bigrams final
January 3, 2026

1 3.1 Implémentation d’un modele de langue bi-gramme

15 décembre 2025

Adapté du tutoriel d’A. Karphathy “Makemore”, premiere partie: https://www.youtube.com/
watch?v=PaCmpygFfXo

Nous allons utiliser des données des codes issues de Légifrance, et plus particulierement dans ce
chapitre les mots du code civil.

1.1 Jeu de données: les mots du code civil

[1]: words = open('civil_mots.txt', 'r').read().splitlines()

[2]: | len(words)
Devratt afficher 7223

[2]: 7223
[3]: words[40:50]

[3]: ['acceptée',
'acceptées',
'accessible',
'accession',
'accessoire',
'accessoirement',
'accessoires',
'accident',
'accidents',
'accoler']

1.2 Calcul des bi-grammes pour les caractéres de ces mots

[4]: | # Caractére spécial indiquant le début ou la fin d'un mot
EO0S="'."

[5]: # Ezemple de calcul des bi-grammes d'un mot
b = {} # Dictionnaire

https://www.youtube.com/watch?v=PaCmpygFfXo
https://www.youtube.com/watch?v=PaCmpygFfXo
https://www.legifrance.gouv.fr/liste/code?etatTexte=VIGUEUR&etatTexte=VIGUEUR_DIFF&page=1#code
https://www.legifrance.gouv.fr/codes/texte_lc/LEGITEXT000006070721

for w in ['accessoire']:
chs = [EOS] + list(w) + [EOS]
for chl, ch2 in zip(chs, chs[1:]):
bigram = (chl, ch2)
print (bigram)
b[bigram] = b.get(bigram, 0) + 1

N
-

-

-

-

-

-

O B O n n ®© O O P

AN~ "~ "~~~ "~ "~ "~~~
® B H O n n ® O O
NN NN NI NN,

-

[6]: # Calcul sur tous les mots
b = {}
for w in words:
chs = [EO0S] + list(w) + [EO0S]
for chl, ch2 in zip(chs, chs[1:]):
bigram = (chl, ch2)
b[bigram] = b.get(bigram, 0) + 1

[7]: print("Nombre de bi-grammes:", len(b))
sorted(b.items(), key = lambda kv: -kv[1]) [:20]

Nombre de bi-grammes: 554

[71: [(C's', "."), 1974),
(Cre', "."), 1872),
(C'n', 't'), 1587),
(C'e', 'n'), 1427),
(('o', 'n'), 1312),
(C'e', 's'), 1227),
(C'r', 'e'), 1200),
C'gr, v, 1187,
(C'tr, 'i'), 1055),
(C('e', 'r'), 934),
., 'ec"), 871),
(C't', 'e'), 805),
., 'p"), 760),
(C'e', 'o"), 753),
(cr.r, ra'), 744),
(('a', 'n'), 689),

[8]:

[9]:

[10]:

(Criv, 't
(i, 's'), 665),
(¢'i', 'n")
., ')

chars = sorted(list(set(''.join(words))))

print(chars)

nb_chars = len(chars) + 1 # On ajoute 1 pour EOS

print ("Nombre de caractéres distincts:", nb_chars)

Détarl amusant: <2l n'y a pas de 'k' dans le code civil

[lll", l_l’ Ial, lbl’ lcl, Idl, lel’ lfl’ |gl, lhl, lil, |’l’ lll, lml, |nl’ lol,
'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'a', 'a', '¢', 'e', 'é’,
lél, |él, lil’ lil, |6l, Il‘ll’ lﬁl, |(B']

Nombre de caractéres distincts: 41

"tokenisation"

Dictionnatire permettant de passer d'un caractére da son identifiant entier
ctoi = {c:i+1 for i,c in enumerate(chars)}

ctoil['.'] =0

print ("CTOI =", ctoi)

Dictionnaire permettant permettant de passer d'un entier da son caractére
itoc = {i:s for s,i in ctoi.items()}

print("ITOC =", itoc)

CTOI = {"'": 1, '-': 2, 'a': 3, 'b': 4, 'c': 5, 'd': 6, 'e': 7, '£': 8, 'g': 9,
'h': 10, 'i': 11, 'j': 12, '1': 13, 'm': 14, 'n': 15, 'o': 16, 'p': 17, 'q': 18,
'r': 19, 's': 20, 't': 21, 'u': 22, 'v': 23, 'w': 24, 'x': 25, 'y': 26, 'z': 27,
'a': 28, 'a': 29, '¢': 30, 'é': 31, 'é': 32, 'é': 33, 'é': 34, 'i': 35, 'i': 36,
'6': 37, 'u': 38, 'd': 39, 'we': 40, '.': O}

