24 )
ST | PsL# | s
MINES PARIS
Traitement Automatique des Langues
Natural Language Processing
Notes de cours

Georges-André Silber, CRI, Mines Paris, Université PSL
georges-andre.silber@minesparis.psl.eu
https://mines.paris/nlp

ES3A MES-07, 2025-2026
Version du 15 décembre 2025

Table des matieres

1 Logistique du cours 2
2 Introduction 2
2.1 LIAdanslapop cultire . . . ... . . .t it ittt it e et e e et e e et e e e 2
2.2 Qulest-ce qUe le TAL? . . . . i it e e e e e e e e e e e 3
2.3 Histoire sélective du TAL . . . . . . o oottt e e e e 3
2.4 Apprentissage automatique StatiStique . . . . . . . ..t e e e e e e e e e e e 4
2.4.1 Analyse syntaxique statiStique . . . . . . . . L . L e e e e e e 4

2.4.2 Modele de langue : distribution de probabilité . . . . .. ... ... ... ... 4

2.4.3 Création d'un modele de langue par comptage : n-grams . . . . ... ... ..o v 5

2.4.4 Approches par prédiCtion . . . . . . . . . e e e e e e e 5

2.5 Apprentissage automatique neuronal . . ... ... L e 6
2.6 4crévolution de 'accés a 'information . ... ... ... ... . e 9

3 Grammaires formelles 9
3.1 Informatique et langages. . . . . . . v vt i i e e e e e e e e e e 9
3.2 Langage formels, Hiérarchie de Chomsky . ..... ... ... ... .. ... ... ... . ...... 10
3.3 Langagesrationnels . . . . . ..o vt 10
3.4 Langages algébriques . . . . . . . .. e e e e e e 10
3.5 Langages CONtEXTUELS . . . . . . v vt i it it e e e e e e e e e e e 10
3.6 Langages réCUrsifs . . . . . . . o o i e e e e e e e e e 10
3.7 Lamachinede TUTING . . . . . . . i it ittt e e et e et e e e e e e 10
3.8 EXpressions réguli€res . . . . . . . . i e e 11
3.9 Travaux pratiques sur les expressions régulieres : Judilibre . . . . ... ... ... ... ... ... 12

4 Modele de langue bi-grammes par comptage 12
4.1 Implémentation via un NoteboOK JUPYLET . . . . . v v v v v vt i e e e e e e e 12
4.2 Points importants : TL; DRdunotebook . . ... ... ... ... . ... ... . .. . ... ... 12
4.3 Fonction de perte utilisant la "log-vraissemblance" (log-likelihood) . ... ... ... ... ..... 13
44 LISSAZE .« v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 14

5 Rétropropagation du gradient 14


https://mines.paris/nlp

6 Modele de langue bi-grammes avec un réseau de neurones 14

6.1 Travaux pratiques sur les tri-grammes . . . . . . . . . ..ttt 14

7 Perceptron Multi-Couches 14
8 Initialisations et normalisations 15
9 Réseau de type wavenet 15
10 Transformers 15
10.1 Mécanisme d’attention . . . . . . o v v i vt e e e e e e e e e e e e e e 15
10.1.1 Idée @énérale . . . . . . . o i v ittt e e e e e e 15

10.1.2 La formule de Pattention (Scaled Dot-Product) . . . . . .o v v v v v i i i e e 16

10.1.3 Utilité des projections . . . . . . v v v vt ittt e 16

10.2 Rotary Position Embedding (ROPE) . . . . . . . . . . i et e e 17

11 Fine-tuning 17

1 Logistique du cours

Le cours de Traitement Automatique des Langues (TAL), en anglais Natural Language Processing (NLP), se
compose de 16 séances d’1h30. Ces séances seront partagées entre cours magistraux et travaux pratiques,
principalement en Python 3.

Votre note finale au cours sera la moyenne pondérée des notes obtenues pour chaque TP que vous me rendrez
et du projet final, ce dernier ayant une pondération de 1/2. Un principe général est que vous me rendiez tous
les TP, avec un joker possible. Les TP seront a rendre en fin de séance, avec la possibilité de le rendre plus
tard, mais impérativement avant la séance suivante.

Les moyens de calcul que vous pourrez utiliser pour les travaux pratiques et le projets seront composés de vos
propres machines, de machines des mines et de moyens de calculs loués chez Scaleway pour ce cours.

Vous aurez le choix entre plusieurs projets (6 dans I'édition 2024-2025 du cours), avec un niveau technique
différent entre chaque projet.

2 Introduction

2.1 L’TIA dans la pop culture

Le développement récent de I'TA et du NLP est une révolution culturelle, notamment depuis le "choc" chatGPT
de 2022. L'TA a cependant une longue histoire, notamment dans le domaine de la langue, que I'on peut illustrer
par des ceuvres des la "pop culture" :

— Le "turc mécanique" (https://fr.wikipedia.org/wiki/Turc_mATcanique);

— Le test de Turing (Computing Machinery and Intelligence) [6];

— Blade Runner (Ridley Scott, 1982). Adaptation du livre "Do Androids Dream of Electric Sheeps ?" de Philip
K. Dick (1966). Terre dévastée en 2019, a Los Angeles, il reste des humains qui n’ont pas pu ou pas
choisi d’aller sur mars. Test Voight-Kampff pour détecter les réplicants, adaptation du test de Turing;

— "2001 lodyssée de Uespace" de Stanley Kubrick (1968) et son IA HAL 9000 : https://youtu.be/ARI8CAG
m6JE.

