A | psL

MINES PARIS

Introduction au développement logiciel

Génie logiciel

Georges-André Silber, Centre de recherche en informatique
Mines Paris — PSL, janvier 2026

Prélude

In November 1988, a computer virus attacked computers connected to the
still-nascent Internet. The virus exploited a programmer error : assuming that
another computer could be trusted to send the right amount of data. It was a
simple mistake, and the fix was trivial, but the programming language used was
vulnerable to this type of mistake, and there was not a standard methodology for
detecting that sort of problem.

- A. Barr, The Problem with Software (2018)

In April 20714, a computer virus attacked computers connected to the
now-ubiquitous Internet. The virus exploited a programmer error : assuming that
another computer could be trusted to send the right amount of data. It was a
simple mistake, and the fix was trivial, but the programming language used was
vulnerable to this type of mistake, and there was not a standard methodology for
detecting that sort of problem.

- A. Barr, The Problem with Software (2018)

Programmation logicielle : pas (encore) de I'ingénierie A | psL

MINES PARIS

« Marqueurs de l'ingénierie : solidité, durabilité, fiabilité, performance,
efficacité, réparabilité, évolutivité...

* Apres plus de 60 ans :

* «vulnerable programming language »

* «no way to detect mistakes »

+ D’autres disciplines ont su apprendre de leurs erreurs (aviation)
* ... et produire un corpus de connaissances et de méthodes.

+ Résultat : quantité de bugs visibles par les utilisateurs, la réinvention de la
roue en permanence, des délais et budgets peu prévisibles.

e . oo a 24
Savoir académique contre savoir industriel A | psLm

MINES PARIS

* Léducation d’'un programmeur : écriture de petits programmes
* Peu de préparation a la création de logiciels a grande échelle

* Mythe du héros, épreuves de codage pour 'embauche

* Peu de réponse a: « qu'est-ce qu’un bon logiciel ? »

* Un diplome en informatique ne garanti pas un savoir précis

+ Tres différent d’autres disciplines (médecine)

« Adam Barr : « Is software development really hard, or are software developers
not that good at it ? »

Marie Shaw, CMU, 1990 A | psLm

MINES PARIS

* IEEE Software magazine : « Prospects for an Engineering Discipline of
Software »

« Engineering relies on codifying scientific knowledge about a technological
problem domain in a form that is directly useful to the practitioner, thereby
providing answers for questions that commonly occur in practice. Engineers of
ordinary talent can then apply this knowledge to solve problems far faster than they
otherwise could. In this way, engineering shares prior solutions rather than relying
always on virtuoso problem solving. »

24
Greg Wilson 7 | PSL58

MINES PARIS

Beautiful Code (2007)
Two Solitudes (ACM SPLASH 2013)
* « How come I didn’t know we knew stuff about things ? »

The architecture of open source applications (2012-2016)

It will never work in theory (2011-)

https://www.oreilly.com/library/view/beautiful-code/9780596510046/
https://www.slideshare.net/gvwilson/two-solitudes-86484828
https://aosabook.org
https://neverworkintheory.org/

Définitions

Software : John Wilder Tukey 7 | PSL58

MINES PARIS

* Binary digit — Bit (1948)
+ Software (1958)
* Logiciel (1969)

* Byte (W. Buchholz, 1956)
* Nibble (D. Benson, 1958)
* Resp. octet et quartet

. . 24
Software engineering | psLi

MINES PARIS

+ Margaret Hamilton (1965) :
Software engineering

+ Conférences de 'OTAN (1968)
+ Méthodes de travail et bonnes
pratiques des ingénieurs qui

développent des logiciels

https://fr.wikipedia.org/wiki/Margaret_Hamilton_(scientifique)

24
Hardware vs Software 7 | PSL58

MINES PARIS

Lingénierie logicielle est victime de cette fausse idée :

« Hardware is so-termed because it is hard or rigid with respect to changes,
whereas software is soft because it is easy to change. »

— Wikipedia, article « Computer hardware »

https://en.wikipedia.org/wiki/Computer_hardware

Software is NOT easy to change 7 | PS

MINES PARIS

En réalité :
+ Concevoir et mettre en ceuvre du logiciel de qualité est au moins aussi
difficile que pour le matériel;

+ Prévoir la modification du logiciel est une dimension spécifique a ce
domaine;

+ La composition logicielle génére des systemes plus complexes que le
matériel.

