
Introduction au développement logiciel
Génie logiciel

Georges-André Silber, Centre de recherche en informatique
Mines Paris — PSL, janvier 2026

Prélude

In November 1988, a computer virus attacked computers connected to the
still-nascent Internet. The virus exploited a programmer error : assuming that
another computer could be trusted to send the right amount of data. It was a
simple mistake, and the fix was trivial, but the programming language used was
vulnerable to this type of mistake, and there was not a standard methodology for
detecting that sort of problem.

– A. Barr, The Problem with Software (2018)

1

In April 2014, a computer virus attacked computers connected to the
now-ubiquitous Internet. The virus exploited a programmer error : assuming that
another computer could be trusted to send the right amount of data. It was a
simple mistake, and the fix was trivial, but the programming language used was
vulnerable to this type of mistake, and there was not a standard methodology for
detecting that sort of problem.

– A. Barr, The Problem with Software (2018)

2

Programmation logicielle : pas (encore) de l’ingénierie

• Marqueurs de l’ingénierie : solidité, durabilité, fiabilité, performance,
efficacité, réparabilité, évolutivité...

• Après plus de 60 ans :

• « vulnerable programming language »

• « no way to detect mistakes »

• D’autres disciplines ont su apprendre de leurs erreurs (aviation)

• ... et produire un corpus de connaissances et de méthodes.

• Résultat : quantité de bugs visibles par les utilisateurs, la réinvention de la
roue en permanence, des délais et budgets peu prévisibles.

3

Savoir académique contre savoir industriel

• L’éducation d’un programmeur : écriture de petits programmes

• Peu de préparation à la création de logiciels à grande échelle

• Mythe du héros, épreuves de codage pour l’embauche

• Peu de réponse à : « qu’est-ce qu’un bon logiciel? »

• Un diplôme en informatique ne garanti pas un savoir précis

• Très différent d’autres disciplines (médecine)

• Adam Barr : « Is software development really hard, or are software developers
not that good at it ? »

4

Marie Shaw, CMU, 1990

• IEEE Software magazine : « Prospects for an Engineering Discipline of
Software »

« Engineering relies on codifying scientific knowledge about a technological
problem domain in a form that is directly useful to the practitioner, thereby
providing answers for questions that commonly occur in practice. Engineers of
ordinary talent can then apply this knowledge to solve problems far faster than they
otherwise could. In this way, engineering shares prior solutions rather than relying
always on virtuoso problem solving. »

5

Greg Wilson

• Beautiful Code (2007)

• Two Solitudes (ACM SPLASH 2013)

• «How come I didn’t know we knew stuff about things? »

• The architecture of open source applications (2012-2016)

• It will never work in theory (2011-)

6

https://www.oreilly.com/library/view/beautiful-code/9780596510046/
https://www.slideshare.net/gvwilson/two-solitudes-86484828
https://aosabook.org
https://neverworkintheory.org/

Définitions

Software : John Wilder Tukey

• Binary digit→ Bit (1948)

• Software (1958)

• Logiciel (1969)

• Byte (W. Buchholz, 1956)

• Nibble (D. Benson, 1958)

• Resp. octet et quartet

7

Software engineering

• Margaret Hamilton (1965) :
Software engineering

• Conférences de l’OTAN (1968)

• Méthodes de travail et bonnes
pratiques des ingénieurs qui
développent des logiciels

8

https://fr.wikipedia.org/wiki/Margaret_Hamilton_(scientifique)

Hardware vs Software

L’ingénierie logicielle est victime de cette fausse idée :

«Hardware is so-termed because it is hard or rigid with respect to changes,
whereas software is soft because it is easy to change. »

— Wikipedia, article « Computer hardware »

9

https://en.wikipedia.org/wiki/Computer_hardware

Software is NOT easy to change

En réalité :

• Concevoir et mettre en œuvre du logiciel de qualité est au moins aussi
difficile que pour le matériel ;

• Prévoir lamodification du logiciel est une dimension spécifique à ce
domaine ;

• La composition logicielle génère des systèmes plus complexes que le
matériel.

10

Quelques critères de qualité

• Répondre aux besoins

• Produire un résultat juste

• Produire du code correct

• Produire du code maintenable et évolutif

• Produire du code efficace

• Produire du code performant

• Produire du code léger

• Prédire et respecter un délai

• Prédire et respecter un budget

11

Bugs

Qu’est-ce qu’un bug?