— "Terminator" de James Cameron (1984). IA militaire Skynet qui a détruit la planete. Androide T-800
qui est renvoyé dans le passé pour détruire la mere du futur leader de la resistance (Sarah Connor).
https://www.youtube.com/watch?v=QaagRs5pX_E

— "Wargames" de John Badham (1984). IA militaire WOPR (War Operation Plan Response), concue pour
pallier la défaillance des humains dans la décision de déclenchement du feu nucléaire.https://youtu.
be/7ROmD3uWk5c, https://youtu.be/tGNBdjV004Y, https://youtu.be/F7q0V8xonfY.

— "Her" de Spike Jonze (2013).


https://www.scaleway.com/en/
https://fr.wikipedia.org/wiki/Turc_mécanique
https://youtu.be/ARJ8cAGm6JE
https://youtu.be/ARJ8cAGm6JE
https://www.youtube.com/watch?v=QaagRs5pX_E
https://youtu.be/7R0mD3uWk5c
https://youtu.be/7R0mD3uWk5c
https://youtu.be/tGNBdjVO04Y
https://youtu.be/F7qOV8xonfY

2.2 Qu’est-ce que le TAL?

Fondamentalement, il s’agit d’apprendre les langues aux machines.

Applications du TAL (transparents MVA 2024, de 8 a 27) (transparents originaux).
Challenges (transparents MVA 2024, de 63 a 87).

Les grands modeles de langues réalisent trés bien la plupart de ces taches (les LLM sont a I’état-de-l’art,
souvent abrégé SoTA comme State of The Art).

2.3 Histoire sélective du TAL

La langue humaine est cceur de l'Intelligence Artificielle : "reproduire (imiter) informatiquement des comporte-
ments qui font traditionnellement appel a Uintelligence humaine". L'utilisation du langage est I'un de ces com-
portements.

— 1933, les machines a traduire de Georges Artsrouni

— 1940-1949, progres en théorie des automates, langages formels, probabilités, théorie de I'information.
Travaux de Booth, Weaver, Richens

— 1949, Mémorandum "Translation" de Warren Weaver

— 1950, Computing Machinery and Intelligence (A. Turing)

— 1954, expérience Georgetown-IBM, traduction du russe vers I'anglais

— 1955, introduction du terme "Artificial Intelligence" par John Mac Carthy a la conférence de Dartmouth

— 1958, "The History and Recent Progress of Machine Translation" par A.D. Booth

— 1966, ELIZA (Joseph Weizenbaum)

— 1968, SHRDLU (PhD de Terry Winograd au MIT)

— 1970-2000, « ontologies conceptuelles », approches symboliques

— 1988, approches par apprentissage automatique statistique

— 2010, approches par apprentissage automatique neuronal

— 2018, BERT (Google)

— 2020, GPT-3 (OpenAl)

— 2022, ChatGPT (OpenAlI)

— 2023, Poids et code ouvert : llama (Meta)

— 2025, Multimodalité : Gemini (Google), Mistral Al, Claude (Anthropic), GPT 5 (OpenAl)

Memorandum "translation" (1949) Grand impact scientifique et politique :

1. ambiguité peut-étre résolue grace au contexte ;

2. la traduction a une solution formelle, ou solution mécanique, car le langage a une structure logique;

3. les méthodes cryptographiques s’appliquent (par exemple, 'anglais peut-étre vu comme du russe chif-
fré);

4. le sens peut-étre représenté indépendamment de la langue.

Expérience Georgetown-IBM (1954) 60 phrases traduites du russe en anglais. 250 mots et 6 régles syn-
taxiques. Enthousiasme considérable : "five, perhaps three years" (IBM), "dans 15 ans on estime que des traduc-
teurs électroniques pourront étre utilisés dans les assemblées internationales comme les nations unies" (Le Monde).
"The Brain" dans les articles de presse. Quelques retours plus nuancés : "a vast amount of work is still needed"
(Neil Macdonald, 1954), "a kitty hawk flight (J. Hutchins, 2006).

Conférence de Dartmouth (1955) John McCarthy est également 'inventeur du temps partagé, du langage
fonctionnel LISP (LISt Processing), prix Turing 1971. L'un des péres fondateurs de la discipline. Le terme
"Artificial Intelligence" a été utilisé pour la premiere fois dans le cadre de la session de travail de Dartmouth,
connue comme le Darthmouth Workshop, ou pendant huit semaines se sont réunis McCarthy, Minsky, Rochester
et Shannon : "the study is to proceed on the basis of the conjecture that every aspect of learning or any other feature
of intelligence can in principle be so precisely described that a machine can be made to simulate it."


