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Abstract. In this paper, we consider the recent set of OpenMP direc-
tives related to GPU deployment and seek an evaluation through the case
of an optical flow algorithm. We start by investigating various agnostic
transformations that attempt to improve memory efficiency. Our case
study is the so-called Lucas-Kanade algorithm, which is typically com-
posed of a series of convolution masks (approximation of the derivatives)
followed by 2 × 2 linear systems for the optical flow vectors. Since, we
are dealing with a stencil computation for each stage of the algorithm,
the overhead of memory accesses together with the impact on parallel
scalability are expected to be noticeable, especially with the complexity
of the GPU memory system. We compare our OpenMP implementation
with an OpenACC one from our previous work, both on a Quadro P5000.
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1 Introduction

The use of hybride programming model has gained an increasing attention in
recent years, with a special consideration on heterogeneous architectures. In
order to take advantage of modern computing resources, scientific application
developers need to make significant changes to their implementations. There
are many benchmarks and applications in computer vision that are built with
OpenMP 4.x and 5.x [1–3], which provide an excellent opportunity to get access
to the noticeable computational power of the GPUs through a directive based
deployment. However, this programming style generally yields some unnecessary
overhead that is inherent to the paradigm, thus the programmer needs to con-
sider this aspect beside its application driven optimizations. The main goal of
the current investigation is to study how to get a more efficient implementation
from a code written by an experienced OpenMP programmer with no specific
GPU programming skills. To address the challenges on improving the execution



2 Olfa Haggui, Claude Tadonki, Fatma Sayadi, and Bouraoui Ouni

of high-level parallel code in GPU using OpenMP, we chose the Lucas-Kanade
optical flow algorithm. So the aim is to derive and evaluate an optimized GPU
implementation of the optical flow algorithm using OpenMP and to highlight
the main programming techniques that we have considered. Implementation of
the Lucas-Kanade algorithm[5] on the graphics processor Unit (GPU) is seri-
ously considered. Regarding the multicore parallelization of the algorithm, the
work by [10] for instance describes an updated method in order to speed up the
objects movement between frames in a video sequence using OpenMP. Another
multi-core parallelization is proposed in [11]. Pal, Biemann and Baumgartner[12]
discuss how the velocity of vehicles can be estimated using optical flow imple-
mentation parallelized with OpenMP. Moreover, another hybrid model mitigate
the bottleneck of motion estimation algorithms with a small percentage of source
code modification. In [16], Nelson and Jorge proposed the first implementation
of optical flow of Lucas-kanade algorithm based on directives of OpenACC pro-
gramming paradigms on GPU. In the same context of hybride model, OpenMP
provides an excellent opportunity to target hardware accelerators (GPUs) with
the new version(4.0,4.5) which is very similar to the OpenACC model. In order
to take advantage, many research begun using OpenMP GPU offloading in dif-
ferent domain. However, the implementation of optical flow algorithm with the
new version of OpenMP still limited until now. In this context, this research aims
to accomplish an efficient application of Lucas-Kanade algorithm for intensive
computation using OpenMP GPU offloading implementation which processes
and analyzes the bottlenecks of the accesses memory. In this paper, there are a
number of contributions presented: First, we propose a sequential optimization
strategies to improve the performance. We also evaluate the different challenges
of implementing several of them to overcome some memory problems. Then,
we explore the feasibility of a high level directive based model OpenMP4.0 to
port Lucas-Kanade algorithm to heterogeneous architecture(GPU) using offload-
ing model. Finally, we compare the performance obtained from a new OpenMP
version and the OpenACC implementation[4] described in our previous work.

The remainder of the paper is organized as follows. Section 2 provides a
basic background of the optical flow method and describes the Lucas-kanade
algorithm. Our sequential optimization strategies are explained in section 3. In
Section 4, we investigate the impact of GPU parallelization and optimization,
we provide a commented report of our experimental results, and compare our
results with the OpenACC results from our previous work. Section 5 concludes
the paper and outlines some perspectives.

2 Optical Flow algorithm

Optical flow is a family of algorithms which are used to calculate the apparent
motion of features across two consecutive frames of a given video, thus estimating
a global parametric transformation and local deformations. It is based mainly
on local spatio-temporal convolutions that are applied consecutively. The opti-
cal flow is an important clue for motion estimation, tracking, surveillance, and
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recognition applications. To estimate optical flow in real time is a challenging
task, it requires a lot of computation effort. So more than a hundred optical flow
algorithm exist, Horn and Schunck algorithm[6] and Lucas-kanade algorithm [5]
have became the most widely used techniques in computer vision. This article
focuses on Lucas-kanades approach because is the most adequate in terms of
calculation complexity and requires less computing resources. Its computation
method is suitable for CPU and GPU implementations. The main principle of
the Lucas-Kanade optical flow estimation is to assume the brightness constancy
to find the velocity vector between two successive frames (t and t+1) as shown
in Figure 1, (a) and (b). The optical flow vectors are drawn in Figure 1 (c).

