bigrams final
January 3, 2026

1 3.1 Implémentation d’un modele de langue bi-gramme

15 décembre 2025

Adapté du tutoriel d’A. Karphathy “Makemore”, premiere partie: https://www.youtube.com/
watch?v=PaCmpygFfXo

Nous allons utiliser des données des codes issues de Légifrance, et plus particulierement dans ce
chapitre les mots du code civil.

1.1 Jeu de données: les mots du code civil

[1]: words = open('civil_mots.txt', 'r').read().splitlines()

[2]: | len(words)
# Devratt afficher 7223

[2]: 7223
[3]: words[40:50]

[3]: ['acceptée',
'acceptées',
'accessible',
'accession',
'accessoire',
'accessoirement',
'accessoires',
'accident',
'accidents',
'accoler']

1.2 Calcul des bi-grammes pour les caractéres de ces mots

[4]: | # Caractére spécial indiquant le début ou la fin d'un mot
EO0S="'."

[5]: # Ezemple de calcul des bi-grammes d'un mot
b = {} # Dictionnaire


https://www.youtube.com/watch?v=PaCmpygFfXo
https://www.youtube.com/watch?v=PaCmpygFfXo
https://www.legifrance.gouv.fr/liste/code?etatTexte=VIGUEUR&etatTexte=VIGUEUR_DIFF&page=1#code
https://www.legifrance.gouv.fr/codes/texte_lc/LEGITEXT000006070721

for w in ['accessoire']:
chs = [EOS] + list(w) + [EOS]
for chl, ch2 in zip(chs, chs[1:]):
bigram = (chl, ch2)
print (bigram)
b[bigram] = b.get(bigram, 0) + 1
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[6]: # Calcul sur tous les mots
b = {}
for w in words:
chs = [EO0S] + list(w) + [EO0S]
for chl, ch2 in zip(chs, chs[1:]):
bigram = (chl, ch2)
b[bigram] = b.get(bigram, 0) + 1

[7]: print("Nombre de bi-grammes:", len(b))
sorted(b.items(), key = lambda kv: -kv[1]) [:20]

Nombre de bi-grammes: 554

[71: [(C's', "."), 1974),
(Cre', "."), 1872),
(C'n', 't'), 1587),
(C'e', 'n'), 1427),
(('o', 'n'), 1312),
(C'e', 's'), 1227),
(C'r', 'e'), 1200),
C'gr, v, 1187,
(C'tr, 'i'), 1055),
(C('e', 'r'), 934),
., 'ec"), 871),
(C't', 'e'), 805),
., 'p"), 760),
(C'e', 'o"), 753),
(cr.r, ra'), 744),
(('a', 'n'), 689),



[8]:

[9]:

[10]:

(Criv, 't
(i, 's'), 665),
(¢'i', 'n")
., ')

chars = sorted(list(set(''.join(words))))

print(chars)

nb_chars = len(chars) + 1 # On ajoute 1 pour EOS

print ("Nombre de caractéres distincts:", nb_chars)

# Détarl amusant: <2l n'y a pas de 'k' dans le code civil

[lll", l_l’ Ial, lbl’ lcl, Idl, lel’ lfl’ |gl, lhl, lil, |’l’ lll, lml, |nl’ lol,
'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'a', 'a', '¢', 'e', 'é’,
lél, |él, lil’ lil, |6l, Il‘ll’ lﬁl, |(B']

Nombre de caractéres distincts: 41

# "tokenisation"

# Dictionnatire permettant de passer d'un caractére da son identifiant entier
ctoi = {c:i+1 for i,c in enumerate(chars)}

ctoil['.'] =0

print ("CTOI =", ctoi)

# Dictionnaire permettant permettant de passer d'un entier da son caractére
itoc = {i:s for s,i in ctoi.items()}

print("ITOC =", itoc)

CTOI = {"'": 1, '-': 2, 'a': 3, 'b': 4, 'c': 5, 'd': 6, 'e': 7, '£': 8, 'g': 9,
'h': 10, 'i': 11, 'j': 12, '1': 13, 'm': 14, 'n': 15, 'o': 16, 'p': 17, 'q': 18,
'r': 19, 's': 20, 't': 21, 'u': 22, 'v': 23, 'w': 24, 'x': 25, 'y': 26, 'z': 27,
'a': 28, 'a': 29, '¢': 30, 'é': 31, 'é': 32, 'é': 33, 'é': 34, 'i': 35, 'i': 36,
'6': 37, 'u': 38, 'd': 39, 'we': 40, '.': O}

IToc = {1: "'», 2: '-', 3: 'a', 4: 'b', 5: 'c¢', 6: 'd', 7: 'e', 8: 'f', 9: 'g',
10: 'h', 11: 'i', 12: 'j', 13: '1', 14: 'm', 15: 'n', 16: 'o', 17: 'p', 18: 'q',
19: 'r', 20: 's', 21: 't', 22: 'u', 23: 'v', 24: 'w', 25: 'x', 26: 'y', 27: 'z',
28: 'a', 29: 'a', 30: '¢', 31: 'e', 32: 'é', 33: 'é', 34: 'é', 3b: '1', 36: 'i',
37: '4', 38: 'u', 39: 'd', 40: '®e', O0: '.'}