https://mines.paris/nlp/bib/20240301-MVA2024-1-p8-27.pdf
https://github.com/rbawden/MVA_2024_SL/blob/main/Course_%231/20240301-MVA2024-1.pdf
https://mines.paris/nlp/bib/20240301-MVA2024-1-p63-87.pdf
https://www.persee.fr/doc/rhs_0048-7996_1965_num_18_3_2427
https://www.mt-archive.net/50/Weaver-1949.pdf
https://mines.paris/nlp/bib/TuringAM1950.pdf
https://en.wikipedia.org/wiki/Georgetown–IBM_experiment
https://mines.paris/nlp/bib/HutchinsJ2006.pdf
https://fr.wikipedia.org/wiki/Conférence_de_Dartmouth
https://aclanthology.org/www.mt-archive.info/Booth-1958-1.pdf
https://fr.wikipedia.org/wiki/ELIZA
https://mines.paris/nlp/bib/WeizenbaumJ1966.pdf
https://fr.wikipedia.org/wiki/SHRDLU
https://mines.paris/nlp/bib/WinogradT1971.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://openai.com/blog/chatgpt
https://github.com/meta-llama/llama-models
https://gemini.google.com
https://mistral.ai
https://claude.ai
https://openai.com/fr-FR/gpt-5/
https://mines.paris/nlp/bib/MacdonaldN1954.pdf
https://mines.paris/nlp/bib/HutchinsJ2006.pdf
https://fr.wikipedia.org/wiki/John_McCarthy

2.4 Apprentissage automatique statistique

Deux familles d’approches pour faire faire un calcul a une machine :

— régles (approche symbolique) : on écrit un programme explicite, fixe, décrivant la maniere exacte d’ef-
fectuer les opérations;

— apprentissage automatique supervisé : on montre des exemples a la machine du résultat a obtenir, et la
machine apprend a reproduire le résultat (trouve elle-meme un "programme" réalisant le calcul).

En apprentissage automatique, on a une architecture fixe et un modele variable qui comporte des parameétres,
tel que décrit dans le schéma ci-dessous.

architecture modeéle

"Apprendre" — Trouver les "meilleures" valeurs possibles pour les parameétres. Les parameétres du modéles sont
chargés dans l'architecture pour reproduire les résultats appris.

2.4.1 Analyse syntaxique statistique

Supposons que 'on cherche a traduire du francais vers I'anglais : on veut trouver la meilleure traduction y en
anglais d’une phrase x en francais. On modélise la qualité d’'une traduction par une probabilité P(y|x). On
cherche la meilleure traduction y, que 'on modélise par argmax, P(y|x). L'application du théoréme de Bayes,
en faisant ’hypothese raisonnable que P(x) n’est pas nul puisque c’est la phrase de départ :

P(x | y).P(y)

Py 1) = =5

nous permet de décomposer cette probabilité en deux composantes séparées :

argmax, P(x | y).P(y)

en ne s'intéressant qu’aux composantes ol intervient y.

On a deux modeles, un modéle de traduction P(x | y), qui modélise comment les mots et séquences de mots
doivent étre traduits pour préserver le sens (appris a partir de corpus paralléles), et un modeéle de langue (P(x))
qui modélise comment produire des phrases en anglais correct (appris a partir de corpus monolingues).

2.4.2 Modele de langue : distribution de probabilité

Un modéle de langue est une distribution de probabilité sur les séquences de mots, plus la probabilité est
élevée, plus la séquence de mots est correcte par rapport a la langue considérée.

Par exemple, en francais, il faut que dans notre modeéle I'inégalité suivante soit vraie :

P(Je mange une pomme verte) > P(est llkdef bla topaz)


https://fr.wikipedia.org/wiki/Théorème_de_Bayes

2.4.3 Création d’un modele de langue par comptage : n-grams

Pour plus de simplicité, nous allons introduire ici le terme token par lequel nous allons désigner indifféremment
un caractere, un groupe de caracteres ou un mot.

Un n-gram est une séquence de n tokens : un 2-gram ou bigram est une séquences de 2 tokens, un 3-gram
ou trigram une séquence de trois caractéres, etc. L'un des modeles de langue les plus simple est le modéle
n-gram qui est un modele probabiliste qui peut estimer la probabilité d’un token étant donné les n — 1 tokens
précédents.

Considérons la tAche de déterminer la probabilité P(t | ¢) d’un token t étant donné un contexte c, ol ¢ est une
suite de tokens. Par exemple, avec des tokens équivalents a des mots, considérons que c est égal a La plus belle
ville du monde est et qu’on veille connaitre la probabilité que t soit Périgueux :

P(Périgueux | La plus belle ville du monde est)

Une maniére d’estimer cette probabilité est de compter dans un trés grand corpus de textes la fréquence
d’apparition f, de la phrase de contexte "La plus belle ville du monde est" et la fréquence d’apparition f,
de la de la phrase complete "La plus belle ville du monde est Périgueux". On pourrait ensuite déterminer

P(t | C) cht/fC'

Outre que cette approche nécessite une grande quantité de mémoire pour stocker les phrases associées a leurs
fréquences, le langage est tres divers et une phrase qui n’a pas été vue dans le corpus d’apprentissage donnera
une probabilité nulle.

En partant de 'hypothése que I'on peut approximer le contexte par uniquement quelques tokens précédents,
on peut utiliser une chaine de Markov, permettant par exemple de construire un modele 3-gram permettant
d’écrire, avec le caractere O indiquant le mot vide :

P(La plus belle ville du monde est Périgueux)
=P(La | O0O) x P(plus | O La) x P(belle | La plus) x P(ville | plus belle) x - - - x P(Périgueux | monde est)

Le comptage se simplifie car il revient a ne plus compter que des 3-gram pour obtenir des probabilités. Par
contre cette approche a des limites dans les contextes long. Comment par exemple déterminer avec le "long"
contexte suivant :

"Marie, pour réfléchir, a 'habitude de se parler a"
si le token suivant doit étre "elle-méme" ou "lui-méme"?