« A software bug is an error, flaw or fault in a computer program or system that
causes it to produce an incorrect or unexpected result, or to behave in unintended
ways. »

• Vol 501 d’Ariane 5 en 1996 : le bit manquant. Voir également le rapport
d’enquête.

• The Friendship That Made Google Huge, James Somers, The New Yorker,
2018.

12

https://fr.wikipedia.org/wiki/Vol_501_d%27Ariane_5
http://www.astrosurf.com/luxorion/astronautique-accident-ariane-v501.htm
http://www.astrosurf.com/luxorion/astronautique-accident-ariane-v501.htm
https://www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-google-huge

« L’erreur est humaine, mais pour provoquer une vraie catastrophe, il faut un
ordinateur. »

– Auteur inconnu

13

« Beware of bugs in the above code ; I have only proved it correct, not tried it. »

— Donald Knuth

14

Qu’est-ce qu’un bon code?

Good Code?

©xkcd 15

https://xkcd.com/844

WTFs / minute

©2008 Thom Holwerda 16

https://www.osnews.com/story/19266/wtfsm/

Il n’y a pas de balle magique

Frederick Brooks : The Mythical Man-Month (1975)

• Essai sur l’organisation et les méthodes de travail des équipes de
développement ;

• Loi de brooks : ajouter des programmeurs sur un projet en retard accroît le
retard ;

• No silver bullet : difficultés accidentelles vs essentielles ;

• Différences de productivité entre programmeurs (chief surgeon) ;

• Difficultés de la planification.

17

F.P. Brooks : programme vs logiciel

18

F.P. Brooks (suite)

«Of all the monsters who fill the nightmares of our folklore, none terrify more than
werewolves, because they transform unexpectedly from the familiar into horrors.
For these, we seek bullets of silver that can magically lay them to rest. »

« The familiar software project has something of this character (at least as seen by
the nontechnical manager), usually innocent and straightforward, but capable of
becoming a monster of missed schedules, blown budgets, and flawed products. So
we hear desperate cries for a silver bullet, something to make software costs drop
as rapidly as computer hardware costs do. »

19

F.P. Brooks (suite)

«Not only are there no silver bullets now in view, the very nature of software makes
it unlikely that there will be any inventions that will do for software productivity,
reliability, and simplicity what electronics, transistors, and large-scale integration
did for computer hardware. We cannot expect ever to see twofold gains every two
years. »

20

F.P. Brooks (suite)

«Most of these attack the central argument that there is no magical solution, and
my clear opinion that there cannot be one. Most agree with most of the arguments
in ”NSB,” but then go on to assert that there is indeed a silver bullet for the software
beast, which the author has invented. As I reread the early responses today, I can’t
help noticing that the nostrums pushed so vigorously in 1986 and 1987 have not
had the dramatic effects claimed. »

21

Quelques balles magiques

• Programmation structurée

• Preuves formelles

• Programmation orientée objet

• Design patterns

• Méthodes « agiles »

• Programmation fonctionnelle

• DevOps

• DevSecOps

• ...

22

Dijkstra 1972

« It would be very nice if I could illustrate the various techniques with small
demonstration programs and could conclude with ”... and when faced with a
program thousand times as large, you compose it in the same way.” This common
educational device, however, would be self defeating as one of my central theme
will be that any of two things that differ in some respect by a factor of already a
hundred or more, are utterly incomparable. »

23

Harlan D. Mills 1980

« It is characteristic in software engineering that the problems to be solved by
advanced practitioners require sustained efforts over months or years from many
people, often in the tens or hundreds. This kind of mass problem-solving effort
requires a radically different kind of precision and scope in techniques than are
required for individual problem solvers. If the precision and scope are not gained in
university education, it is difficult to acquire them later, no matter how well
motivated or adept a person might be at individual, intuitive approaches to problem
solving. »

24

Méthodologies

Cycle en V

25

Problèmes

• Faire travailler ensemble utilisateurs, architectes et développeurs ;

• Les spécifications peuvent changer au cours du temps ;

• Difficile d’anticiper les problèmes ;

• Difficile d’évaluer le temps nécessaire l’implémentation.