10

Quelques critéres de qualité A | psLm

MINES PARIS

* Répondre aux besoins

* Produire un résultat juste

* Produire du code correct

* Produire du code maintenable et évolutif
* Produire du code efficace

* Produire du code performant

* Produire du code léger

* Prédire et respecter un délai

* Prédire et respecter un budget

11

Bugs

Qu'est-ce qu'un bug? A | psLm

MINES PARIS

« A software bug is an error, flaw or fault in a computer program or system that
causes it to produce an incorrect or unexpected result, or to behave in unintended
ways. »

* Vol 501 d’Ariane 5 en 1996 : le bit manquant. Voir également le rapport
d'enquéte.

* The Friendship That Made Google Huge, James Somers, The New Yorker,
2018.

12

https://fr.wikipedia.org/wiki/Vol_501_d%27Ariane_5
http://www.astrosurf.com/luxorion/astronautique-accident-ariane-v501.htm
http://www.astrosurf.com/luxorion/astronautique-accident-ariane-v501.htm
https://www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-google-huge

« Lerreur est humaine, mais pour provoquer une vraie catastrophe, il faut un
ordinateur. »

— Auteur inconnu

13

« Beware of bugs in the above code; | have only proved it correct, not tried it. »

— Donald Knuth

14

Qu'est-ce qu'un bon code?

Good Code? 7 | PSL58

MINES PARIS

HOW TO WRITE GOOD CODE:

THRoW 1T ALL OUT
AND START OVER.

©xked 15

https://xkcd.com/844

WTFs / minute 2 | psL#

MINES PARIS

| Lj:, ONL V VAL _:,{ M2 ASURE M T

OF Code QuarLIiTy: ‘Nﬁ'Fs/mium_rg

Goock code .

©2008 Thom Holwerda 16

https://www.osnews.com/story/19266/wtfsm/

Il n'y a pas de balle magique

Frederick Brooks : The Mythical Man-Month (1975) AT | psLm

MINES PARIS

+ Essai sur l'organisation et les méthodes de travail des équipes de
développement;

+ Loi de brooks : ajouter des programmeurs sur un projet en retard accroit le
retard;

* No silver bullet : difficultés accidentelles vs essentielles;
« Différences de productivité entre programmeurs (chief surgeon);
« Difficultés de la planification.

17

F.P. Brooks : programme vs logiciel A | psLm

MINES PARIS

¥3

PROGRAMNE C oM PoSANT
(Id\ "CVFGU—S,

I tects d‘ik\'f:i@kn')
43

AQCH TELTURE
LoGiuer Lo CiguE
(gkbwu., k,s\’s,
amtnk
ﬂ:htsi‘i\\?\&'oﬂ)

18

F.P. Brooks (suite) A | psLm

MINES PARIS

« Of all the monsters who fill the nightmares of our folklore, none terrify more than
werewolves, because they transform unexpectedly from the familiar into horrors.
For these, we seek bullets of silver that can magically lay them to rest. »

« The familiar software project has something of this character (at least as seen by
the nontechnical manager), usually innocent and straightforward, but capable of
becoming a monster of missed schedules, blown budgets, and flawed products. So
we hear desperate cries for a silver bullet, something to make software costs drop
as rapidly as computer hardware costs do. »

19

F.P. Brooks (suite) A | psLm

MINES PARIS

« Not only are there no silver bullets now in view, the very nature of software makes
it unlikely that there will be any inventions that will do for software productivity,
reliability, and simplicity what electronics, transistors, and large-scale integration
did for computer hardware. We cannot expect ever to see twofold gains every two
years. »

20

F.P. Brooks (suite) A | psLm

MINES PARIS

« Most of these attack the central argument that there is no magical solution, and
my clear opinion that there cannot be one. Most agree with most of the arguments
in "NSB,” but then go on to assert that there is indeed a silver bullet for the software
beast, which the author has invented. As I reread the early responses today, | can’t
help noticing that the nostrums pushed so vigorously in 1986 and 1987 have not
had the dramatic effects claimed. »

21

Quelques balles magiques A | psLm

MINES PARIS

* Programmation structurée

* Preuves formelles

* Programmation orientée objet
* Design patterns

* Méthodes « agiles »