IToc = {1: "'», 2: '-', 3: 'a', 4: 'b', 5: 'c¢', 6: 'd', 7: 'e', 8: 'f', 9: 'g',
10: 'h', 11: 'i', 12: 'j', 13: '1', 14: 'm', 15: 'n', 16: 'o', 17: 'p', 18: 'q',
19: 'r', 20: 's', 21: 't', 22: 'u', 23: 'v', 24: 'w', 25: 'x', 26: 'y', 27: 'z',
28: 'a', 29: 'a', 30: '¢', 31: 'e', 32: 'é', 33: 'é', 34: 'é', 3b: '1', 36: 'i',
37: '4', 38: 'u', 39: 'd', 40: '®e', O0: '.'}

1.3 Utilisation d’une matrice (tenseur d’ordre 2) pour stocker les bi-grammes

import torch

Construction d'une matrice
N = torch.zeros((nb_chars, nb_chars), dtype=torch.int32)

for w in words:
chs = ['.'] + list(w) + ['.']
for chl, ch2 in zip(chs, chs[1:]):
ixl = ctoilchi]
ix2 = ctoilch2]

N[ix1, ix2] += 1
print (N.shape)
print (N)

torch.Size([41, 41]1)

tensor([[0, O, O, .., O, O, 2],
(o, o, o, .., 0, 0, 07,
(o, o, o, .., 0, 0, 07,

(1, o, 0, .., O, O, 07,
(1, 0, O, .., O, O, 0],
(0, o, 0, .., 0, 0, 0]], dtype=torch.int32)

[14]: import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(16,16))
plt.imshow(N, cmap='Blues')
for i in range(nb_chars):
for j in range(ub_chars):
chstr = itoc[i]l + itocl[jl
plt.text(j, i, chstr, ha="center", va="bottom", color='gray')
plt.text(j, i, N[i, jl.item(), ha="center", va="top", color='gray')
plt.axis('off"');