26

Extreme programming

27

Manifesto for Agile Software Development

• https:∕∕agilemanifesto.org

• Ingénierie logicielle pragmatique

• Travail plus incrémental, adaptatif

• Interactions et Communication

• Not a silver bullet.

28

https://agilemanifesto.org

Méthode pragmatique et simple

• Que faire?
1. Déterminer où vous êtes
2. Faire un petit pas vers votre objectif
3. Ajuster votre compréhension avec ce que vous avez appris
4. Aller en 1.

• Comment?
• Face à au moins deux alternatives apportant le même gain, choisir celle
maximisant les possibilités de modifications ultérieures

29

1. Récolter correctement les besoins

• Comprendre les besoins

• Commencer à proposer des solutions

• Proposer des alternatives

• Laisser la porte ouverte à des changements

30

2. Prendre le temps de concevoir
l’architecture

« Si vous ne savez pas ce que votre programme est censé faire, vous feriez bien de
ne pas commencer à l’écrire. »

• Bien réfléchir aux interfaces

• Tendre vers un couplage minimal

• Réfléchir en services

• Indispensable : spécifications

31

Services

32

3. Choisir ou créer les bons
algorithmes

Qu’est-ce qu’un algorithme?

• Une formalisation d’une suite finie d’opérations de calcul élémentaires,

• résolvant un type de problème en se terminant toujours,

• exécutable par un humain avec du papier et des crayons en une durée finie,

• dont on peut prouver la correction, la complexité,

• l’optimalité (le meilleur algorithme possible).

Il existe des problèmes non calculables, pour lesquels on ne peut pas trouver
d’algorithme.

33

Avancées algorithmiques (ex. Max. Flow Problem)

34

4. Choisir ou créer le langage
approprié

Langages

• « Il n’y a pas de langage informatique dans lequel vous ne puissiez écrire de
mauvais logiciels. »

• « Il n’y a pas de langage informatique dans lequel vous ne puissiez écrire de
bons logiciels. »

• Différences : effort à fournir, gardes-fous
• Choisir le bon outil en fonction du problème à résoudre
• Choisir le bon écosystème (bibliothèques, environnements de
développement)

• Metaprogramming, DSL
• Approfondir plusieurs langages
• Ne pas suivre la mode (TIOBE)
• Pourquoi un langage a-t-il du succès?

35

http://www.pvv.org/~oma/DeepC_slides_oct2011.pdf
https://www.tiobe.com/tiobe-index/

Fortran aux Mines de Paris

36

5. Produire le moins de code
possible

Obésiciels

« Software expands to fill the available memory. (Parkinson) »

« Software is getting slower more rapidly than hardware is becoming faster.
(Reiser) »

— Niklaus Wirth, A Plea for Lean Software, 1995.

« Software : it’s a gas ! »

— Nathan P. Myhrvold, The Next Fifty Years of Software, 1997.

37

6. Produire du code simple

• Nous codons dans un monde qui change

• Un code simple et bien conçu est plus facile à changer

• Des solutions bien structurées et découplées induisent un code plus facile à
changer, déployer, maintenir et réutiliser

• Un code plus simple est plus fiable

38

7. Produire du code efficace

1959 : There’s Plenty of Room at the Bottom

• Phrase de Richard Feynman

• Miniaturisation des semi-conducteurs : moteur de l’accroissement des
performances pendant 50 ans

• Loi deMoore : doublement du nombre de transistors par puce tous les deux
ans

• Loi de Dennard (MOSFET) :même niveau de consommation d’énergie à
surface constante

• Ces deux lois empiriques sont aujourd’hui fausses

39

Fin de la loi de Dennard (2004)

40

2020 : There’s Plenty of Room at the Top

There’s plenty of room at the Top : What will drive computer’s performance after Moore’s law?
C.E. Leiserson et al., Science 2020.

41

Optimisation de code et parallélisation

42

Ne pas être obnubilé par les performances

« There is no doubt that the grail of efficiency leads to abuse. Programmers waste
enormous amount of their time thinking about, or worrying about, the speed of non
critical parts of their programs, ant these attemps at efficiency actually have a
strong negative impact when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97% of the time : premature
optimization is the root of all evil. »

– D. Knuth en 1974

43

44

7. Prouver ou tester
automatiquement

« Program testing can be used to show the presence of bugs, but never to show
their absence. »

— Edsger W. Dijkstra

45

Familles de tests

• Tests unitaires : vérification du bon fonctionnement d’une partie précise d’un
programme.