* Programmation fonctionnelle
* DevOps

* DevSecOps

22

Dijkstra 1972 A | psLm

MINES PARIS

« It would be very nice if | could illustrate the various techniques with small
demonstration programs and could conclude with “... and when faced with a
program thousand times as large, you compose it in the same way.” This common
educational device, however, would be self defeating as one of my central theme
will be that any of two things that differ in some respect by a factor of already a
hundred or more, are utterly incomparable. »

23

Harlan D. Mills 1980 2 | psL#

MINES PARIS

« It is characteristic in software engineering that the problems to be solved by
advanced practitioners require sustained efforts over months or years from many
people, often in the tens or hundreds. This kind of mass problem-solving effort
requires a radically different kind of precision and scope in techniques than are
required for individual problem solvers. If the precision and scope are not gained in
university education, it is difficult to acquire them later, no matter how well
motivated or adept a person might be at individual, intuitive approaches to problem
solving. »

24

Méthodologies

CycleenV 2 | ps

MINES PARIS

Operation
Concept of . and
Operations "e":','fﬁ“"“ Maintenance
Project Validation 5
rojec Requirements stem
Definition _ and Verification
Architecture and Validation

Integration,
Detailed Test, and
Design Verification

Project
Test and
Integration

Implermantation

L
e

Time

25

Problemes ol | PS

MINES PARIS

Faire travailler ensemble utilisateurs, architectes et développeurs;

* Les spécifications peuvent changer au cours du temps;

Difficile d’anticiper les probléemes;

Difficile d’évaluer le temps nécessaire I'implémentation.

26

Extreme programming A5 |ps

MINES PARIS

Planning/feedback loops
Release plan

Mowiths

Iteration plan

Works

Acceptance test

[iays
Stand-up meeting

One Eay

Pair negotiation

Hoars
Unit test
Minutes

Pair programming
Seconds
Code

27

Manifesto for Agile Software Development AT | psLm

MINES PARIS

https://agilemanifesto.org
* Ingénierie logicielle pragmatique

Travail plus incrémental, adaptatif
* Interactions et Communication

* Not a silver bullet.

28

https://agilemanifesto.org

Méthode pragmatique et simple A | psLm

MINES PARIS

* Que faire?
1. Déterminer ou vous étes
2. Faire un petit pas vers votre objectif
3. Ajuster votre compréhension avec ce que vous avez appris
4. Alleren 1.

« Comment?

+ Face a au moins deux alternatives apportant le méme gain, choisir celle
maximisant les possibilités de modifications ultérieures

29

1. Récolter correctement les besoins

Comprendre les besoins

Commencer a proposer des solutions
Proposer des alternatives

Laisser la porte ouverte a des changements

30

2. Prendre le temps de concevoir
I'architecture

« Si vous ne savez pas ce que votre programme est censé faire, vous feriez bien de
ne pas commencer a l'écrire. »

* Bien réfléchir aux interfaces
* Tendre vers un couplage minimal

« Réfléchir en services

+ Indispensable : spécifications

31

7
]
=
>
1~
o
(7]

MINES PARIS

9

2 ! AR

(2]

'S = _ = o
5 NEY & 5 || £
7] — st o (=
(<} s o © O (7]
S RaN ey N2 =

API Gateway

P
Client Apps

32

3. Choisir ou créer les bons
algorithmes

Qu'est-ce qu’'un algorithme? 2 | psL

MINES PARIS

Une formalisation d’une suite finie d'opérations de calcul élémentaires,

résolvant un type de probleme en se terminant toujours,
+ exécutable par un humain avec du papier et des crayons en une durée finie,
+ dont on peut prouver la correction, la complexité,

+ I'optimalité (le meilleur algorithme possible).

Il existe des problemes non calculables, pour lesquels on ne peut pas trouver
d’algorithme.

33

Avancées algorithmiques (ex. Max. Flow Problem) A | psLm

MINES PARIS

1,000,000,000

100,000,000 Algorithm trajectory

® Edmonds and Karp, 1972 (60)
10,000,000 @ Sleator and Tarjan, 1983 (61)

@ Ahuja, Orlin, and Tarjan, 1989 (62)
1,000,000 @ Goldberg and Rao, 1998 (63)

100,000

10,000 =

Relative performance

1000

100

. e

1
1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

34

4. Choisir ou créer le langage
approprié

Langages yorg | PSLB#

MINES PARIS

« «lln’y a pas de langage informatique dans lequel vous ne puissiez écrire de
mauvais logiciels. »

* «ll n'y a pas de langage informatique dans lequel vous ne puissiez écrire de
bons logiciels. »

« Différences : effort a fournir, gardes-fous
* Choisir le bon outil en fonction du probléme a résoudre

* Choisir le bon écosystéme (bibliothéques, environnements de
développement)

* Metaprogramming, DSL
+ Approfondir plusieurs langages
* Ne pas suivre la mode (TIOBE)

+ Pourquoi un langage a-t-il du succes?

