Rust: system programming with guarantees
CRI Monthly Seminar

Arnaud Spiwack Pierre Guillou

MINES ParisTech, PSL Research University

Fontainebleau, July 6th, 2015

High level programming languages

A programming language is low level when its programs require
attention to the irrelevant.

— Alan Perlis

A language that doesn't affect the way you think about
programming, is not worth knowing.

— also Alan Perlis

2/29

High level on the rise

Mozilla
o C++ = Rust
Apple
@ Objective-C = Swift
Microsoft
o Ct = Ff
From Academia
@ Scala (Twitter, ...)
@ Ocaml (Facebook, ...)
@ Haskell (Facebook, ...)

3/29

Rust in a nutshell

Rust is

e Strongly typed
Memory safe
Garbage-collector free

Higher order

Precise wrt. memory

Rust isn't
o Always easy
@ For everything
@ Finished

4/29

Ownership, linearity

let x = &mut 42;
lety=x;
printin!("Value: {}.", x);

error: use of moved value: ‘x' }

5/29

Ownership, linearity

let x = &mut 42;
lety=x;
printin!(*Value: {}.", y); // was 'x’

Value: 42. }

5/29

Ownership, linearity

let x = &mut 42;

let y = x.clone(); // was x’

printin!(*Value: {}.", X); // was 'y’

Value: 42.

/29

Datatypes

enum List<A> {
Nil,
Cons(A List<A>)
}

error: illegal recursive enum type; wrap the inner value in a box to make
it representable

6/29

Datatypes

enum List<A> {

Nil,

Cons(A List<A>) // unboxed!
}

error: illegal recursive enum type; wrap the inner value in a box to
make it representable

)

Datatypes

enum List<A> {

Nil,

Cons(A Box<List<A>>)
}

Works fine but cloning is linear time.

Reference counting

enum List<A> {

Nil,

Cons(A Rc<List<A>>)
1

fn append<A:Clone>(I1:Rc<List<A>>,12:Rc<List<A>>) -> Rc<List<A>> {

match 11 {
List::Cons(ref aref t) =>
Rc::new(List::Cons(a.clone() , append(t.clone() , 12))),
List::Nil =>
12
}
}

Reference counting

enum List<A> {

Nil,

Cons(A Rc<List<A>>)
}

fn append<A:Clone>(I1:Rc<List<A>>,12:Rc<List<A>>) -> Re<List<A>> {
// definition omitted
1

let 11 = Rci:new((1..5).collect()); // build list using an iterator
let 12 = Rci:new((5..10).collect());
printin!("fappend: {}', appendd1,12))

append: [1,2,3,4,5,6,7,8,9] J

Speaking about iterators

let | = (1..10).collect();
printin!*lterator: {}",

Iterator: [1,2,3,4,5,6,7,8,9]

Some type annotations have been omitted

/29

Speaking about iterators

let nat = 0..; // the natural numbers

let ten = nat.take(10); // take the 10 first
let | = ten.collect();

printin!("lterator: {}", D

Iterator: [0,1,2,3,4,5,6,7,8,9] J

Some type annotations have been omitted

Speaking about iterators

let nat =0..; // the natural numbers

let odd = nat filter(I n| n%2==1); // only the odd ones
let ten = odd.take(10); // take the 10 first

let | = ten.collect(;

printin!("lterator: {}", D

Iterator: [1,3,5,7,9,11,13,15,17,19]

Some type annotations have been omitted

Speaking about iterators

let nat =0..; // the natural numbers

let odd = nat filter(Inl Nn%2==1); // only the odd ones

let pairs = odd.flat_map(Inl // cartesian product
vec!(true false).into_iter().map(move Ipl (n,p)));

let ten = pairs.take(5); // take the 5 first

let | = fen.collect();

printin!("lterator: {}",

Iterator: [(1,true),(1,false),(3 true),(3.false),(5,true)] J

Some type annotations have been omitted

Back to lists

enum List<A> {
Nil,
Cons(A Box<List<A>>)

Power of ownership

Modify value = Make new value

fn append<A>(1:&mut List<A>,12:List<A>) {
match *I1 {
List::Cons(_ ref mut 1) => append(&mut *1,12),
List::Nil => *11 =12
}
}

