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« Il faut toujours plus de temps que prévu, même en tenant compte de la loi de
Hofstadter. »

— Douglas Hofstadter, Gödel, Escher, Bach, 1979.
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« Software expands to fill the available memory. (Parkinson) »

« Software is getting slower more rapidly than hardware is becoming faster.
(Reiser) »

— Niklaus Wirth, A Plea for Lean Software, 1995.

« Software : it’s a gas ! »

— Nathan P. Myhrvold, The Next Fifty Years of Software, 1997.
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Donald E. Knuth : theory and practice (A.M. Turing Award 1974)

Challenge de Knuth : «make a thorough
analysis of everything your computer
does during one second of
computation. »
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Niklaus Wirth : the art of simplicity (A.M. Turing Award 1984)

Simple vs complex. Essential vs
Ephemeral. A tools is counterproductive
when a large part of the entire project is
taken up by mastering the tool. One
learns best when inventing : every single
project as a learning experiment.
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High Performance Computing et
TOP500



Qu’est-ce qu’un supercalculateur?

• Des chips du commerce (avec plusieurs cœurs) ;

• En ajoutant un ou des GPU on obtient un nœud (serveur) ;

• Les serveurs sont rassemblés dans des armoires (racks) ;

• Puis interconnectés avec des switchs.
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Exaflop?

• 1 flop : une addition ou multiplication d’un flottant sur 64 bits

• 1 Eflop : 1018 flop (un milliard de milliards)

• 1 Eflop/s : un milliard de milliards d’opérations flottantes par seconde
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Frontier : champion du Top 500 (novembre 2022)

• Oak Ridge National Laboratory (USA)

• Performance crête théorique de 1,6 Eflop/s
• Chaque noeud a :

• 1 CPU AMD EPYC 7A53 (x64) avec 64 cœurs : 2 Tflop/s (< 1% de la perf.)
• 4 GPU AMD Instinct MI250X avec 220 cœurs : 4 × 53 Tflop/s (99% de la perf.)
• 730 Go de RAM
• 2 To de disque NVMe

• 9 408 nœuds (602112 cœurs CPU, 8 279040 cœurs GPU)

• Performance mesurée (benchmark HPL) : 1,1 Eflop/s
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Benchmark HPL

• High Performance Linpack

• https:∕∕netlib.org∕benchmark∕hpl∕

• C, MPI

• Ax = b où A est une matrice carrée de taille N × N
• Résolution d’un système linéaire dense (LU)

• Flottants double précision (64 bits)

• On ne compte que les calculs, données matricielles générées ”en place”
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Top 500 : HPL (novembre 2022)
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Top 11 du Top 500 : HPL (novembre 2022)

# Machine Pays Rpeak Rmax % MW Eff.
(Tflop/s) (Tflop/s) Rpeak (Gflop/s/W)

1 Frontier USA 1685 1102 65 21.1 52.23
2 Fugaku Japan 537 442 82 29.9 14.78
3 LUMI Finland 428 309 72 6.0 51.38
4 Leonardo Italy 255 174 68 5.6 31.14
5 Summit USA 200 148 74 10.1 14.72
6 Sierra USA 125 94 75 7.4 12.72
7 Sunway China 125 93 74 15.4 6.05
8 Perlmutter USA 93 70 75 2.6 27.37
9 Selene USA 79 63 80 2.6 23.98
10 Tianhe-2A China 100 61 61 18.5 3.32
11 Adastra France 61 46 74 0.9 50.03
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Top 500 : évolution de la performance
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Benchmark HPCG

• High Performance Conjugate Gradients

• Multigrid preconditioned conjugate gradient

• https:∕∕www.hpcg-benchmark.org∕

• C++, OpenMP, MPI, CUDA

• Algèbre linéaire ”creuse”
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Top 500 : HPCG (novembre 2022)

# Machine Pays Rpeak Rmax % MW Eff.
(Tflop/s) (Tflop/s) Rpeak (Gflop/s/W)

1 Fugaku Japan 537 16.0 3.0 29.9 0.54
2 Frontier USA 1685 14.05 0.8 21.1 0.67
3 LUMI Finland 428 3.41 0.8 6.0 0.57
4 Summit USA 200 2.93 1.5 10.1 0.29
5 Leonardo Italy 255 2.57 1.0 5.6 0.46
6 Perlmutter USA 93 1.91 2.0 2.6 0.74
7 Sierra USA 125 1.8 1.4 7.4 0.24
8 Selene USA 79 1.62 2.0 2.6 0.61
9 JUWELS Germany 70 1.28 1.8 1.8 0.72
10 HPC5 Italy 51 0.86 1.7 2.3 0.38
11 Wisteria Japan 25 0.82 3.2 1.5 0.56
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Flop vs data access
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Coûts en cycles des opérations CPU
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Top 500 : Green 500 (novembre 2022)

