value is a result of some operation, create an op node for it
dot.node(name = uid + n._op, label = n._op)
and connect this node to it
dot.edge(uid + n._op, uid)

for n1, n2 in edges:
connect n1 to the op node of n2
dot.edge(str(id(n1)), str(id(n2)) + n2._op)

return dot

[35]: a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a * b
e.label = 'e'
d = e + c
d.label = 'd'

[36]: draw_dot(d)
[36]:

d data 4.0000+

e data -6.0000*

c data 10.0000

a data 2.0000

b data -3.0000

9

1.4.7 Fonction objectif: fonction de perte

[37]: a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a * b
e.label = 'e'
d = e + c
d.label = 'd'
f = Value(-2.0, label='f')
L = d * f
L.label = 'L'
L

[37]: Value(data=-8.0, label=L)

[38]: draw_dot(L)
[38]:

e data -6.0000

+

*

f data -2.0000

*c data 10.0000

a data 2.0000

L data -8.0000

d data 4.0000

b data -3.0000

À ce stade, nous pouvons faire une passe avant (forward pass), dans une expression mathématique.
Nous voulons maintenant pouvoir faire une propagation arrière du gradient, à partir de 𝐿, pour
déterminer les gradients sur les chemins du graphe en remontant. On va donc calculer les dérivées
de chaque noeud par rapport à 𝐿.

1.5 Calcul des gradients à la main
1.5.1 Stockage des gradients dans Value

[39]: class Value:

def __init__(self, data, children=(), op='', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0

10

def __repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

def __add__(self, other):
return self.__class__(self.data + other.data, children=(self, other),␣

↪op='+')

def __mul__(self, other):
return self.__class__(self.data * other.data, children=(self, other),␣

↪op='*')

Affichage du gradient dans les noeuds du graphe:

[2]: def draw_dot(root):
dot = Digraph(format='svg', graph_attr={'rankdir': 'LR'}) # LR = left to right

nodes, edges = trace(root)
for n in nodes:
uid = str(id(n))
for any value in the graph, create a rectangular ('record') node for it
dot.node(name = uid, label = "{ %s | data %.4f | grad %.4f }" % (n.label, n.

↪data, n.grad), shape='record')
if n._op:

if this value is a result of some operation, create an op node for it
dot.node(name = uid + n._op, label = n._op)
and connect this node to it
dot.edge(uid + n._op, uid)

for n1, n2 in edges:
connect n1 to the op node of n2
dot.edge(str(id(n1)), str(id(n2)) + n2._op)

return dot

[3]: a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a * b
e.label = 'e'
d = e + c
d.label = 'd'
f = Value(-2.0, label='f')
L = d * f
L.label = 'L'
L

11

NameError Traceback (most recent call last)
Cell In[3], line 1
----> 1 a = Value(2.0, label='a')

2 b = Value(-3.0, label='b')
3 c = Value(10.0, label='c')

NameError: name 'Value' is not defined

[42]: draw_dot(L)
[42]:

a data 2.0000 grad 0.0000

*

L data -8.0000 grad 0.0000*c data 10.0000 grad 0.0000

+

e data -6.0000 grad 0.0000

f data -2.0000 grad 0.0000

d data 4.0000 grad 0.0000b data -3.0000 grad 0.0000

1.5.2 Jouons avec les dérivées

[4]: def playground():

h = 0.001

a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a * b
e.label = 'e'
d = e + c
d.label = 'd'
f = Value(-2.0, label='f')
L = d * f
L.label = 'L'
L1 = L.data

a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a * b
e.label = 'e'
#e.data += h
d = e + c
d.label = 'd'
#d.data += h
f = Value(-2.0, label='f')
#f.data += h

12

L = d * f
L.label = 'L'
L2 = L.data
L2 = L.data + h

print((L2-L1)/h)

playground()

NameError Traceback (most recent call last)
Cell In[4], line 35

31 L2 = L.data + h
33 print((L2-L1)/h)

---> 35 playground()

Cell In[4], line 5, in playground()
1 def playground():
3 h = 0.001

----> 5 a = Value(2.0, label='a')
6 b = Value(-3.0, label='b')
7 c = Value(10.0, label='c')

NameError: name 'Value' is not defined

[51]: a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a * b
e.label = 'e'
d = e + c
d.label = 'd'
f = Value(-2.0, label='f')
L = d * f
L.label = 'L'
L.grad = 1