- e f g h[idj I m.an o q Bl t u v w Xx y zZ a a ¢ & & & i i 6 u O e
0 0 0 43 413 238 117 79 443 72 208 304 144 159 2 B5352821966 174 1 0 1 1 1 9 O 1197 2 0 3 O O 0 O 2
P e f g h i 5 1 m™n o p g T s T UV WZXY zZ B 4a‘ce e e & 10 ou 0w
0 0 0 3 o 0 2 8 0 0 O O 4 0 0 0 005 0000 03 00 0 2 0UO0TO0O0OTO0OTO0OO0 O
- 4 - a « f g h 4 4 4 m=a o p g s 4 u v w x ¥ Zz a a <€ € € € € 4 4 -0 4 4 o
0 0 0 3 6 7 1 1 2 0 115 4 2 15 2 5 5 5 2 10 0 0 0 0 1 O 0 O 1 1 O O O O O O O
a. a a aa ae af h [@ aj ‘@ am[@i ac ap aq ar as @l au av aw ax ay az aa aa ac aé aé aé aé al al ad au al ace
18 0 1 © 0 31 155 1 487 15 318 67 88| 2 155 8 344122H13)212 78 0 4 23 0 O O 4 O 1 0 O 26 4 0 O 0 O
b. b b ba be bf bg bh bi bj bl bm bn bo bp bg br bs bt bu bv bw bx by bz ba bd b be bé bé b& bi bi bd bu bl bee
1 0 0 58 28 0 O O 87 3 227 0 0O 40 0 O 47 45 6 34 2 0 O 0 0 O 8 0 1 33 2 0 0 0 O O 0 O
¢ ¢ - @ ce f g ch @ ¢ d cn on p cg o s € U ov w X oy @ € @ ¢ & & & & d d b i ol cee
11 0 0 186 381 0 0 215263 0 85 0 O 0O 23100 8 239135 0 0 O O O O O O 238 O 0 O O 2 O O O
d d d da de df dg dh di dj dl dm dn do dp dg dr ds dt du dv dw dx dy dz da di d¢ de dé dé d& di di do du di dee
33 3 1 101 262 0 1 233 7 0 19 0 1050 0 78 7 01292 0 O O 1 0O O O 4380 0 0 O O 0 O 3 O
e e ea ee ef eg eh e g e Jem eo ep eq et ev ew ex ey ez ea ed e e e¢ e eé e & ed el el e
0 35 43 0 43 20 1 61 5 286433 3 72 13 16224487 020 0 3 0 0 6 0 O 0 O O O O O 1 O
f. £ f fa fe ff fg fh i § il fm m fo fp fg f fs ft fu fv fiw fx fy fz fa fa fc fe f& fe f& fi fi fo fu fu foe
47 0 0 74 86 106 0 0 244 0 4 0 O0 127 0 O 45 25 0 27 0 O 0 0O O O O O 6 4 0 O O O O O 2 O
g g g ga gb gc gd go of gg gh gi g g 9gm gn go gp gg gr gs gt gu gv gw gx gy g9z ga ga g¢ g& gé g& ¢& gi gi go g gi gee
5 0 0117 0 0 0206 0 6 0 72 0 23 9 9 18 0 0 84 3 9 60 0 0 0 0 ©0 O O 0 5 % 0 0 O 0 O O 0 O
h. h h ha hb hc hd he hf hg hh hi hj hl hm hn ho hp hg hr hs ht hu hv hw hx hy hz ha hda hg hé hé h& hé hi hi ho hi hi hee
0 o O 9 0 0 0 % 0 0 032 0 0 0 43 0 0 2 001 0 0 0113001 0 86000 003 000
i " da b ic idlie i ig ih i i il im BANNGN ip iq ir il v v w x iy iz ja i@ ic ie i & ié i i 6 iU i ie
80 0 12 128103216100434191164 0 6 0 216196865600 52 122394665669 0 239 0 27 0 2 0 0 O 030 0 0 0 0 0 0 0
bF F Ja b jc d je jf jg jh ji j) jm jn jo jp jg r 5 t ju ¥ W X jy jz ja ja jo je j€ j& j j j jo ju juo je
0 0o 0 4 0 0 032 0 0 00 0 0 O0 D040 000 066400 00 01 0 0 0 0 00 0O 0O 0 0 O
L I' F la b k dPElK Ig h[ElG I ImiIn b lplg Ir s Kt lu v w x Iy Iz la 1a Ic le & & & i i 16 lu I le
127 0 0219 0 5 2 912 0 6 0425 0272 0 0 142 2 4 0 50 5187 5 0 0 4 0 6 1 0 18126 0 0 0 0 4 0 0 O
m m m ma mb mc md me mf mg mh m mj ml mmmn mo mp mg mr ms mt mu mv mwmxk my mzma ma mg mé mé mé mé m mi mé mu md mee