35

http://www.pvv.org/~oma/DeepC_slides_oct2011.pdf
https://www.tiobe.com/tiobe-index/

Fortran aux Mines de Paris yo 8 | PSL5é

MINES PARIS

5. Produire le moins de code
possible

Obésiciels 7 | PSL58

MINES PARIS

« Software expands to fill the available memory. (Parkinson) »

« Software is getting slower more rapidly than hardware is becoming faster.
(Reiser) »

— Niklaus Wirth, A Plea for Lean Software, 1995.

« Software : it's a gas!»

— Nathan P. Myhrvold, The Next Fifty Years of Software, 1997.

37

6. Produire du code simple

Nous codons dans un monde qui change
Un code simple et bien congu est plus facile a changer

Des solutions bien structurées et découplées induisent un code plus facile a
changer, déployer, maintenir et réutiliser

Un code plus simple est plus fiable

38

7. Produire du code efficace

1959 : There's Plenty of Room at the Bottom AT | psLm

MINES PARIS

* Phrase de Richard Feynman

+ Miniaturisation des semi-conducteurs : moteur de I'accroissement des
performances pendant 50 ans

* Loi de Moore : doublement du nombre de transistors par puce tous les deux
ans

Loi de Dennard (MOSFET) : méme niveau de consommation d’'énergie a
surface constante

+ Ces deux lois empiriques sont aujourd’hui fausses

39

Fin de la loi de Dennard (2004) AT | psLm

MINES PARIS

100,000

SPECint rate
10,000 4107 cores

SPECint rate
2to3cores
LB e
1000 ————— spEcint = SPECnt rate LR » SPECint |
¢ 2+ cores

1 . !
core .:.-'I"-i'

100 | I DU CRE 5 "W”iﬂ

Relative performance or relative clock frequency

I . »g00 8
. ‘ 8% Clock frequency
AR
-l
0 g
- ", 28 -
" . s |® ‘ Dennard-scaling era Multicore era
1 - 8
1985 1990 1995 2000 2005 2010 2015

Year

40

2020 : There's Plenty of Room at the Top AT | ps

MINES PARIS

There’s plenty of room at the Top : What will drive computer’s performance after Moore’s law?
C.E. Leiserson et al., Science 2020.

The Top

Technology 01010011 01100011

01101001 01100101 %5

01101110 01100011
01100101 00000000

Software Algorithms Hardware architecture
Opportunity Software performance New algorithms Hardware streamlining
engineering
Examples Removing software bloat New problem domains Processor simplification
Tailoring software to New machine models Domain specialization
hardware features

The Bottom

for example, semiconductor technology

141

Optimisation de code et parallélisation A | psLm

MINES PARIS

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time" is the running time of the version. “GFLOPS" is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer's peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup ofF;:::(I?:h)
1 Python 25,552.48 0.005 1 = 0.00
2 Java 2,372.68 0.058 1 10.8 0.01
3 C 542.67 0.253 47 44 0.03
4 Parallel loops 69.80 1.969 366 7.8 0.24
5 Parallel divide and conquer 3.80 36.180 6,727 184 4.33
6 plus vectorization 110 124.914 23,224 Bi5) 14.96
7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45

42

~ oy » 24
Ne pas étre obnubilé par les performances A | psLm

MINES PARIS

« There is no doubt that the grail of efficiency leads to abuse. Programmers waste
enormous amount of their time thinking about, or worrying about, the speed of non
critical parts of their programs, ant these attemps at efficiency actually have a
strong negative impact when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97% of the time : premature
optimization is the root of all evil. »

- D. Knuth en 1974

43

READABILITY

44

7. Prouver ou tester
automatiquement

« Program testing can be used to show the presence of bugs, but never to show
their absence. »

— Edsger W. Dijkstra

45

Familles de tests yo g | PSL

MINES PARIS

* Tests unitaires : vérification du bon fonctionnement d'une partie précise d'un
programme.