Note : fin de la séance du 9/12/2025.

2.4.4 Approches par prédiction

Apprendre a prédire le token le plus probable étant donné un certain contexte :

— contexte gauche : modele génératif (GPT en apprentissage neuronal)
— contexte complet : modéle par masquage (BERT en apprentissage neuronal)

Pt s I
- s>
P P M-
, B s =0EES
N “E—




2.5

Apprentissage automatique neuronal

Aujourd’hui : domination des approches neuronales. Pourquoi? Progression de la recherche (deep lear-
ning) ; technologies de la puissance de calcul (cpu, gpu, mémoire, réseaux rapides) ; données massives dispo-
nibles sur étagere (internet) ; grands corpus arborés créés a la main (héritage de la linguistique "classique" et
statistique).

Histoire sélective et rapide des réseaux neuronaux

1943, Notion de neurone artificiel (McCulloch & Pitts)

1957/1958, Apprentissage supervisé, Perceptron (Rosenblatt, 1957, 1958)
1962, Plusieurs couches en propagation avant (Rosenblatt)

1986, Rétropropagation du gradient (Rumelhart, Hinton, Williams)

1989, Réseaux convolutifs (Le Cun et al.)

1990, Réseaux récurrents (Elman)

1997, LSTM (Hochreiter)

2006, Deep Learning, c = 3 (Hinton, Bengio)

2017, Architecture Transformer (Vaswani et al.)

Neurone artificiel

i) wo

*@ synapse
axon from a neuron
woxo

cell body f wam.- +b
w1 i
i Zwimé i f output axoﬁ
activation
Wo Lo function

Taken from : https://www. jeremyjordan.me/intro-to-neural-networks/


https://mines.paris/nlp/bib/MccullochWS1943.pdf
https://mines.paris/nlp/bib/RosenblattF1957.pdf
https://mines.paris/nlp/bib/RosenblattF1958.pdf
https://mines.paris/nlp/bib/RosenblattF1962.pdf
https://mines.paris/nlp/bib/RumelhartDE1986.pdf
https://mines.paris/nlp/bib/LeCunY1989.pdf
https://mines.paris/nlp/bib/ElmanJL1990.pdf
https://mines.paris/nlp/bib/HochreiterS1997.pdf
https://mines.paris/nlp/bib/HintonGE2006.pdf
https://mines.paris/nlp/bib/BengioY2006.pdf
https://mines.paris/nlp/bib/VaswaniA2017a.pdf
https://www.jeremyjordan.me/intro-to-neural-networks/

Réseau multi-couches

A
cle
¢
o;o

I
A
X
N
”‘\ 4
R
.;

_- ‘ ‘ output layer

hidden layer 1 hidden layer 2

X
.%’
X
. 1

input layer

Taken from : https://cs231n.github.io/neural-networks-1/

Réseau causal

Taken from : B. Sagot


https://cs231n.github.io/neural-networks-1/

Réseau par masquage

était <MASK> fois

Taken from : B. Sagot



Réseau conditionnel

fois

Taken from : B. Sagot

Perplexité Généralisation : donner une probabilité élevée a des séquences de test jamais vues lors de I'ap-
prentissage.

Plus la perplexité est basse, "meilleur" est le modele.

Limité par le fait que le données de test doivent étre similaires aux données d’apprentissage.

2.6 4 révolution de l’acces a I'information
Extrait de la lecon inaugurale de Benoit Sagot au College de France (11/2023) :
Ecriture : stockage des informations de maniére externe et pérenne. Outil d’acces  'information

Imprimerie : externalisation et diffusion facilités;
Web : numérisation massive, moteurs de recherche. Automatisation de 'identification des sources;

W=

IA : restitution des informations et capacité externe de raisonnement.

3 Grammaires formelles

3.1 Informatique et langages

Relation forte depuis l'origine de I'informatique en tant que science.


https://www.youtube.com/watch?v=uPiD8SFv41A

3.2 Langage formels, Hiérarchie de Chomsky

https://fr.wikipedia.org/wiki/HiAIrarchie_de_Chomsky

3.3 Langages rationnels

Langages réguliers, expressions réguliéres.

3.4 Langages algébriques
Langages hors-contexte.

Langages de programmation.

3.5 Langages contextuels
Langages sensibles au contexte.

Langues naturelles se situent entre langages contextuels et algébriques, "langages légérement sensibles au
contexte".

3.6 Langages récursifs
Langages récursivement énumérables.

Programmes.

3.7 La machine de Turing

Objet mathématique abstrait composé :

— d’une bande infinie découpé en cases pouvant contenir un symbole ;
— d’une téte de lecture pouvant a chaque étape lire un symbole, écrire un symbole, puis se déplacer sur la
bande d’une case a gauche ou a droite;

— un registre fini d’états dans lesquels peut se trouver la machine;
— une table d’action indiquant pour un état et un symbole I'action a effectuer.