[52]: draw_dot(L)
[52]:

c data 10.0000 grad 0.0000

+ d data 4.0000 grad 0.0000

*

b data -3.0000 grad 0.0000

* e data -6.0000 grad 0.0000

a data 2.0000 grad 0.0000 f data -2.0000 grad 0.0000

L data -8.0000 grad 1.0000

13

[53]: d.grad = -2.0 # dL/dd = d(d*f)/dd = f
f.grad = 4.0 # dL/df = d(d*f)/df = d

[54]: draw_dot(L)
[54]:

c data 10.0000 grad 0.0000

+ d data 4.0000 grad -2.0000

*

b data -3.0000 grad 0.0000

* e data -6.0000 grad 0.0000

a data 2.0000 grad 0.0000 f data -2.0000 grad 4.0000

L data -8.0000 grad 1.0000

1.5.3 Propagation des gradients locaux: dérivation des fonctions composées (chain
rule)

𝑑𝑧
𝑑𝑥 = 𝑑𝑧

𝑑𝑦 ⋅ 𝑑𝑦
𝑑𝑥

[55]: # d = e + c
dd/dc = 1.0
dd/de = 1.0
(dérivées locales)
dL/dc = dL/dd * dd/dc = d.grad * 1.0
dL/de = dL/dd * dd/de = d.grad * 1.0
c.grad = d.grad
e.grad = d.grad

[56]: draw_dot(L)
[56]:

c data 10.0000 grad -2.0000

+ d data 4.0000 grad -2.0000

*

b data -3.0000 grad 0.0000

* e data -6.0000 grad -2.0000

a data 2.0000 grad 0.0000 f data -2.0000 grad 4.0000

L data -8.0000 grad 1.0000

[57]: # dL/de = -2.0
dL/da = dL/de * de/da
dL/db = dL/de * de/db
de/da = b = -3.0
de/db = a = 2.0
dL/da = -2.0 * -3.0
dL/db = -2.0 * 2.0
a.grad = d.grad * b.data
b.grad = d.grad * a.data

[58]: draw_dot(L)
[58]:

14

c data 10.0000 grad -2.0000

+ d data 4.0000 grad -2.0000

*

b data -3.0000 grad -4.0000

* e data -6.0000 grad -2.0000

a data 2.0000 grad 6.0000 f data -2.0000 grad 4.0000

L data -8.0000 grad 1.0000

[60]: a.data += 0.01 * a.grad
b.data += 0.01 * b.grad
c.data += 0.01 * c.grad
f.data += 0.01 * f.grad
d = a * b; d.label = 'd'
e = d + c; e.label = 'e'
L = e * f; L.label = 'L'
print(L)

Value(data=-6.586368000000001, label=L, grad=0.0)

1.6 Méthodes pour la propagation arrière automatique du gradient
1.6.1 Ajout d’une fonction tanh

tanh 𝑥 = sinh 𝑥
cosh 𝑥 = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 = 𝑒2𝑥 − 1
𝑒2𝑥 + 1

[61]: plt.plot(np.arange(-5,5,0.2), np.tanh(np.arange(-5,5,0.2))); plt.grid() #␣
↪Activation function (tanh or sigmoid)

15

[62]: class Value:

def __init__(self, data, children=(), op='', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0

def __repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

def __add__(self, other):
return self.__class__(self.data + other.data, children=(self, other),␣

↪op='+')

def __mul__(self, other):
return self.__class__(self.data * other.data, children=(self, other),␣

↪op='*')

def tanh(self):
x = self.data

16

t = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
return out

1.6.2 Implémentation d’un parcours arrière pour calculer les gradients (backward)

[63]: class Value:

def __init__(self, data, children=(), op='', label=''):
self.data = data
self._prev = set(children)
self._op = op
self.label = label
self.grad = 0.0
self._backward = lambda: None

def __repr__(self):
return f"Value(data={self.data}, label={self.label}, grad={self.grad})"

def __add__(self, other):
out = self.__class__(self.data + other.data, children=(self, other), op='+')
def _backward():

self.grad = out.grad
other.grad = out.grad

out._backward = _backward
return out

def __mul__(self, other):
out = self.__class__(self.data * other.data, children=(self, other), op='*')
def _backward():

self.grad = other.data * out.grad
other.grad = self.data * out.grad

out._backward = _backward
return out

def tanh(self):
x = self.data
t = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(t, children=(self,), op='tanh')
def _backward():

self.grad = (1 - t**2) * out.grad
out._backward = _backward
return out

Utilisation à la main:

17

[64]: a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a * b
e.label = 'e'
d = e + c
d.label = 'd'
f = Value(-2.0, label='f')
L = d * f
L.label = 'L'
L.grad = 1.0

[67]: draw_dot(L)
[67]:

e data -6.0000 grad 0.0000

+

*

d data 4.0000 grad 0.0000

*c data 10.0000 grad 0.0000 L data -8.0000 grad 1.0000

b data -3.0000 grad 0.0000

a data 2.0000 grad 0.0000

f data -2.0000 grad 0.0000

[68]: L._backward()

[69]: draw_dot(L)
[69]:

e data -6.0000 grad 0.0000

+

*

d data 4.0000 grad -2.0000

*c data 10.0000 grad 0.0000 L data -8.0000 grad 1.0000

b data -3.0000 grad 0.0000

a data 2.0000 grad 0.0000

f data -2.0000 grad 4.0000

[70]: d._backward()

[71]: draw_dot(L)
[71]:

e data -6.0000 grad -2.0000

+

*

d data 4.0000 grad -2.0000

*c data 10.0000 grad -2.0000 L data -8.0000 grad 1.0000

b data -3.0000 grad 0.0000

a data 2.0000 grad 0.0000

f data -2.0000 grad 4.0000

[72]: e._backward()

[73]: draw_dot(L)
[73]:

18

e data -6.0000 grad -2.0000

+

*

d data 4.0000 grad -2.0000

*c data 10.0000 grad -2.0000 L data -8.0000 grad 1.0000

b data -3.0000 grad -4.0000

a data 2.0000 grad 6.0000

f data -2.0000 grad 4.0000

On peut vérifier que les valeurs sont identiques à ce que nous avions calculé tout à l’heure à main.

1.6.3 Automatisation du calcul

On va ajouter à la classe Value une méthode backward qui permettra d’appeler dans en remontant
dans le graphe les méthodes _backward définies lors de la passe “forward” de construction du
graphe, capturant le calcul à effectuer ainsi que l’objet Value parent qui fournira son gradient.

On effectue un tri topologique sur les noeuds du graphe (tri possible car les graphes que nous
construisons sonr des DAG dans nos exemples), puis on applique en “remontant” _backward: le tri
topologique assure que les gradients nécessaires au calcul ont bien été calculés avant.

[76]: # Passer d'un mode manuel à une automatisation de la back propagation
Tri topologique du DAG de l'expression
def backward(self):

topo = []
visited = set()
def build_topo(v):

if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)

topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):

node._backward()
Value.backward = backward

[77]: a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a * b
e.label = 'e'
d = e + c
d.label = 'd'
f = Value(-2.0, label='f')
L = d * f
L.label = 'L'

[78]: L.backward()

19

https://fr.wikipedia.org/wiki/Tri_topologique

[79]: draw_dot(L)
[79]:

c data 10.0000 grad -2.0000

+a data 2.0000 grad 6.0000

*

b data -3.0000 grad -4.0000

L data -8.0000 grad 1.0000*e data -6.0000 grad -2.0000

f data -2.0000 grad 4.0000

d data 4.0000 grad -2.0000

fin de la première partie

20

	micrograd: construction d'une bibliothèque de rétropropagation du gradient (partie 1)
	Importation de paquetages tiers
	Introduction
	Dérivations
	Pente de la tangente
	Expression arithmétique plus complexe

	Création d'une classe Value
	Première version
	Addition
	Multiplication
	Construction d'un graphe correspondant à l'expression
	Affichage du graphe avec graphviz
	Amélioration de l'affichage avec un label
	Fonction objectif: fonction de perte

	Calcul des gradients à la main
	Stockage des gradients dans Value
	Jouons avec les dérivées
	Propagation des gradients locaux: dérivation des fonctions composées (chain rule)

	Méthodes pour la propagation arrière automatique du gradient
	Ajout d'une fonction tanh
	Implémentation d'un parcours arrière pour calculer les gradients (backward)
	Automatisation du calcul