• Tests d’intégration : vérification de l’interaction de différents composants
entre eux. Par exemple, l’interaction entre un composant et une base de
données, ou entre l’API de deux composants.

• Tests fonctionnels : vérification du comportement de des fonctions de
l’application vis-à-vis des utilisateurs.

• Tests de bout en bout : tests fonctionnels complexes testant des suites de
fonctions, par exemple le parcours complet d’un utilisateur sur une
application, de sa connexion à sa déconnexion.

• Tests d’acceptation : tests fonctionnels avec des critères complémentaires,
comme le temps de réponse.

• Tests de montée en charge : permettent de stresser l’application pour vérifier
son comportement, identifier les goulots d’étranglement.

46

Automatiser les tests

• Automatiser les tests le plus possible

• Indispensable lors des évolutions : non régression

• https:∕∕docs.pytest.org∕en∕6.2.x∕

• Stress tests : exemple de Locust

47

https://docs.pytest.org/en/6.2.x/
https://locust.io

Throw over the wall

48

Preuves formelles

• Interprétation Abstraite

• Sémantique axiomatique (C.A.R. Hoare)

• Compilateur C prouvé : CompCert https:∕∕compcert.org

49

https://fr.wikipedia.org/wiki/Interpr%C3%A9tation_abstraite
https://fr.wikipedia.org/wiki/S%C3%A9mantique_axiomatique
https://compcert.org

8. Mettre en place des règles de
codage homogènes

Homogénéité

• Aide à la lecture du code

• https:∕∕www.gnu.org∕prep∕standards∕

• https:∕∕google.github.io∕styleguide∕pyguide.html

50

https://www.gnu.org/prep/standards/
https://google.github.io/styleguide/pyguide.html

10. Commenter et documenter

Commentaires

• Commenter le moins possible

• Rendre le code le plus évident possible

• Exemple de ce qu’il ne faut pas faire

51

https://curc.readthedocs.io/en/latest/programming/coding-best-practices.html#commenting-your-code

Documentation

• Documenter en codant

• En Python : docstrings, Sphinx

• https:∕∕readthedocs.org

• Exemple de pandas

• Documentation, théorie et pratique : diataxis

52

https://www.python.org/dev/peps/pep-0257/
https://www.sphinx-doc.org/en/master/
https://readthedocs.org
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://diataxis.fr/

Programmation littéraire

• Concept introduit par Donald Knuth

• Le même fichier source contient de manière entrelacée le code et sa
description

• cweave, ctangle

• Exemple de la Stanford GraphBase

• Exemple de ”TeX : The Program”, livre et code source

• https:∕∕www-cs-faculty.stanford.edu∕~knuth∕cweb.html

• Code source : https:∕∕github.com∕ascherer∕cweb

53

https://www-cs-faculty.stanford.edu/~knuth/sgb.html
https://www-cs-faculty.stanford.edu/~knuth/cweb.html
https://github.com/ascherer/cweb

11. Produire du code lisible

Exemple : choisir des noms signifiants

class Data(object):
""" Duration.
"""

def __init__(self):
elapsed time in days
self.d = 0

class Duration(object):

def __init__(self):
self.elapsed_days = 0

54

12. Utiliser les bons outils

Git

• Git : gestion de versions distribuée
• Github, Gitlab : serveurs Git avec outils de développement

• Gestions de tâches,merge/pull requests, CI

• Plusieurs flux de développement possibles avec Git

• Lire le Git book

• Code source : https:∕∕git.kernel.org∕

55

https://git-scm.com
https://git-scm.com/docs/gitworkflows
https://git-scm.com/book/en/v2
https://git.kernel.org/

SSH

• https:∕∕datatracker.ietf.org∕wg∕secsh∕about∕
• Spécifications du protocole SSH :
https:∕∕www.openssh.com∕specs.html

• OpenSSH, implémentation la plus connue du protocole SSH :
https:∕∕www.openssh.com∕