Une machine de Turing déterministe est un septuplet M = (Q,T, b, %, 8,q,, F) ou :

— Q est 'ensemble fini non vide des états ;

— T est 'ensemble fini non vide des symboles de la bande;

— b €T est le symbole blanc;

— Y CT'\{b} est 'ensemble des symboles d’entrée, les seuls symboles autorisés initialement sur la bande ;

— 6 :(QNF)xT 4 QxT x {«,—} est la fonction partielle de transition. Si & n’est pas définie sur I'état
courant et le symbole courant, la machine s’arréte ;

— (o € Q est I'état initial ;

— F CQ est ’'ensemble des états acceptants : le contenu initial de la bande est accepté par M si elle s’arréte
dans un état de F.

Exemple de partie de & : 6(q;, x) = (q,, y, <) indique que dans I’état q; quand x est lu sur la bande, on passe
en état g,, on écrit y et on se déplace a «.
Une machine de Turing non déterministe est un septuplet M = (Q,T, b, %, 5,q,, F) ot :

— Q est 'ensemble fini non vide des états ;

— T est 'ensemble fini non vide des symboles de la bande;;
— b €T est le symbole blanc;

10


https://fr.wikipedia.org/wiki/Hiérarchie_de_Chomsky

— Y CT'\{b} est 'ensemble des symboles d’entrée, les seuls symboles autorisés initialement sur la bande ;

— 0 C(QNF xT)x(QxT x {«,—>}) est la relation de transition ;

— qo € Q est I'état initial ;

— F C Q est'ensemble des états acceptants : le contenu initial de la bande est accepté par M si une branche
s’arréte dans un état de F.

Deterministic Non-Deterministic
'y . .
‘ ¢ o/ \a
\L accept — -/ /l/‘l'\ .
. N
¢ L L ] [ ]
f(n) f(n)
N _
l o — reject
. 4 .
a pt or L accep
X q.t.ﬁré’]{:ct

3.8 Expressions régulieres

— Expressions réguliéres par génération d’un automate fini (Ken Thompson).
— grep, lex, analyseur lexical

— https://regexcrossword.com

— Python : import re

— hyperscan

Exemple 1 : utilisation dans un IDE

#define MAX_URI_COUNTRY 3
#define MAX_URI_CORPUS 5
#define MAX_URI_NATURE 70
#define MAX_URI_YEAR 5
#define MAX_URI_MONTH 3
#define MAX_URI_DAY 3
#define MAX_URI_NUMBER 30
#define MAX_URI_VERSION 9
#define MAX_URI 256

MAX_(\w+)
$1_MAX

Exemple 2 : découpage d’un arrét de cour d’appel d’Agen

intro_re = re.compile(
r'*(?P<intro>.*?) (?=("'
r'<p>\s*A\s+rendu\s+l.arrét\s+((réputé\s+)?
r'contradictoire|par\s+défaut)"’
r'|<p>\s*EXPOS(E|E)\s*DU\s*LITIGE'
r'|<p>A rendu réputé l.arrét réputé contradictoire'
r>o’,
re.UNICODE |re.DOTALL |re.MULTILINE|re.IGNORECASE)
decision_re = re.compile(
r' (?P<decision>(<p>par\sxces\sxmotifs).*)$"',

11


https://regexcrossword.com
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html

re.U|re.DOTALL |re .MULTILINE|re.IGNORECASE)

Exemple 3 : numéros d’alinéas (Droit Quotidien)

alinea_number = (
r ("
r'\w\) (?=\s+)"
r|\d{1,23°(\stbis)?(?=\.2\s+)"
r' INd{1,23(\s+bis)?(?=\.2\s+)"
r" | LIVX]+(?=\.\s+)"
N

3.9 Travaux pratiques sur les expressions réguliéres : Judilibre

https://github.com/gasilber/tp_nlp_regexps_mines

4 Modele de langue bi-grammes par comptage

4.1 Implémentation via un notebook Jupyter
Notebook : https://mines.paris/nlp/notebooks/001_makemore_bigrams/makemore_bigrams_final.ipynb

Pour utiliser ce notebook en local sur votre machine, un premiere possibilité est de créer un environnement
virtuel python et d’y installer les paquetages nécessaires au lancement de Jupyter Lab :

python3 -m venv .venv/notebooks

source .venv/notebooks/bin/activate

pip install -r requirements.txt # Contenu du fichier plus bas
jupyter lab

Fichier requirements. txt a créer :

jupyterlab
numpy
matplotlib
graphviz
torch

Vous aurez également besoin du fichier civil_mots. txt que vous pouvez télécharger ici.

4.2 Points importants : TL; DR du notebook

Représentation des nb_chars caracteres sous la forme d’entiers (tokens).

Utilisation d’un tenseur PyTorch d’ordre 2 pour stocker le nombre d’occurences des bigrammes :
N = torch.zeros((nb_chars, nb_chars), dtype=torch.int32)

Chaque compte est un logit (logistic unit), c’est-a-dire une mesure "brute", que 'on va ensuite chercher a
interpréter comme une probabilité, en ramenant ces logits a des valeurs entre O et 1, avec une somme égale
al.

D’un pont de vue mathématique, un logit est le logarithme des “cotes” (ou odds en anglais) : si p est la
probabilité qu'un événement se produise (entre 0 et 1), le logit est défini par la formule

p
1—p)

logit(p) = In(

12


https://github.com/gasilber/tp_nlp_regexps_mines
https://mines.paris/nlp/notebooks/001_makemore_bigrams/makemore_bigrams_final.ipynb
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://jupyter.org
https://mines.paris/nlp/notebooks/001_makemore_bigrams/civil_mots.txt

ol 1’%1, représente les cotes (le ratio entre la chance que quelque chose arrive et que quelque chose n’arrive
pas).