+ Tests d'intégration : vérification de I'interaction de différents composants
entre eux. Par exemple, I'interaction entre un composant et une base de
données, ou entre 'API de deux composants.

+ Tests fonctionnels : vérification du comportement de des fonctions de
I'application vis-a-vis des utilisateurs.

+ Tests de bout en bout : tests fonctionnels complexes testant des suites de
fonctions, par exemple le parcours complet d’'un utilisateur sur une
application, de sa connexion a sa déconnexion.

+ Tests d'acceptation : tests fonctionnels avec des critéres complémentaires,
comme le temps de réponse.

+ Tests de montée en charge : permettent de stresser I'application pour vérifier
son comportement, identifier les goulots d'étranglement.

46

Automatiser les tests 7 | PSL58

MINES PARIS

+ Automatiser les tests le plus possible

Indispensable lors des évolutions : non régression

https://docs.pytest.org/en/6.2.x/

Stress tests : exemple de Locust

47

https://docs.pytest.org/en/6.2.x/
https://locust.io

Throw over the wall

T | PSL#

“Test this!”
[]
o I
1}
L
]
Dev
“Secure this!”

'K

DevOps Secunty

MINES PARIS

“Operate this!"

O\
g

Engineering Ops

==

“TBD this!"

'K

DevSecOps

48

24
Preuves formelles 25 | psLm

MINES PARIS

* Interprétation Abstraite
« Sémantique axiomatique (C.A.R. Hoare)

« Compilateur C prouvé : CompCert https://compcert.org

49

https://fr.wikipedia.org/wiki/Interpr%C3%A9tation_abstraite
https://fr.wikipedia.org/wiki/S%C3%A9mantique_axiomatique
https://compcert.org

8. Mettre en place des regles de
codage homogeénes

- rop » 2%
Homogénéité 25 | psLm

MINES PARIS

+ Aide a la lecture du code
* https://www.gnu.org/prep/standards/
* https://google.github.io/styleguide/pyguide.html

50

https://www.gnu.org/prep/standards/
https://google.github.io/styleguide/pyguide.html

10. Commenter et documenter

Commentaires yo g | PSL

MINES PARIS

+ Commenter le moins possible
* Rendre le code le plus évident possible
* Exemple de ce qu'il ne faut pas faire

51

https://curc.readthedocs.io/en/latest/programming/coding-best-practices.html#commenting-your-code

24
Documentation 7 | PSL#

MINES PARIS

* Documenter en codant

* En Python : docstrings, Sphinx
* https://readthedocs.org
* Exemple de pandas

+ Documentation, théorie et pratique : diataxis

52

https://www.python.org/dev/peps/pep-0257/
https://www.sphinx-doc.org/en/master/
https://readthedocs.org
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://diataxis.fr/

Programmation littéraire 7 | PSL58

MINES PARIS

+ Concept introduit par Donald Knuth

* Le méme fichier source contient de maniére entrelacée le code et sa
description

* cweave, ctangle

+ Exemple de la Stanford GraphBase

* Exemple de "TeX : The Program”, livre et code source

* https://www-cs-faculty.stanford.edu/~knuth/cweb.html
* Code source: https://github.com/ascherer/cweb

53

https://www-cs-faculty.stanford.edu/~knuth/sgb.html
https://www-cs-faculty.stanford.edu/~knuth/cweb.html
https://github.com/ascherer/cweb

11. Produire du code lisible

2 | psL#

Exemple : choisir des noms signifiants e

class Data(object): class Duration(object):

""" Duration.

def __init__(self):
self.elapsed_days = 0

def __init__(self):
elapsed time in days

self.d = 0

54

12. Utiliser les bons outils

2 | psL#

MINES PARIS

* Git : gestion de versions distribuée

Github, Gitlab : serveurs Git avec outils de développement
+ Gestions de taches, merge/pull requests, Cl

Plusieurs flux de développement possibles avec Git
Lire le Git book
* Code source: https://git.kernel.org/

55

https://git-scm.com
https://git-scm.com/docs/gitworkflows
https://git-scm.com/book/en/v2
https://git.kernel.org/

2| psLi

MINES PARIS

* https://datatracker.ietf.org/wg/secsh/about/

+ Spécifications du protocole SSH :
https://www.openssh.com/specs.html

* OpenSSH, implémentation la plus connue du protocole SSH :
https://www.openssh.com/