• Dépôt Git de OpenSSH : https:∕∕anongit.mindrot.org∕openssh.git
• Nouveau chiffrement post-quantique de SSH :
https:∕∕nakedsecurity.sophos.com∕2022∕04∕11∕
openssh-goes-post-quantum-switches-to-qubit-busting-crypto-by-default∕

• SSH ControlMaster : http:
∕∕www.qanuq.com∕2017∕09∕09∕diminuer-temps-connexion-ssh∕

• MOSH
https:∕∕cat.pdx.edu∕platforms∕linux∕remote-access∕mosh∕

56

https://datatracker.ietf.org/wg/secsh/about/
https://www.openssh.com/specs.html
https://www.openssh.com/
https://anongit.mindrot.org/openssh.git
https://nakedsecurity.sophos.com/2022/04/11/openssh-goes-post-quantum-switches-to-qubit-busting-crypto-by-default/
https://nakedsecurity.sophos.com/2022/04/11/openssh-goes-post-quantum-switches-to-qubit-busting-crypto-by-default/
http://www.qanuq.com/2017/09/09/diminuer-temps-connexion-ssh/
http://www.qanuq.com/2017/09/09/diminuer-temps-connexion-ssh/
https://cat.pdx.edu/platforms/linux/remote-access/mosh/

Outils de paquetage logiciel

• GUIX

• Paquetages Debian/Ubuntu

• pacman

• rpm

• exherbo

• Dockerfile

• Vagrantfile

57

https://guix.gnu.org/fr/
https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html
https://wiki.archlinux.org/title/pacman
https://rpm.org/
https://paludis.exherbo.org/
https://docs.docker.com/engine/reference/builder/
https://developer.hashicorp.com/vagrant/docs/vagrantfile

Virtualisation et conteneurisation

• Isolateurs : Docker, Linux Containers, Kubernetes

• Hyperviseurs de type 2 : Virtualbox, QEMU

• Hyperviseurs de type 1 : KVM

• https:
∕∕xania.org∕201609∕how-compiler-explorer-runs-on-amazon

58

https://xania.org/201609/how-compiler-explorer-runs-on-amazon
https://xania.org/201609/how-compiler-explorer-runs-on-amazon

Automatisation de l’installation

• Pet vs Cattle

• Ansible, Puppet, Chef, CFEngine

• Metal as a Service (MAAS) https:∕∕maas.io

• https:∕∕serverfault.com∕questions∕433653∕
how-do-i-automate-os-installation-on-500-machines

59

https://maas.io
https://serverfault.com/questions/433653/how-do-i-automate-os-installation-on-500-machines
https://serverfault.com/questions/433653/how-do-i-automate-os-installation-on-500-machines

13. Surveiller et mesurer

• Mesurer les performances (Ex : https:∕∕www.datadoghq.com∕)

• Faire remonter les erreurs (exceptions, logging)

• Surveiller en permanence

60

https://www.datadoghq.com/

14. Mettre en place un processus de
revue du code

Revue de code

• Principes de l’extreme programming

• Soumettre des patchs

• Utiliser les fonctions de pull ou demerge requests de Github ou Gitlab

• Attention au coding wars

• Tabs vs spaces

61

https://www.youtube.com/watch?v=SsoOG6ZeyUI

15. Lire, apprendre, être humble

Benjamin Franklin : « experience is a dear teacher, but fools will learn at no other. »

Gerald Weinberg en 1971 : « another essential personality factor in programming is
at least a small dose of humility. Without humility, a programmer is foredoomed to
the classic pattern of Greek drama : success leading to overconfidence (hubris)
leading to blind self-destruction. Sophocles himself could not have invented a
better plot (to reveal the inadequacy of our powers) than that of the programmer
learning a few simple techniques, feeling that he is an expert, and then beaing
crushed by the irresistible power of the computer. »

62

Conseils d’A. Barr, 2022

Conseils aux managers

• Laissez du temps aux employés pour suivre les méthodes modernes de
développement ;

• Récompensez cette attitude, plutôt que pour l’attitude du héro qui consiste à
corriger des problèmes qui avaient été négligés ;

• Si vous pensez que vous n’avez pas suffisamment de maîtrise de ces
nouveaux sujets pour échanger avec votre équipe, augmentez votre maîtrise
de ces sujets.