Pour passer des logits a des probabilités, dans notre cas, on fait un "genre de" softmax :

P = N.float() # Passage de int a float
P /= P.sum(1, keepdims=True)

La "vraie" fonction softmax étant définie comme :

e%

o(z)j = ——
(2); S e

Génération de mots a partir du modéle :

g = torch.Generator().manual_seed(2147483647)

def generate_word(P, g):
out = [] # Caractéres du mot généré
ix = @ # Token du premier caractére
while True: # On échantillone jusqu'a rencontrer un nouveau '.'
p = P[ix] # Vecteur des probabilités des bi-grammes commencant par ix
# Tirage aléatoire d'un nouveau caractére par rapport a la distribution 'p'
ix = torch.multinomial(p, num_samples=1, replacement=True, generator=g).item()

if ix == @: # Si c'est un '.' on s'arréte
break
out.append(itoc[ix]) # Ajout du caracteéere tiré
return ''.join(out)

Voir torch.Generator() et torch.multinomial().
Les mots générés sont par exemple :

éssanée
mexcororeér
monts

ex

moUt

4.3 Fonction de perte utilisant la "log-vraissemblance" (log-likelihood)

Fonction de perte (loss) permettant de mesurer la "qualité" du modeéle a parametres constants. On cherche a
maximiser la vraissemblance (likelihood) des données, considérant les parameétres du modéle. Il est équivalent
et plus commode de maximiser le logarithme naturel de cette vraisemblance (log est strictement croissant),
ce qui revient a minimiser 'opposée de cette log-vraissemblance. En pratique, on va cherche a minimiser la
moyenne de 'opposée de la log-vraissemblance.

def loss_score(words:list, P:torch.tensor):
log_likelihood = 0.0
n=2=2
for w in words:
chs = ['.'] + list(w) + ['."']
for ch1l, ch2 in zip(chs, chs[1:]1):
ix1 = ctoilch1]
ix2 = ctoilch2]
prob = P[ix1, ix2]
logprob = torch.log(prob)
log_likelihood += logprob
n +=1

13


https://docs.pytorch.org/docs/stable/generated/torch.Generator.html
https://docs.pytorch.org/docs/stable/generated/torch.multinomial.html

nll = -log_likelihood
score = nll / n # Moyenne
return score

Le modéle précédent donne un score (perte) de 2, 34, qui représente la qualité de notre modéle par comptage.

Note : si tous les caractéres étaient équiprobables,

4.4 Lissage

Notre modéle se comporte de maniére stricte lorsqu’il rencontre une combinaison de caracteres qu’il ne connait
pas. Par exemple, si on cherche le score d’un mot comme espérancejq, ott la combinaison jq a une probabilité
0, ce score est 00, car selon le code précédent de la fonction de perte, on utilise la fonction log avec une valeur
nulle, qui en mode flottant en python renvoie l'infini.

Habituellement, on fait donc du lissage de modeles (smoothing), en ajoutant par exemple 1 a tous les comptage
avant de calculer les probabilités (noter le N+1 ci-dessous) :

P = (N+1).float()

P /= P.sum(1, keepdims=True)

5 Rétropropagation du gradient
Notebooks :

— https://mines.paris/nlp/notebooks/002_micrograd/micrograd_1.ipynb
— https://mines.paris/nlp/notebooks/002_micrograd/micrograd_2.ipynb

Pour installer ce notebook, vous pouvez suivre les instructions du chapitre précédent.

6 Modele de langue bi-grammes avec un réseau de neurones

Notebook : https://mines.paris/nlp/notebooks/003_makemore_neural/makemore_neural_final.ipynb

6.1 Travaux pratiques sur les tri-grammes

Reprendre 'exemple du modéle bi-grammes, par comptage et neuronal, pour passer a des tri-grammes, c’est-
a-dire des suites de trois caractéres.

A rendre : le notebook résultat ou le code python correspondant (par email).

7 Perceptron Multi-Couches

L’article de 2023 de Bengio et al., "A Neural Probabilistic Language Model" [1], est 'un des premiers a proposer
une solution efficace de type MLP (Multi-Layer Perceptron).

Idée clef : associer a chaque mot (ou caractére dans notre cas) un vecteur de caractéristiques (embedding)
dans un espace de dimension réduite (par ex. 30 dimensions, ou 2 dimensions dans notre cas). Avantage : les
mots ayant un sens similaire se retrouveront proches dans cet espace, permettant au modéle de généraliser a
des séquences jamais vues auparavant.

14


https://mines.paris/nlp/notebooks/002_micrograd/micrograd_1.ipynb
https://mines.paris/nlp/notebooks/002_micrograd/micrograd_2.ipynb
https://mines.paris/nlp/notebooks/003_makemore_neural/makemore_neural_final.ipynb
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

8 Initialisations et normalisations
9 Réseau de type wavenet

10 Transformers

Il y a trois architectures de Transformer principales : encodeur-décodeur [7], utilisé typiquement pour de la
traduction, encodeur seul [4], utilisé typiquement pour la classification, et décodeur seul [5], utilisé typique-
ment dans les IA génératives.