+ Dépot Git de OpenSSH : https://anongit.mindrot.org/openssh.git

* Nouveau chiffrement post-quantique de SSH :
https://nakedsecurity.sophos.com/2022/04/11/
openssh-goes-post-quantum-switches-to-qubit-busting-crypto-by

* SSH ControlMaster: http:
//www.qganuqg.com/2617/09/69/diminuer-temps-connexion-ssh/

« MOSH
https://cat.pdx.edu/platforms/linux/remote-access/mosh/

56

https://datatracker.ietf.org/wg/secsh/about/
https://www.openssh.com/specs.html
https://www.openssh.com/
https://anongit.mindrot.org/openssh.git
https://nakedsecurity.sophos.com/2022/04/11/openssh-goes-post-quantum-switches-to-qubit-busting-crypto-by-default/
https://nakedsecurity.sophos.com/2022/04/11/openssh-goes-post-quantum-switches-to-qubit-busting-crypto-by-default/
http://www.qanuq.com/2017/09/09/diminuer-temps-connexion-ssh/
http://www.qanuq.com/2017/09/09/diminuer-temps-connexion-ssh/
https://cat.pdx.edu/platforms/linux/remote-access/mosh/

Outils de paquetage logiciel A | psLm

MINES PARIS

« GUIX

+ Paquetages Debian/Ubuntu
* pacman

* rpm

+ exherbo

* Dockerfile

+ Vagrantfile

57

https://guix.gnu.org/fr/
https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html
https://wiki.archlinux.org/title/pacman
https://rpm.org/
https://paludis.exherbo.org/
https://docs.docker.com/engine/reference/builder/
https://developer.hashicorp.com/vagrant/docs/vagrantfile

Virtualisation et conteneurisation 7 | PSL#

MINES PARIS

Isolateurs : Docker, Linux Containers, Kubernetes

* Hyperviseurs de type 2 : Virtualbox, QEMU

* Hyperviseurs de type 1: KVM

* https:
//xania.org/201609/how-compiler-explorer-runs-on-amazon

58

https://xania.org/201609/how-compiler-explorer-runs-on-amazon
https://xania.org/201609/how-compiler-explorer-runs-on-amazon

Automatisation de l'installation yo g | PSL5#

MINES PARIS

Pet vs Cattle
Ansible, Puppet, Chef, CFEngine
Metal as a Service (MAAS) https://maas.io

https://serverfault.com/questions/433653/
how-do-i-automate-os-installation-on-5008-machines

59

https://maas.io
https://serverfault.com/questions/433653/how-do-i-automate-os-installation-on-500-machines
https://serverfault.com/questions/433653/how-do-i-automate-os-installation-on-500-machines

13. Surveiller et mesurer

+ Mesurer les performances (Ex: https://www.datadoghq.com/)
« Faire remonter les erreurs (exceptions, logging)

* Surveiller en permanence

60

https://www.datadoghq.com/

14. Mettre en place un processus de
revue du code

24
Revue de code 7 | PSL58

MINES PARIS

Principes de I'extreme programming

Soumettre des patchs

Utiliser les fonctions de pull ou de merge requests de Github ou Gitlab
+ Attention au coding wars

+ Tabs vs spaces

61

https://www.youtube.com/watch?v=SsoOG6ZeyUI

15. Lire, apprendre, etre humble

Benjamin Franklin : « experience is a dear teacher, but fools will learn at no other. »

Gerald Weinberg en 1971 : « another essential personality factor in programming is
at least a small dose of humility. Without humility, a programmer is foredoomed to
the classic pattern of Greek drama : success leading to overconfidence (hubris)
leading to blind self-destruction. Sophocles himself could not have invented a
better plot (to reveal the inadequacy of our powers) than that of the programmer
learning a few simple techniques, feeling that he is an expert, and then beaing
crushed by the irresistible power of the computer. »

62

Conseils d’A. Barr, 2022

24
Conseils aux managers 2 |ps

MINES PARIS

+ Laissez du temps aux employés pour suivre les méthodes modernes de
développement;

* Récompensez cette attitude, plutét que pour l'attitude du héro qui consiste a
corriger des problemes qui avaient été négligés;

+ Sivous pensez que vous n‘avez pas suffisamment de maitrise de ces
nouveaux sujets pour échanger avec votre équipe, augmentez votre maitrise
de ces sujets.