1.3 Utilisation d’une matrice (tenseur d’ordre 2) pour stocker les bi-grammes

import torch

# Construction d'une matrice
N = torch.zeros((nb_chars, nb_chars), dtype=torch.int32)

for w in words:
chs = ['.'] + list(w) + ['.']
for chl, ch2 in zip(chs, chs[1:]):
ixl = ctoilchi]
ix2 = ctoilch2]



N[ix1, ix2] += 1
print (N.shape)
print (N)

torch.Size([41, 41]1)

tensor([[0, O, O, .., O, O, 2],
(o, o, o, .., 0, 0, 07,
(o, o, o, .., 0, 0, 07,

(1, o, 0, .., O, O, 07,
(1, 0, O, .., O, O, 0],
(0, o, 0, .., 0, 0, 0]], dtype=torch.int32)

[14]:  import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(16,16))
plt.imshow(N, cmap='Blues')
for i in range(nb_chars):
for j in range(ub_chars):
chstr = itoc[i]l + itocl[jl
plt.text(j, i, chstr, ha="center", va="bottom", color='gray')
plt.text(j, i, N[i, jl.item(), ha="center", va="top", color='gray')
plt.axis('off"');
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1.4 Passage d’un comptage au maximum de vraissemblance

[13]: # Premiére ligne, comptages pour les premiéres lettres des mots
N[O0]
# La lettre 'c' est la plus courante en début de mot

[13]: temsor([ O, 0, 0, 744, 88, 871, 643, 413, 238, 117, 79, 443, 72, 208,
304, 144, 159, 760, 82, 653, 528, 219, 66, 174, 1, 0, 1, 1,
1, 9, 0, 1, 197, 2, 0, 3, 0, 0, 0, 0, 2],
dtype=torch.int32)

On va transformer ces comptages en distribution de probabilité p pour la premiere ligne N[0], en
transformant d’abord chaque élément en float puis en normalisant par la somme des éléments.



[16]: # On wva transformer ces comptages en distribution de probabilité, eny
wtransformant en float

chaque élément

N[0].float()

p / p.sum(Q)

#
p
p
p

[16]: tensor([0.0000, 0.0000, 0.0000,
0.0162, 0.0109, 0.0613,
0.0114, 0.0904, 0.0731,
0.0001, 0.0001, 0.0012,
0.0000, 0.0000, 0.0000,

.1030, 0.0122, 0.1206, 0.0890, 0.0572, 0.0330,
.0100, 0.0288, 0.0421, 0.0199, 0.0220, 0.1052,
.0303, 0.0091, 0.0241, 0.0001, 0.0000, 0.0001,
.0000, 0.0001, 0.0273, 0.0003, 0.0000, 0.0004,
.0000, 0.0003])

O O O O O

[17]: | # On peut le faire sur toute la matrice, ligne par ligne, pour obtenir
# une matrice de probabilités
P = N.float()
P /= P.sum(1, keepdims=True)
P

[17]: tensor([[0.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
2.7689e-04],
[0.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00],
[0.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00] ,

ey

[1.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00],

[7.1429e-02, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00],

[0.0000e+00, 0.0000e+00, 0.0000e+00, .., 0.0000e+00, 0.0000e+00,
0.0000e+00]11)

[18]: P.shape

[18]: torch.Size([41, 41])

1.5 Echantillonage

[19]: # On wva échantilloner pour obtenir un
g = torch.Generator() .manual_seed(2147483647)
ix = torch.multinomial(p, num_samples=1, replacement=True, generator=g).item()

print(ix, '->', itoc[ix])

ix = torch.multinomial(p, num_samples=1, replacement=True, generator=g).item()
print(ix, '->', itocl[ix])

32 > ¢

3 > a



[20]: # 15 tirages aléatoires
torch.multinomial (p, num_samples=15, replacement=True, generator=g)

[20]: tensor([21, 3, 4, 5, 9, 11, 29, 19, 5, 8, 13, 7, 14, 5, 15])

1.6 Synthese: code complet de création du modele et de son échantillonage

[21]:  #
# Générateur des mots selon notre modéle de langue génératif bigrams par,
~comptage
#
import torch

# Lecture des données

EOS="'."
words = open('civil_mots.txt', 'r').read().splitlines()
chars = sorted(list(set(''.join(words))))

nb_chars = len(chars) + 1 # On ajoute 1 pour EOS

# Dictionnaires caractére <-> entier

ctoi = {s:i+1 for i,s in enumerate(chars)}
ctoi['.'] =0

itoc = {i:s for s,i in ctoi.items()}

# Construction d'une matrice contenant le comptage des bigrams
N = torch.zeros((nb_chars, nb_chars), dtype=torch.int32)
for w in words:
chs = ['".'] + list(w) + ['.']
for chl, ch2 in zip(chs, chs[1:]):
ctoilchi]
ix2 = ctoil[ch2]
N[ix1l, ix2] += 1

ix1

# Matrice de probabilité
P = N.float()
P /= P.sum(1, keepdims=True)

# Générateur aléatoire
g = torch.Generator() .manual_seed(2147483647)

def generate_words(num, P, g):
# Génération de 5 mots
for i in range(num):

out = []

ix = 0

while True:
p = Plix]