10/29

Remark: non-aliasing

let mut x = List::Nil;
let y = &mut x;
letz=&x;

error: cannot borrow ‘x‘ as immutable because it is also borrowed as
mutable

11/29

Non-aliasing continued

12/29

Non-aliasing continued

12/29

Non-aliasing continued

N
&
&
S

12/29

Lifetimes

let mut x = List::Nil;
let y = &mut x;
letz=&x;

error: cannot borrow ‘x' as immutable because it is also borrowed as
mutable

Some type annotations have been omitted

13 /29

Lifetimes

let mut x = List::Nil;
{ let y = &mut x;}
letz=&x;

ok J

Some type annotations have been omitted

13/29

Lifetimes

let mut x = List::Nil;

let z = &mut &x;

{ let y = List::Nil;
letw=&y;
*z=w;}

error: ‘'y‘ does not live long enough J

Some type annotations have been omitted

13/29

Ownership passing

enum List<A> {

Nil,

Cons(A ,Box<List<A>>)
}

fn append<A>(1:&mut List<A>,12:List<A>) {
// definition omitted
}

// This type works on the functional version as well
fn append2<A>(I1:List<A> 12:List<A>) -> List<A> {
append(&mut 11,12);
1
}

14 /29

Abstraction: type scope

impl<A> List<A> {
/// invoked as 'List::foo(...)"
fnfoo(...)>...{
// definition
}

/// invoked as 'I.foo(...)"
fn bar(&self,...) > ... {
// definition
1
1

15 /29

Abstraction: traits

/// Allows lists fo be used as a target of the ‘collect method
impl<A> Fromlterator<A> for List<A> {

// required methods go here

}

/// Allows lists to be used with format macros (such as ‘printin!*)
impl<A:Display> Display for List<A> {

// required methods go here

16 /29

Traits: remember

enum List<A> {

Nil,

Cons(A Rc<List<A>>)
1

// ‘Clone‘'is a frait
fn append<A:Clone>(I1:Rc<List<A>> |2:Rc<List<A>>) -> Re<List<A>> {
match *IT {
List::Cons(ref aref t) =>
Rc::new(List::Cons(a.clone() , append(t.clone(. 12))),
List::Nil =>
12
}
}

17 /29

Recap

Rust has
@ ownership, borrowing, lifetimes
@ unboxed datatypes, pattern-matching
@ traits
@ iterators

And so much more
@ array slices, unboxed functional values
@ statically sized data in stack vs dynamically sized data in heap
@ lifetime-parametric data & functions
@ trait objects
@ typed exceptions (sort of)
@ macros, iterator-based for loop
@ safer concurrency

And, also, a vibrant ecosystem
@ compilation, standard library
@ documentation, test
@ some projects written in Rust

Modules and Crates

Crate compilation unit

@ library or binary
o link: extern crate other_crate;

Module named scope

@ a crate = several modules

e visibility: pub keyword

@ a tree structure from the top-level source directory
@ use keyword to import into the local scope and
defining public interfaces

no need to maintain separate .h/.mli files:

// declare external inferface
// independantly of infernal code organization
pub mod my_interface {
// import all my_internal_module functions
// info current module
pub use my_internal_module;
}

19/29

Compiling Rust programs

The Rust compiler

@ rustc
hardware targets: (x86, ARM) x (Linux, OSX, Windows, *BSD)

built on top of LLVM
written in Rust (previously in Ocaml)

compiling rather slow, optimization on their way

Conditional compilation
@ code annotations #(cfg(feature)), macros cfgl(feature)

o compiler flags: -—cfg feature

20/29

Linking to other libraries

Linking to a Rust crate
e extern crate declaration to import public items
@ § rustc -L path -1 14b to add library

Linking to a C library

#(link(hame="m"))
extern { // signatures

fn pow(a: f64, b: f64) -> {64;
}

pub fn rust_pow(a: 164, b: f64) -> {64 {
unsafe {
pow(a, b)
}
}

Calling Rust from C (or Python, C++, ...)
e #(no_mangle) and extern fn for functions
o #(repr(C)) for structs

21/29

Rust standard libraries

The std crate
@ 55 kLoC (glibc: 1.8 MLoC)
@ automatically linked at compile time
@ except with #(No_std) — bare metal
@ basic data structures: strings, vectors, hashmaps, error handling
o /0 (files, fs, path), concurrency (threads, channels, processes, simd)