Nous allons principalement détailler le modéle décodeur seul, qui est 'approche la plus utilisée pour entrainer
des modeles de langage auto-régressifs.

Notebook utilisé pour le cours : https://mines.paris/nlp/notebooks/007_gpt/gpt.ipynb

Voir également le notebook d’A. Burkov [2] ot il construit également un décodeur de Transformeur : https:
//github.com/aburkov/theLMbook/blob/main/news_decoder_language_model. ipynb.

10.1 Mécanisme d’attention
10.1.1 Idée générale

L'introduction explicite des matrices Q (query), K (key) et V' (value) a été popularisée par I’article fondateur
"Attention Is All You Need" [7], qui a présenté I'architecture Transformer. Les termes query, key et value pro-
viennent directement des systéemes de bases de données et de la recherche d’information, ici appliqués aux
tokens.

L’attention elle-méme a été introduite aux alentours de 2014 [3], par Dzmitry Bahdanau. Il s’intéressait avec
Yoshua Bengio un challenge fondamental en traduction automatique [2, p.122] : apprendre a un RNN de se
concentrer sur les morceaux les plus pertinents d’une phrase lors du processus de traduction. Ce mécanisme
que Y. Bengion appela "attention", est devenu une pierre angulaire des réseaux de neurones modernes.

Ainsi, dans le mécanisme d’attention, chaque token va étre associé a trois vecteurs, dans un espace a d
dimensions :

— q : ce que le token recherche;
— k : ce que le token répond ;
— v : ce que le token contient.

Lintuition fondamentale est de dissocier ces trois sujets : la maniere dont on recherche une information (q) et
la maniere dont cette information est indexée (k) ne doivent pas nécessairement étre identiques a I'information
elle-méme (v).

Les i vecteurs associés aux tokens présents dans la séquence d’entrée représentée par la matrice X seront
associés a leurs vecteurs q;, k; et v; aggrégés dans les matrices Q, K et V.

Avant les Transformers, notamment dans les modeéles Seq2Seq avec attention [3], 'attention était calculée
directement entre les états cachés de 'encodeur et du décodeur.

L’état caché devait donc tout faire, représenter le sens du mot, servir de clé pour étre comparé, et servir de
valeur pour étre additionné, limitant ainsi 'expressivité du modéle : un vecteur devait représenter simultané-

non

ment "ce que je suis", "comment je me connecte aux autres" et "ce que japporte comme information".
Lintroduction des projections apprises par le réseau W2, WX et WV a permis de découpler ces réles :
— le role de @ (les questions) : le modele apprend a transformer les tokens actuels en des questions. Par

exemple, si le token actuel représente le mot "le", son vecteur g pourrait chercher (via I'attention) un
nom commun qui suit;

15


https://mines.paris/nlp/notebooks/007_gpt/gpt.ipynb
https://github.com/aburkov/theLMbook/blob/main/news_decoder_language_model.ipynb
https://github.com/aburkov/theLMbook/blob/main/news_decoder_language_model.ipynb

n4

— leréle de K (les réponses) : le modele apprend a transformer chaque token en une "étiquette" ou une
p pPp q q

"clé". Le token associé au nom "chat" aura un vecteur k qui répondra fortement (similarité cosinus) a la
question posée par le g de "le";

— le r6le de V' (les contenus) : une fois que P'attention est établie (affinité entre g et k), on ne veut pas

q q p
forcément transmettre I'information grammaticale utilisée pour la correspondance. On veut transmettre
g p p

le sens sémantique du mot. C’est le role de V.

10.1.2 La formule de l’attention (Scaled Dot-Product)
Soit une séquence d’entrée X € R"™%. Les projections sont définies par :
Q=XW? K=XW< v=xw'

et l'attention est calculée ainsi, avec M un masque d’attention permettant de ne pas tenir compte de certaines
valeurs positionnées dans le masque a —oo (les autres étant positionnées a 0) :

QK"

k

Attention (Q, K,V) = softrnax( + M) Vv
Par exemple, dans un modele génératif causal, le masque assure que les tokens ne peuvent préter attentions

qu’aux tokens les précédants. D’autres utilisations de ce masque sont possibles, par exemple pour implémenter
du "Continuous batching".

10.1.3 Utilité des projections

Asymétrie. Si nous n’utilisions pas de matrices de projection (Q = K =V = X), la formule de similarité
deviendrait X X T : la matrice d’attention serait symétrique. Or, le langage est intrinséquement asymétrique :

dans la phrase "Le chat mange", le verbe "mange" doit porter une forte attention a "chat" pour s’accorder, mais
l'inverse n’est pas vrai.

En utilisant W< et WX nous calculons (X WQ)(X WX)T et cela brise la symétrie : méme si les entrées sont
fixes, la relation devient dirigée et apprenable.

Par ailleurs, sans matrices de projection, un vecteur x; devrait étre géométriquement proche des vecteurs avec
lesquels il interagit : pour que le pronom "II" s’aligne avec le nom "Pierre" dans une phrase, leurs vecteurs
devraient étre proches (produit scalaire élevé). Pourtant, sémantiquement, un pronom et un nom propre sont
des entités différentes et ne devraient donc pas occuper la méme place dans I'espace latent.