[22]:

ix = torch.multinomial(p, num_samples=1, replacement=True,,
~generator=g) .item()
out .append(itoc[ix])
if ix ==
break
print(''.join(out))

generate_words(5, P, g)

éssanée.
mexXCcororér.
monts.

ex.

moit.

1.7 Fonction de perte: log-vraissemblance

Lorsque 'on créé un modele de langue, nous allons chercher & mesurer sa qualité. On cherche a
maximiser la vraissemblance (likelihood) des données, considérant les parametres du modéle.

11 est équivalent et plus commode de maximiser le logarithme naturel de cette vraisemblance (log
est strictement croissant), ce qui revient & minimiser l'opposée de cette log-vraissemblance.

En pratique, on va cherche a minimiser la moyenne de 'opposée de la log-vraissemblance.

log_likelihood = 0.0
n=20

for w in words:
#for w in ["espérance"]:
chs = ['.'] + list(w) + ['.']
for chl, ch2 in zip(chs, chs[1:]):
ix1l = ctoilchl]
ix2 = ctoilch2]
prob = P[ix1, ix2]
logprob = torch.log(prob)
log_likelihood += logprob
n+=1

#print (f'{chi}{ch2}: {prob:.4f} {logprob:.4f}')

print(f'{log_likelihood=}"')
nll = -log_likelihood
print (f'{nll=}")

print (f'{nll/n}")

log_likelihood=tensor(-158565.9375)
nll=tensor(158565.9375)
2.3438470363616943

Ce “loss” a 2.34 est donc la mesure de qualité de notre modele bigram par comptage.



1.8 Lissage

Notre modele se comporte de maniére stricte lorsqu’il rencontre une combinaison de caracteres
qu’il ne connait pas. Par exemple, si on cherche le score d’'un mot comme “espérancejq”, ou la
combinaison “jq” a une probabilité 0:

[24]: log_likelihood = 0.0
n=20

for w in ["espérancejq"]:

chs = ['.'] + list(w) + ['.']

for chl, ch2 in zip(chs, chs[1:]):
ix1 = ctoilchi]
ix2 = ctoil[ch2]
prob = P[ix1l, ix2]
logprob = torch.log(prob)
log_likelihood += logprob
n +=1
print (f'{ch1}{ch2}: {prob:.4f} {logprob:.4f}')

print(f'{log_likelihood=}"')
nll = -log_likelihood
print (f'{nll=}")

print (f'{nll/n}")

.e: 0.0572 -2.8616
es: 0.1664 -1.7931
sp: 0.0205 -3.8851
pé: 0.0512 -2.9720
ér: 0.0911 -2.3959
ra: 0.1255 -2.0753
an: 0.1708 -1.7675
nc: 0.0708 -2.6484
ce: 0.1458 -1.9255
ej: 0.0007 -7.2960
jq: 0.0000 -inf

q.: 0.0109 -4.5163

log_likelihood=tensor (-inf)

nll=tensor (inf)

inf

On a un loss qui est a l'infini car 'une de probabilité transformée en log passe a I'infini. Habituelle-
ment, on fait donc du “lissage” de modeéles (smoothing), en ajoutant par exemple 1 & tous les
comptage avant de calculer les probabilités (noter le N+1 ci-dessous):

[25]: P = (N+1).float()
P /= P.sum(l, keepdims=True)



[26]: log_likelihood = 0.0
n =20

for w in ["espérancejq"]:

chs = [".'] + list(w) + ['.']

for chl, ch2 in zip(chs, chs[1:]):
ixl = ctoilchl]
ix2 = ctoil[ch2]
prob = P[ix1, ix2]
logprob = torch.log(prob)
log_likelihood += logprob
n +=1
print (f'{ch1}{ch2}: {prob:.4f} {logprob:.4f}')

print(f'{log_likelihood=}"')
nll = -log_likelihood
print (f'{nll=}")

print (f'{nll/n}")

.e: 0.0570 -2.8648
es: 0.1657 -1.7978
sp: 0.0206 -3.8835
pé: 0.0506 -2.9830
ér: 0.0902 -2.4059
ra: 0.1247 -2.0818
an: 0.1693 -1.7762
nc: 0.0704 -2.6539
ce: 0.1439 -1.9384
ej: 0.0008 -7.1192
jgq: 0.0055 -5.2095

q.: 0.0123 -4.3994
log_likelihood=tensor(-39.1135)
nll=tensor(39.1135)
3.2594597339630127
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