5 0 021853 0 0B5f2 0 0 0 195 0 0 12713117244 0 0 2 0 60 0 0 0 1 ©0 O O 0 12 9 8 0 0 0 0 0 0 O
nin n na nbnc nd ne nf ng nh ni nfj nl nmnn no np ng nr[ns nU NV NW NX Ny nzZ na na ng né né né né ni ni nd ni nd nee
451 0 13 230 0 342305277 69 70 3 230 14 10 1 222144 0 18 12 451 12009 0 0 2 3 0 0 10 01772 0 0 0 0 0 0 1
0. 0 o oa ob oc od oe of og oh © o o om o0 Op og|Of os ot OU Ov OwW OX Oy OZ O3 OA OC O8 06 O Of o oOf 00 ou ol oce
2 0 4 7 5710366 7 30 47 11 185 4 116281 5 98 2840012985359 17 0 1 30 0 0 0 0 0 0 0 0 2 2 0 1 6 0
p. p p-pa pb pc pd pe pf pg ph pi p pl pm pn po pp pq |Pr|ps Pt pu pv pw px py pz pa pa pc pé pé pé pé pi pi pd pu pd pee
4 0 0268 0 0 0180 0 0 18 37 0 136 0 0 290145 0 32411 93 8 0 0 0 0 0 0 1 1 6 98 13 0 0 0 4 0 0 0
g Q g ga gb gc gd ge of 9o gh g g g gm gn go gp g9 9r gs gt gu gv gw gx gy 9z ga ga q¢ g¢ g€ g& gé g g g0 gu qu qgoe
4 0 0 0 O O 0 0O O 0 O0OOOOOQOOUOOOOTU OO OOS3%000O0O0OO0DO0CO0ODODO0OOODDO0QCO0OO0ODO0OCO0OCTO0
M r @ c o frg thfi' g dfdmmimommpmgm s i v wxxir =z @am@ar i@ i n e
572 0 1 [B3F 17 74 82 11 51 3 455 0 3 119 70354 37 6 10117827271 % 0 0 2 0 O0 1 8 18BfL27 0 0 0 2 0 0 O
s s sa sb sc sd|se|sf sy sh sl | sj sl sm sn so sp sq s[5 st su sv sw sx sy sz sa sa s¢ s& se sé sé si si s0 su si soe
0 30 212 1 81 4 468 17 138 0 6 16 0 216 97 24 0 405344258 2 0 0 1 0 O 1 0 2189 0 0 0 0 0 0 2 2
t tfla tb € W tf tg th § 0 tmitn to tp tg/lr 5 t W v tw x ty &z ta ta t¢ t& € €& t€8 6 6 t tu th tee
0 16414 0 0 0O 0 0 16 0 0 0O 0107 0 0438197117190 0 0 0 2 0 0 0 O 94332 0 0 0 4 0 0 O
U U u ua ub uc ud uwe uf ug uh ui u ul um un uo up ug |UF US uUf UU UV UW UX Uy UZ UA UA ug Ué ué ué ué Ul Ui ud ul ud uce
94 50 6 55 79 82 50 377 27 24 1 181 11 149 51 99 11 60 4 472227204 0 102 0 % 4 2 0 0 0 011067 1 0 0 0 0 0 O
V. V v wva vb vc vd ve Vv wvg vh Wi W Vvl wm vn vo Vp wvg VI Vs VE VU W VW VX Wy VZ Va va Vg W& Ve VEé Ve Wi Wi VO U v vee
0 0 0135 0 0 0 386 0 0211 0 0 0 01030 05 0 0 ¥4 0 000 O0O0O0O0CODS5OGE8LS®S® 00000 00
w. w w wa wb wc wd we wf wg wh wi wj wl wm wn wo wp wg wr ws Wt Wu Wv WW WX Wy WZ wa wa wg we wé wé wé wi wi wo wi wi wee
¢ o 0o 1 0 0 0 0 O 0 0 0 0 0 O o 00 0O0OOOOOOW® ©OOQOD®D©OOOODODOODOODOOODOODO0OODO0OTO0OTO
x. X x xa xb xc xd xe xf xg xh x x x xm xn X0 Xp Xg Xr x5 Xt XU XV XW XX Xy XZ Xa xa x¢ x x€ x& x& x X x0 xU xi xee
88 0 6 17 0 38 1 27 0 0 3 4 0 0 0 0 3 4 2 0O 024 3 0 0O 0O 0O 0 0O 0 0 027 0 0 0 0 0 0O O O
Yo ¥ ¥y ya yb yo yd ye yf yg yh oy oy oyl ym oyn yo yp yg yr oys yboyu oyv oyw X vy ¥z ¥@ ¥@ yo y& ye y@ y& i yi y0 yU yO yoe
2 0 0 12 0 4 25 o 1 o0 0o O O 3 4 412 0 O 8 1 0 0 O O O O O O O O17 0 O O 0O O O O O
z Z z za zb z zd ze zh Zz z zd zm =z z0 zp zg zZ z Zt zu TV 2w ZX Zy ZZ za za z z2 z2 z& z A A 2 zu z0 zee