63

Conseils aux développeurs séniors et aux architectes

• établissez des processus obligatoires pour l’équipe, comme les tests
unitaires, l’analyse statique du code et la documentation ;

• ne croyez pas aux balles en argent mais ne les négligez pas : elles ne sont
pas magiques mais ont de la valeur ;

• lisez des études empiriques, pas des livres tendances sur de nouveaux
principes ou processus ;

• ne soyez pas le vieux développeur grincheux obnubilé uniquement par la
performance.

64

Conseils aux développeurs cherchant à s’améliorer

• contribuez aux projets open-source, idéalement ceux avec de nombreux
contributeurs qui ont des règles établies et des processus ;

• si vous n’avez pas le temps de contribuer, lisez le code, en essayant de
comprendre notamment pourquoi les règles et processus existent.

65

Faire passer un entretien à un développeur

• ne vous focalisez pas sur le quadrant nord-ouest. Une question de
programmation est intéressante, mais ne vous focalisez pas forcément sur
l’algorithme trouvé ;

• même si quelqu’un arrive avec un algorithme malin, il est plus important que
le code soit lisible et maintenable. Si il est trop ”malin”, la prochaine
personne devant le modifier a de fortes chances de le casser ;

• idéalement, le candidat devrait avoir de l’expérience de travail sur le code
d’autres personnes à présenter, ou au moins de l’expérience concernant les
tests et la maintenabilité.

66

Si vous êtes enseignant

• faites lire plus de code à vos élèves, il y a énormément de code open source
disponible ;

• la majeure partie du temps devrait être consacrée à la lecture de code, et pas
à l’étude des algorithmes et de la syntaxe des langages. Pour produire du
code il faut avoir lu du code. Du bon, du mauvais, du code qui a eu du succès,
du code qui a échoué ;

• regardez les études empiriques des développeurs dans l’industrie ;
idéalement, conduisez-en vous même;

• n’ignorez pas les ”coding camps”, il seront bientôt vos concurrents.

67

Livres à lire

• Harlan D. Mills. Software Productivity. Dorset House, 1988. URL :
https:∕∕trace.tennessee.edu∕utk_harlan∕11

• Frederick P. Brooks. The Mythical Man-Month. Essays on Software
Engineering. Addison-Wesley, 1995

• Gerald M. Weinberg. The Psychology of Computer Programming. Silver
Anniversary Edition. Dorset House, 1998 (version révisée d’un livre paru en
1971)

• Adam Barr. The Problem with Software. Why Smart Engineers Write Bad
Code. The MIT Press, 2018

68

https://trace.tennessee.edu/utk_harlan/11

Ressources diverses

• WAT : https:∕∕www.destroyallsoftware.com∕talks∕wat

• DONKEY.BAS :
https:∕∕web.archive.org∕web∕20130918210121∕http:
∕∕www.codinghorror.com∕blog∕files∕donkey.bas.txt Voir
également : https:∕∕www.retrogames.cz∕play_1385-DOS.php

• Tabs vs Space (Silicon Valley) :
https:∕∕www.youtube.com∕watch?v=SsoOG6ZeyUI

69

https://www.destroyallsoftware.com/talks/wat
https://web.archive.org/web/20130918210121/http://www.codinghorror.com/blog/files/donkey.bas.txt
https://web.archive.org/web/20130918210121/http://www.codinghorror.com/blog/files/donkey.bas.txt
https://www.retrogames.cz/play_1385-DOS.php
https://www.youtube.com/watch?v=SsoOG6ZeyUI

	Prélude
	Définitions
	Bugs
	Qu'est-ce qu'un bon code?
	Il n'y a pas de balle magique
	Méthodologies
	1. Récolter correctement les besoins
	2. Prendre le temps de concevoir l'architecture
	3. Choisir ou créer les bons algorithmes
	4. Choisir ou créer le langage approprié
	5. Produire le moins de code possible
	6. Produire du code simple
	7. Produire du code efficace
	7. Prouver ou tester automatiquement
	8. Mettre en place des règles de codage homogènes
	10. Commenter et documenter
	11. Produire du code lisible
	12. Utiliser les bons outils
	13. Surveiller et mesurer
	14. Mettre en place un processus de revue du code
	15. Lire, apprendre, être humble
	Conseils d'A. Barr, 2022