63

e 7 e A 24
Conseils aux développeurs séniors et aux architectes A | ps

MINES PARIS

+ établissez des processus obligatoires pour I'équipe, comme les tests
unitaires, I'analyse statique du code et la documentation;

* ne croyez pas aux balles en argent mais ne les négligez pas : elles ne sont
pas magiques mais ont de la valeur;

* lisez des études empiriques, pas des livres tendances sur de nouveaux
principes ou processus;

* ne soyez pas le vieux développeur grincheux obnubilé uniquement par la
performance.

64

~ <« ue 24
Conseils aux développeurs cherchant a s’améliorer 2 |ps

MINES PARIS

+ contribuez aux projets open-source, idéalement ceux avec de nombreux
contributeurs qui ont des régles établies et des processus;

* si vous n‘avez pas le temps de contribuer, lisez le code, en essayant de
comprendre notamment pourquoi les régles et processus existent.

65

Faire passer un entretien a un développeur A | ps

MINES PARIS

* ne vous focalisez pas sur le quadrant nord-ouest. Une question de
programmation est intéressante, mais ne vous focalisez pas forcément sur
I'algorithme trouvé;

* méme si quelqu’un arrive avec un algorithme malin, il est plus important que
le code soit lisible et maintenable. Si il est trop "malin”, la prochaine
personne devant le modifier a de fortes chances de le casser;

+ idéalement, le candidat devrait avoir de I'expérience de travail sur le code

d’autres personnes a présenter, ou au moins de I'expérience concernant les
tests et la maintenabilité.

66

Si vous étes enseignant yorg | PS

MINES PARIS

« faites lire plus de code a vos éléves, il y a énormément de code open source
disponible;

+ la majeure partie du temps devrait étre consacrée a la lecture de code, et pas
a I'étude des algorithmes et de la syntaxe des langages. Pour produire du
code il faut avoir lu du code. Du bon, du mauvais, du code qui a eu du succes,
du code qui a échoué;

* regardez les études empiriques des développeurs dans l'industrie;
idéalement, conduisez-en vous méme;

* n'ignorez pas les “coding camps”, il seront bientot vos concurrents.

67

.~ ge 24
Livres a lire 2| psLi

MINES PARIS

+ Harlan D. Mills. Software Productivity. Dorset House, 1988. URL :
https://trace.tennessee.edu/utk_harlan/11

* Frederick P. Brooks. The Mythical Man-Month. Essays on Software
Engineering. Addison-Wesley, 1995

+ Gerald M. Weinberg. The Psychology of Computer Programming. Silver
Anniversary Edition. Dorset House, 1998 (version révisée d’'un livre paru en
1971)

« Adam Barr. The Problem with Software. Why Smart Engineers Write Bad
Code. The MIT Press, 2018

68

https://trace.tennessee.edu/utk_harlan/11

. 2%
Ressources diverses 2| psLi

MINES PARIS

* WAT: https://www.destroyallsoftware.com/talks/wat

« DONKEY.BAS :
https://web.archive.org/web/26130918210121/http:
//www.codinghorror.com/blog/files/donkey.bas.txt Voir
également: https://www.retrogames.cz/play_1385-D0S.php

+ Tabs vs Space (Silicon Valley) :
https://www.youtube.com/watch?v=Sso0G6ZeyUI

69

https://www.destroyallsoftware.com/talks/wat
https://web.archive.org/web/20130918210121/http://www.codinghorror.com/blog/files/donkey.bas.txt
https://web.archive.org/web/20130918210121/http://www.codinghorror.com/blog/files/donkey.bas.txt
https://www.retrogames.cz/play_1385-DOS.php
https://www.youtube.com/watch?v=SsoOG6ZeyUI

	Prélude
	Définitions
	Bugs
	Qu'est-ce qu'un bon code?
	Il n'y a pas de balle magique
	Méthodologies
	1. Récolter correctement les besoins
	2. Prendre le temps de concevoir l'architecture
	3. Choisir ou créer les bons algorithmes
	4. Choisir ou créer le langage approprié
	5. Produire le moins de code possible
	6. Produire du code simple
	7. Produire du code efficace
	7. Prouver ou tester automatiquement
	8. Mettre en place des règles de codage homogènes
	10. Commenter et documenter
	11. Produire du code lisible
	12. Utiliser les bons outils
	13. Surveiller et mesurer
	14. Mettre en place un processus de revue du code
	15. Lire, apprendre, être humble
	Conseils d'A. Barr, 2022