2 0 1 o o0 0 O 5 0 0 0 2 0O0OO0OO0O?20O0O0OO0O0OO0OTUO0TGO0OUO0ODTUO0OTGOOO®OT OOOUOTOOTUOT O0OOTGOO0 O
a. @ & aa ab ac ad ae af ag ah ai a a am an ao ap aq ar as at au av aw ax ay az aa aa ac aé aé aé aé ai al ad au al ace
170 1 0 0 0 0 0 0 0O 0 OO 0 OO OOOU OU OO OO OOU OO OO OO OO OOU OO ODOT OOOTG OO OOTGOO O
4 & & &@a ab ac ad ae & ag ah a & a am an ao ap aq ar as at Au av Aw ax ay az aa aa ac aé aé aé aé ai al ad au al ace
c o o o0 o 1 0 0 O 6 0 OO0 010 0000113000 0O0O0OO0OO0ODO0OTUO0OTO0ODOTGOTO0OOTGOO0O O O
¢ ¢ ¢ ca cb cc od ce of cg ch ¢ ¢ c cmcn o cp cg o ¢ ct cu ov ow ox cy <z ca ¢d cc & ¢& ¢& & o ci ¢ cu ol cee
o 0 0 130 o0 0 0 0 0 0O O O OO O 7 OO OU O OOU S O0O0OUO0OTDOOGOOOOT OOOTOO O OO OO
& & & ea eb ec e&d ee &f &g &h & & & em én &0 &p &g &r és &t du v éw &x &y €z &3 &3 &g e &6 &6 ee & & &b en ed ece
0 0 0 0 O 6 1> 0 0 14 0 O 5 14 2 0 0 3 68 18 12 0 15 0 0 0 0 O O 0 O O 0O O O 0O O O 0 O
€ & & éa éb éc éd e Ef ég éh & & & ém én éo ép ég ér és Et éu v éw éx &y €z a 63 &g &6 &6 6 ée & & 6 e el éoe
531 0 1 31 19 225116496 67 121 3 9 11 87 56 77 3 113 27 269408175 9 84 0 0 0 0 O 0 01 0 0 0 0 0 O O O
& & & éa & éc & ee & &g éh & & & ém én éo ép &g ér s &t Bu &y éw E&x &y &z &3 83 & & &6 & e & & & éu &0 éce
0 o o0 0 O 13 0 0 O 0 O O 0111 0 0O 0 O0OOU44BO0OO0O0O0OO0OO0OO0OO0OOOOO0OOOO0OOTO0O OO OO0
& & & éa éb ec & eés & ég eh & & €& ém eén eo ep Eq e es &t eu ev éw ex ey €z ea €3 e; et eé ed ée & & ed eu el e
o o o o0 0 o0 0 O O0OOOO OOOOOOOOO?1O0O0OOO0OOOODOO®OOOOO OOOOOTGOOOOO0OO0O OO0
i T F fa b ic d e f g h i [N1 im in o B dg r B T u v iw ix @y iz fa @& ic e @& @ e i Wi B u i je
o o o o0 o o o0 0 O O OO OO 306 00 0 0 0220 00 00 00 0 00 0 00 0 00 0 00
i T F @ b ic id e ¥ ig h i § 1 im in o ip g r B k& W W iw X Iy Z & ia ig & & @ @& i i 6 W i ie
o o o o0 o o o 4 0 0 0 00 0O 2 0O0O0O0O0OO0OO0ODOOOOTODOOOOOOOOOTG OOOOOTOOO0OTOTO0
6 & o 6a 6b O6c 6d e Of &g 6h 6 & o om 6n So Op 69 Or 6s Ot Hu Ov Ow Ox Oy Oz Ga 68 O 66 o6& OB G6 O & 60 Ou OO Ooe
o o o o0 0o o0 0 OO0 OOW ©OSZ21 001 0 00110 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U U U 0a Ub Uc Od Ge Of GUg Uh G O Ol Om On Go Up Ug Or Us Ot Gu Ov Uw Ux Uy Uz U3 UA Ug U Ué U8 Ué Ui Ui Ud Wi Ul Ucee
1 0 0 0 0O O O 0 O O OOU OOU OO OOW OO OOO OO OOO OO OOO OO ODOOO OO OOOOOOOTOOOOTGOOTO0OO
G. 0 O Ga Gb Gc Od Ge OF Gg Gh G G Ol Om On do Gp Gg Gr Gs Gt Gu Ov Ow Ox Oy Gz 03 08 Gg & G 8 G G Gi 06 G0 Gh dee
1 0 0o 0 0 00 0O OO OOOU OU OZ=200O0WO0O?=210 9 000 O0O0O0OO0OO0OO0OO0OO0OO0OTOO0OOTOTO0OCTOTO0
e e 0= ea ;=b oec ced cee oef ceg c=h o2l o8 el em cen oeo cep ceq cer oes et cRU BV CBW CBX (BY (BZ (Ba (Ra (B¢ 02¢ oeé € oeé ool ol oeb el ool ceoe
o o o o0 0o o o0 0 O0OO0OOOO OO OOOOOOOOOOO OOS5O0O0O0OODWOO® OOOOOOOOOOO® OOOOOOOO0OTOTO0