Les matrices résolvent ce conflit par projection :

— WX projette "Pierre" dans un sous-espace "Antécédent Masculin";
— WQ projette "Il" dans ce méme sous-espace en tant que "Recherche d’Antécédent".

Cela permet un "match" fort sans corrompre la représentation sémantique originale des mots.

Séparation de I’alignement et du contenu. La sortie de 'attention est une somme pondérée z; = Y, j ijvj.
Si V = X, la sortie ne serait qu'une moyenne des entrées.

La matrice W agit comme un sélecteur de caractéristiques. Elle permet transmettre uniquement I'information
pertinente pour la couche suivante (par exemple, conserver 'information grammaticale mais ignorer le style),
indépendamment de I'information utilisée pour 'affinité (Q et K).

Expressivité et Multi-Head Attention. Enfin, l'utilisation de h tétes d’attention (Multi-Head) implique h en-
sembles de matrices {Wl.Q, WiK , WiV}, permettant de projeter 'entrée X dans plusieurs sous-espaces différents
simultanément. Une téte peut se spécialiser sur la grammaire, une autre sur les références temporelles, et
une autre sur les liens causaux. Sans ces projections spécifiques, le modele ne pourrait calculer qu'une unique
"moyenne" de toutes les relations possibles.

16


https://huggingface.co/blog/continuous_batching

Synthese. Lintroduction des matrices Q, K et V transforme une simple opération de moyenne basée sur
la similarité en un mécanisme de routage d’information flexible. Elles permettent :

1. de créer des relations asymétriques (Q, K) ;
2. de séparer I'alignement du contenu (V) ;
3. d’explorer plusieurs sous-espaces sémantiques simultanément (Multi-Head).

10.2 Rotary Position Embedding (RoPE)

11 Fine-tuning

https://github.com/aburkov/thelLMbook/blob/main/emotion_classifier_LR.ipynb

https://github.com/aburkov/thelLMbook/blob/main/emotion_GPT2_as_text_generator.ipynb

Références

[1]
(2]
(3]

(4]
(5]

(6]

(71

Yoshua BENGIO et al. “A neural probabilistic language model”. In : The Journal of Machine Learning
Research (1°" mars 2003). URL : https://dl.acm.org/doi/10.5555/944919.944966 (cf. p. 14).

Andriy Burkov. The Hundred-Page Language Models Book. 2025. URL : https://www. thelmbook . com/
(cf. p. 15).

Kyunghyun CHo et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation. 2 sept. 2014. arXiv : 1406.1078[cs, stat]. URL : http://arxiv.org/abs/1406.1078 (cf.
p. 15).

Jacob DEVLIN et al. “BERT : Pre-training of deep bidirectional transformers for language understanding”.
In : CoRR abs/1810.04805 (2018). URL : http://arxiv.org/abs/1810.04805 (cf. p. 15).

Alec RADFORD et al. Improving Language Understanding by Generative Pre-Training. 2019. URL : https:
//cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper . pdf
(cf. p. 15).

Alan Mathison TurING. “Computing machinery and intelligence”. In : Mind; a quarterly review of psycho-
logy and philosophy LIX.236 (oct. 1950), p. 433-460. URL : https://doi.org/10.1093/mind/LIX.236.433
(cf. p. 2).

Ashish VaswaNTI et al. Attention Is All You Need. 2017. arXiv : 1706.03762[cs]. URL : http://arxiv.org/
abs/1706.03762 (cf. p. 15).

17


https://github.com/aburkov/theLMbook/blob/main/emotion_classifier_LR.ipynb
https://github.com/aburkov/theLMbook/blob/main/emotion_GPT2_as_text_generator.ipynb
https://dl.acm.org/doi/10.5555/944919.944966
https://www.thelmbook.com/
https://arxiv.org/abs/1406.1078 [cs, stat]
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1810.04805
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.1093/mind/LIX.236.433
https://arxiv.org/abs/1706.03762 [cs]
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

	Logistique du cours
	Introduction
	L'IA dans la pop culture
	Qu'est-ce que le TAL?
	Histoire sélective du TAL
	Apprentissage automatique statistique
	Analyse syntaxique statistique
	Modèle de langue: distribution de probabilité
	Création d'un modèle de langue par comptage: n-grams
	Approches par prédiction

	Apprentissage automatique neuronal
	4e révolution de l'accès à l'information

	Grammaires formelles
	Informatique et langages
	Langage formels, Hiérarchie de Chomsky
	Langages rationnels
	Langages algébriques
	Langages contextuels
	Langages récursifs
	La machine de Turing
	Expressions régulières
	Travaux pratiques sur les expressions régulières: Judilibre

	Modèle de langue bi-grammes par comptage
	Implémentation via un notebook Jupyter
	Points importants: TL; DR du notebook
	Fonction de perte utilisant la "log-vraissemblance" (log-likelihood)
	Lissage

	Rétropropagation du gradient
	Modèle de langue bi-grammes avec un réseau de neurones
	Travaux pratiques sur les tri-grammes

	Perceptron Multi-Couches
	Initialisations et normalisations
	Réseau de type wavenet
	Transformers
	Mécanisme d'attention
	Idée générale
	La formule de l'attention (Scaled Dot-Product)
	Utilité des projections

	Rotary Position Embedding (RoPE)

	Fine-tuning