Fig. 1: Optical Flow computation
Fig. 2: Workflow of Lucas-Kanade

2.1 Lucas-Kanade algorithm

The idea of Lucas-Kanade is to compute the spatiotemporal derivatives on a
smoothed image to minimize the intensity variations over time. This requires a
focus on a representative pixels which are then checked for motion across con-
secutive frames through intensity variations between the scene and the camera,
followed by a construction of the least square matrix in a spatial neighborhood to
calculate the optical velocity flow. Consider for a 2D image I, a small motion is
approximated by a translation. We need to determine the motion flow vectors for
the image pixel I(x, y). Thus if the current frame is represented by its intensity
function I, then the intensity function H of the next frame is such that where
(u, v) is the displacement vector. Here, we briefly describe the correspondence
of equations with different steps of the Lucas-Kanade algorithm.

H(x, y) = I(x + u, y + v), (1)

Therefore, we have to solve for every pixel the following so-called Lucas-Kanade
equation: [ ∑

I2x
∑

IxIy∑
IxIy

∑
I2y

] [
u
v

]
= −

[∑
IxIt∑
IyIt

]
(2)
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where Ix, Iy and It are the derivatives of the intensity along x, y and t direction
respectively. A least-square approach are implemented in Lucas-Kanade system
to find the most likely displacement (u, v), since the original system is over de-
termined. The summations within equation (2) are over the pixels inside the
sampling window. If the condition number of the normal matrix is above a given
threshold, then we compute the solution of the system (using Kramer method
for instance) and thus obtain the components of the optical flow vector for the
corresponding pixel. Figure 2 summarizes a sequence of computation stages of
the Lucas-Kanade algorithm where the derivatives Ix, Iy, and It are computed
through their Taylor approximations using the corresponding convolution 6 ker-
nels. Then follows their point-wise products compute the products I2x, I2y , IxIt,
IyIt, and IxIy. Computes for each pixel the normal matrix and the right hand
side of the linear system as described in equation (2).

3 Sequential optimization strategies

For many algorithms, especially in computer vision and image processing field,
a stencil computation are a common programming pattern. Usually, image pro-
cessing algorithms combine the challenges of stencil computations and that of
real-time processing. Therefore, an efficient implementation requires to focus
on data locality and to consider a scalable parallelisation. More precisely, We
should take care about redundant memory accesses, cache misses, and unaligne-
ment issues. We now describe some techniques that we have considered for the
aforementioned concerns.

3.1 Operators Clustering

Operators clustering aims at merging two or more operators into a single one, in
order to reduce the lifetime of the intermediate results in between and to improve
data locality. In its Nopipe version, the Lucas-Kanade algorithm is composed of
four computation stages: computation of the gradients, product of the gradients,
computation of the matrix coefficients together with the corresponding right and
sides, and solving the linear systems for the optical flow vectors. This compu-
tation chain requires accessing nine intermediate arrays. For our case, several
combinations are possible [15]. For instance, we can choose to pipeline the Grad
and Mul operators one hand, and the Matrix and solve operators on the other
hand, this transformation is called Halfpipe and it reduces both the number of
floating point operations and memory accesses. For our scenario, the most bal-
anced one seems to fully pipeline the operators, thus removing all intermedi 6
ate memory accesses. This is called full-pipe, where we form the unique cluster
GRAD+MUL+MATRICE+SOLVE. Figure 4 illustrates the full-pipe workflow.

3.2 Loop optimization

Stencils represent a challenging computational pattern for Memory optimization,
the resulting computation loop therefore needs to be optimized. Loops optimiza-
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Fig. 3: Upper-left shift storage Fig. 4: Full-pipe Organization

tion plays an important role in high performance computing. Possible goals are:
improving data reuse and data locality, reducing the overheads associated with
loops management, and maximizing parallelism. Loop transformations can be
performed at different levels for our work. In this context, we present a loop
shifting technique, which minimizes the memory needed to carry on the main
arrays. In fact, we apply an upper-left shift for the output matrix, which means
that (i, j) is stored at position (i − 1, j − 1) [15]. Figure 3 illustrates our re-
indexation and the corresponding storage strategy. After applying loop shifting
, we apply a Loop fusion to improve the readability of the code and to make
programs faster by replacing multiple loops with a single one. Furthermore, loop
fusion can help to have a more coarse grained parallelism. For the next point,
we study the effect of array contraction on data reuse and data locality.