1.4 Passage d’un comptage au maximum de vraissemblance

[13]: # Premiére ligne, comptages pour les premiéres lettres des mots
N[O0]
La lettre 'c' est la plus courante en début de mot

[13]: temsor([O, 0, 0, 744, 88, 871, 643, 413, 238, 117, 79, 443, 72, 208,
304, 144, 159, 760, 82, 653, 528, 219, 66, 174, 1, 0, 1, 1,
1, 9, 0, 1, 197, 2, 0, 3, 0, 0, 0, 0, 2],
dtype=torch.int32)

On va transformer ces comptages en distribution de probabilité p pour la premiere ligne N[0], en
transformant d’abord chaque élément en float puis en normalisant par la somme des éléments.

[16]: # On wva transformer ces comptages en distribution de probabilité, eny
wtransformant en float

chaque élément

N[0].float()

p / p.sum(Q)

#
p
p
p

[16]: tensor([0.0000, 0.0000, 0.0000,
0.0162, 0.0109, 0.0613,
0.0114, 0.0904, 0.0731,
0.0001, 0.0001, 0.0012,
0.0000, 0.0000, 0.0000,

.1030, 0.0122, 0.1206, 0.0890, 0.0572, 0.0330,
.0100, 0.0288, 0.0421, 0.0199, 0.0220, 0.1052,
.0303, 0.0091, 0.0241, 0.0001, 0.0000, 0.0001,
.0000, 0.0001, 0.0273, 0.0003, 0.0000, 0.0004,
.0000, 0.0003])

O O O O O

[17]: | # On peut le faire sur toute la matrice, ligne par ligne, pour obtenir
une matrice de probabilités
P = N.float()
P /= P.sum(1, keepdims=True)
P

[17]: tensor([[0.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
2.7689e-04],
[0.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00],
[0.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00] ,

ey

[1.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00],

[7.1429e-02, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00],

[0.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00]11)

[18]: P.shape

[18]: torch.Size([41, 41])

1.5 Echantillonage

[19]: # On wva échantilloner pour obtenir un
g = torch.Generator() .manual_seed(2147483647)
ix = torch.multinomial(p, num_samples=1, replacement=True, generator=g).item()

print(ix, '->', itoc[ix])

ix = torch.multinomial(p, num_samples=1, replacement=True, generator=g).item()
print(ix, '->', itocl[ix])

32 > ¢

3 > a

[20]: # 15 tirages aléatoires
torch.multinomial (p, num_samples=15, replacement=True, generator=g)

[20]: tensor([21, 3, 4, 5, 9, 11, 29, 19, 5, 8, 13, 7, 14, 5, 15])

1.6 Synthese: code complet de création du modele et de son échantillonage

[21]: #
Générateur des mots selon notre modéle de langue génératif bigrams par,
~comptage
#
import torch

Lecture des données

EOS="'."
words = open('civil_mots.txt', 'r').read().splitlines()
chars = sorted(list(set(''.join(words))))

nb_chars = len(chars) + 1 # On ajoute 1 pour EOS

Dictionnaires caractére <-> entier

ctoi = {s:i+1 for i,s in enumerate(chars)}
ctoi['.'] =0

itoc = {i:s for s,i in ctoi.items()}

Construction d'une matrice contenant le comptage des bigrams
N = torch.zeros((nb_chars, nb_chars), dtype=torch.int32)
for w in words:
chs = ['".'] + list(w) + ['.']
for chl, ch2 in zip(chs, chs[1:]):
ctoilchi]
ix2 = ctoil[ch2]
N[ix1l, ix2] += 1

ix1

Matrice de probabilité
P = N.float()
P /= P.sum(1, keepdims=True)

Générateur aléatoire
g = torch.Generator() .manual_seed(2147483647)

def generate_words(num, P, g):
Génération de 5 mots
for i in range(num):

out = []

ix = 0

while True:
p = Plix]

[22]:

ix = torch.multinomial(p, num_samples=1, replacement=True,,
~generator=g) .item()
out .append(itoc[ix])
if ix ==
break
print(''.join(out))

generate_words(5, P, g)

éssanée.
mexXCcororér.
monts.

ex.

moit.

1.7 Fonction de perte: log-vraissemblance

Lorsque 'on créé un modele de langue, nous allons chercher & mesurer sa qualité. On cherche a
maximiser la vraissemblance (likelihood) des données, considérant les parametres du modéle.