The core crate
@ 25 kLoC
@ minimal and portable replacement for the std crate

@ no heap allocation, no concurrency, no 1/0

The 1ibc crate
e wrapper around LibC functions (glibc on Linux)

22/29

Documentation, test

Documentation
@ can be written in source code using /// delimiters
@ Markdown syntax
@ $ rustdoc to generate HTML

@ code examples in documentation can be compiled and executed as
tests

Test
e #(test) annotation conditionnaly compiled with $ rustc --test
e assert! macros for testing conditions
@ anywhere in source code, even in documentation

@ also support performance tests with #(bench)

#(test)

fn test_rust_pow(Q {
assert_eq!(rust_pow(2.0, 3.0), 8.0);

}

Cargo, a project manager for Rust

@ $ cargo new project_name [--bin]

o create a folder hierarchy: project_name/{src, target}
o initialize git/hg version control repository

@ $ cargo run: compile and run in one command

@ $ cargo [test|bench]: compile and run tests/benchmarks
@ $ cargo doc: generate documentation

@ Cargo.toml: semantic versionning, metadata, dependencies. ..

@ http://crates.io: package repository

24 /29

http://crates.io

Projects written in Rust

@ the Rust compiler and the standard library

o currently 85 kLoC in Rust
o 6-weeks iteration process (like Firefox, Chrome)
e on GitHub

@ cargo, the Rust project manager

o 15 kLoC in Rust
e 2500 available crates on http://crates.io

@ Servo, a parallel web browser layout engine

e research project

e aims at replacing the Gecko engine

o already passes the Acid2 rendering test
e currently 150 kLoC in Rust

https://github.com/rust-lang/rust
https://github.com/rust-lang/cargo
http://crates.io
https://github.com/servo/servo

Servoception

Article Talk Read Edit View history | Search

Servo (layout engine)

WIKIPEDIA

The Free Encyrlopedia From Wikipedia, the free encyclopedia
Main page Servo is an Servo
Contents

experimental web
Featured content
Current events
Random article
Donate to Wikipedia

browser layout engine Dexelapeis)

being developed by
Mozilla Research, with

Written in Rust

Create account Login

Gae

Mozilla Research and Samsung

Operating system Cross-platform Mobile

https://github.com/serve/servo d&@

wikipedia store samsung portingitto | TYPe Layout engine
Android and ARM License ML 2,01802
Interaction 13)
Help processors.” The Website

About Wikipedia prototype seeks to
Community portal
Recent changes

Contact page
Tools

What links here

Related changes

Upload file

Sracial nanas

create a highly parallel environment. in which many components {such as
rendering, layout, HTML parsing, image decoding, etc.) are handled by
fine-grained, isolated tasks. The project has a symbiotic relationship with the
Rust programming language. in which it is being developed.

Servo provides a consistent API for hosting the engine within other software.

Itis designed to be compatible with Chromium Embedded Framework, an
APl used by Adobe and Valve Corporation to incorporate the Blink rendering

servo -o wikiservo.png --resolution 720x540 https://en.wikipedia.org/wiki/Servo_\(layout_engine\)

26

On-line resources

@ main page: http://rust-lang.org
@ guides: Rust Book, Rust by Example
o Reddit, Stack Overflow, GitHub, IRC, Twitter, ...

@ linkable online interpreter: Rust playground

27 /29

http://rust-lang.org
https://doc.rust-lang.org/stable/book/
http://rustbyexample.com/
https://reddit.com/r/rust
https://stackoverflow.com/questions/tagged/rust
https://github.com/rust-lang/rust
https://chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust
https://twitter.com/rustlang
https://play.rust-lang.org/

Conclusion

Rust

(]
("]
("]
("]
("]
]

innovative programming language
high-level features

fine-grained memory model
hardware performance

efficient tools for developers
interesting projects

thriving community

Rust: system programming with guarantees
CRI Monthly Seminar

Arnaud Spiwack Pierre Guillou

MINES ParisTech, PSL Research University

Fontainebleau, July 6th, 2015

29 /29

	Introduction
	The Rust programming language
	Functionnal programming
	Iterators
	Mutations
	Abstraction

	Interlude
	Software Development in Rust
	Compilation
	Ecosystem