# # Machine Pays Rpeak Rmax % MW Eff.
T500 (Tflop/s) (Tflop/s) Rpeak (Gflop/s/W)

1 405 Henri USA 5 2 37 0.03 65
2 32 Frontier TDS USA 23 19 83 0.31 63
3 11 Adastra France 61 46 74 0.92 58
4 15 Setonix Australia 34 27 77 0.48 57
5 68 Dardel Sweden 10 8 80 0.15 56
6 1 Frontier USA 1685 1102 65 21.1 52
7 3 LUMI Finland 428 309 72 6.02 51
8 159 ATOS THX France 4 3 70 0.09 41
9 359 MN-3 Japan 3 2 65 0.05 41
10 331 Champollion France 2 2 92 0.06 39
11 349 SSC-21 S. Korea 2 2 87 0.1 34
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Jack Dongarra (UTK) : A.M. Turing Award 2021
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There is plenty of room (for
improvements)



1959 : There’s Plenty of Room at the Bottom

• Phrase de Richard Feynman

• Miniaturisation des semi-conducteurs : moteur de l’accroissement des
performances pendant 50 ans

• Loi deMoore : doublement du nombre de transistors par puce tous les deux
ans

• Loi de Dennard (MOSFET) :même niveau de consommation d’énergie à
surface constante

• Ces deux lois empiriques sont aujourd’hui fausses
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Fin de la loi de Dennard (2004)
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Leiserson (2020) : There’s Plenty of Room at the Top

There’s plenty of room at the Top : What will drive computer’s performance after Moore’s law?
C.E. Leiserson et al., Science 2020.
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Leiserson (2020) : avancées algorithmiques (ex. Max. Flow Problem)
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Leiserson (2020) : optimisation de code et parallélisation

for i in range(4096):
for j in range(4096):

for k in range(4096):
C[i][j] += A[i][k] * B[k][j]

# Méthode Temps (s) Gflop/s Acc. Acc. rel. % peak

1 Python 25552,48 0,005 1 — 0,00
2 Java 2372,68 0,058 11 10,8 0,01
3 C 542,67 0,253 47 4,4 0,03
4 Parallel loops 69,80 1,969 366 7,8 0,24
5 Parallel divide and conquer 3,80 36,180 6727 18,4 4,33
6 plus vectorization 1,10 124,914 23224 3,5 14,96
7 plus AVX intrinsics 0,41 337,812 62806 2,7 40,45

24



Modèles de coût en temps et en
énergie



Temps d’exécution / fréquence du CPU

Source : Experimental Workflow for Energy and Temperature Profiling on HPC Systems, K. R. Vaddina et al., 2021.
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Énergie / fréquence du CPU (PE)

Source : Experimental Workflow for Energy and Temperature Profiling on HPC Systems, K. R. Vaddina et al., 2021.
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Énergie / fréquence du CPU (LU)

Source : Experimental Workflow for Energy and Temperature Profiling on HPC Systems, K. R. Vaddina et al., 2021.
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Instruction Level Parallelism (ILP)



Éxécution d’une instruction RISC

• Découpage de l’exécution d’une instruction en n étapes
• IF : Instruction fetch, pc++
• ID : Instruction decode / Register fetch (ou branchement)
• EX : Execute / Effective address
• MEM :Memory access (load ou store)
• WB :Write back (dans un registre)
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Pipeline

• Étapes exécutées en un temps identique

• Sur des éléments fonctionnels distincts

• Exécution en parallèle
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Exemple : pipeline à 4 étages

1

1. Source : https:∕∕commons.wikimedia.org∕w∕index.php?curid=1499754 (CC BY-SA 3.0)
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Pipelines de processeur superscalaire
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Very Large Instruction Word

• Intel Itanium (IA-64) [stoppé en 2021]

• MPPA de Kalray
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https://atrium.in2p3.fr/nuxeo/nxfile/default/f43c6be7-a130-4c8c-9077-145363346548/blobholder:0/KALRAY_MPPA%20Parallel%20Processing.pdf


Le mur de la mémoire



CPU vs DRAM

• La vitesse des CPU a cru beaucoup plus vite que celle des DRAM

• Les caches permettent d’atténuer le problème

• → répartir le travail sur plusieurs processeurs
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Caches

On the complexity of cache analysis for different replacement policies, D. Monniaux et V. Touzeau, 2019.
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https://arxiv.org/pdf/1811.01740.pdf


Liaison CPU / GPU
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Thread / Process Level Parallelism



Interconnexions
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Multiprocesseurs vs Cluster
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Synthèse
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Programmer avec des threads
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