11 est équivalent et plus commode de maximiser le logarithme naturel de cette vraisemblance (log
est strictement croissant), ce qui revient & minimiser l'opposée de cette log-vraissemblance.

En pratique, on va cherche a minimiser la moyenne de 'opposée de la log-vraissemblance.

log_likelihood = 0.0
n=20

for w in words:
#for w in ["espérance"]:
chs = ['.'] + list(w) + ['.']
for chl, ch2 in zip(chs, chs[1:]):
ix1l = ctoilchl]
ix2 = ctoilch2]
prob = P[ix1, ix2]
logprob = torch.log(prob)
log_likelihood += logprob
n+=1

#print (f'{chi}{ch2}: {prob:.4f} {logprob:.4f}')

print(f'{log_likelihood=}"')
nll = -log_likelihood
print (f'{nll=}")

print (f'{nll/n}")

log_likelihood=tensor(-158565.9375)
nll=tensor(158565.9375)
2.3438470363616943

Ce “loss” a 2.34 est donc la mesure de qualité de notre modele bigram par comptage.

1.8 Lissage

Notre modele se comporte de maniére stricte lorsqu’il rencontre une combinaison de caracteres
qu’il ne connait pas. Par exemple, si on cherche le score d’'un mot comme “espérancejq”, ou la
combinaison “jq” a une probabilité 0:

[24]: log_likelihood = 0.0
n=20

for w in ["espérancejq"]:

chs = ['.'] + list(w) + ['.']

for chl, ch2 in zip(chs, chs[1:]):
ix1 = ctoilchi]
ix2 = ctoil[ch2]
prob = P[ix1l, ix2]
logprob = torch.log(prob)
log_likelihood += logprob
n +=1
print (f'{ch1}{ch2}: {prob:.4f} {logprob:.4f}')

print(f'{log_likelihood=}"')
nll = -log_likelihood
print (f'{nll=}")

print (f'{nll/n}")

.e: 0.0572 -2.8616
es: 0.1664 -1.7931
sp: 0.0205 -3.8851
pé: 0.0512 -2.9720
ér: 0.0911 -2.3959
ra: 0.1255 -2.0753
an: 0.1708 -1.7675
nc: 0.0708 -2.6484
ce: 0.1458 -1.9255
ej: 0.0007 -7.2960
jq: 0.0000 -inf

q.: 0.0109 -4.5163

log_likelihood=tensor (-inf)

nll=tensor (inf)

inf

On a un loss qui est a l'infini car 'une de probabilité transformée en log passe a I'infini. Habituelle-
ment, on fait donc du “lissage” de modeéles (smoothing), en ajoutant par exemple 1 & tous les
comptage avant de calculer les probabilités (noter le N+1 ci-dessous):

[25]: P = (N+1).float()
P /= P.sum(l, keepdims=True)

[26]: log_likelihood = 0.0
n =20

for w in ["espérancejq"]:

chs = [".'] + list(w) + ['.']

for chl, ch2 in zip(chs, chs[1:]):
ixl = ctoilchl]
ix2 = ctoil[ch2]
prob = P[ix1, ix2]
logprob = torch.log(prob)
log_likelihood += logprob
n +=1
print (f'{ch1}{ch2}: {prob:.4f} {logprob:.4f}')

print(f'{log_likelihood=}"')
nll = -log_likelihood
print (f'{nll=}")

print (f'{nll/n}")

.e: 0.0570 -2.8648
es: 0.1657 -1.7978
sp: 0.0206 -3.8835
pé: 0.0506 -2.9830
ér: 0.0902 -2.4059
ra: 0.1247 -2.0818
an: 0.1693 -1.7762
nc: 0.0704 -2.6539
ce: 0.1439 -1.9384
ej: 0.0008 -7.1192
jgq: 0.0055 -5.2095

q.: 0.0123 -4.3994
log_likelihood=tensor(-39.1135)
nll=tensor(39.1135)
3.2594597339630127

10

	3.1 Implémentation d'un modèle de langue bi-gramme
	Jeu de données: les mots du code civil
	Calcul des bi-grammes pour les caractères de ces mots
	Utilisation d'une matrice (tenseur d'ordre 2) pour stocker les bi-grammes
	Passage d'un comptage au maximum de vraissemblance
	Échantillonage
	Synthèse: code complet de création du modèle et de son échantillonage
	Fonction de perte: log-vraissemblance
	Lissage