3.3 Array Contraction

In this paper, we consider another optimization strategy to benefit from the
cache. The so-called array contraction, which aims at reducing the memory foot-
print [14], is a program transformation which reduces the size of intermediate
arrays by means of location reuses. We use the modulo to round up on i direc-
tion. This approach clearly reduce the number of loads. In order to improve the
register use, we consider a special case of array contraction, namely scalariza-
tion, where each element of an array is defined and immediately used within the
same iteration. To illustrate the potential benefit of these strategies, we include
preliminary results showing the improvement that is achieved when collective
loop transformations with a contraction array are applied. We run on a dual-
socket intel broadwell. Table 1 shows the performance results of our strategy
using different image sizes. We can see that with the optimized case we achieve
better execution times compared to the basic one, and we can also process larger
images (like 8000x8000 and 16000x16000), which was not possible with the basic
implementation because of memory limitations. Figure 5 shows a noticeable im-
provement, which demonstrates the impact of our optimization and the potential
of 6 more performance gain.
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Table 1: Evaluation of the sequential optimiza-
tion

image size T(s) T(s) %
Basic Optimized Improvement

20002 0.752 0.078 89.62
40002 1.058 0.315 70.22
80002 1.775 1.264 28.79

120002 - 2.846 -
160002 - 5.065 -

Fig. 5: Improvement of sequential implementa-
tion

4 Impact of GPU Parallelization and Optimization

4.1 Hardware Configuration

We use OpenMP4.0 and run on an NVIDIA Quadro P5000 GPU accelerator
(Pascal architecture). It includes 2560 CUDA cores with 16 GB GDDR5 memory.
The host is an Intel(R) Xeon(R) CPU E5-1620 v4 processors with 4 cores. We
use GCC compiler version 7.3.

4.2 Results of the GPU Parallelization

Our performance analysis considers different stages, each focusing on the com-
parison between the results obtained with our OpenMP4.0 implementation and
those of our previous OpenACC implementation. Some directive based optimiza-
tion were performed to improve memory accesses and memory locality. In our
experiments, we use different frame sizes and run our Lucas-Kanade implemen-
tation for the optical flow vectors. We start with a baseline sequential imple-
mentation in C, then we consider the derived OpenMP version without any data
directives. OpenMP4.0 version introduces a number of features for targeting het-
erogeneous architectures [13]. The first step of the algorithm consists in loading
the data from the CPU to the GPUs global memory. This step (typically) yields
a significant overhead. Then, we define which part will be accelerated with the
device (kernel) using the basic directives (#pragma omp target). The target di-
rectives provide a mechanism to move the execution of the thread from the CPU
to another device and to relocate the data. We can see from table 3 that the
parallel CPU version outperforms the OpenMP code on the GPU. The reason
of this is that OpenMP was originally designed for automatic multithreading
on a shared memory processors, so the parallel directive only creates a single
level of parallelism. Beside this one, the version at this stage does not contain
any optimization directive, so there is a potential room for improvement. To
evaluate this potential, we used the NVIDIA runtime profiler on our kernels to
identify locations where memory access seems too important. We use nvprof
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--print-gpu-trace to print all the information about how to optimize the
code. We can see from the results another clear difference between OpenMP and
OpenACC implementations, where the performance achieved by the OpenACC
is quite higher compared to OpenMP and CPU versions. However, OpenACC
is very similar to OpenMP but OpenACC was designed from the beginning to
address both portability and productivity of GPU programming without too
much effort, with OpenMP we must skillfully exploit these new features. Figure
7 demonstrates the performance of GPU implementation using OpenACC. To
overcome theses issues, we consider several specific directives. We start with the
teams directive to express a second level of scalable parallelism. In order to make
better use of GPU resources, we have used many use many thread teams via the
teams directive and the directive to distribute the iterations of the next loop
to the master threads of the teams in order to spread parallelism across the en-
tire GPU. In order to increase the parallelism, we start by increasing the number
of teams using the num−teams clause and the num−thread clause to generate
the number of threads per teams which might yield the best performance and
achieves a good balance between teams and threads. In addition, we can further
increase parallelism by using our distributed and work shared parallelism from
the same loop. We can collapse them together and we split teams distribute

from Parallel For by moving them to the inner loop. In our case we use the
COLLAPSE(N) clause to have the next N loops collapsed into one loop with a
larger iteration space. This will give us more parallelism to distribute.

Table 2: Evaluation of the
OpenMP GPU Deployment

20002 40002 60002 80002 120002

(1) 0.046 0.184 0.416 0.741 1.666
(2) 0.142 0.343 0.662 0.910 2.556
(3) 0.103 0.240 0.428 0.690 1.356
(4) 0.079 0.123 0.355 0.502 1.008
(5) 0.075 0.115 0.330 0.488 0.984
(6) 0.062 0.094 0.275 0.428 0.882

Table 3: Evaluation of the GPU paral-
lelization

Image size CPU(s) GPU(s) GPU(s)
OpenMP OpenACC

20002 0.046 0.142 0.018
40002 0.184 0.343 0.057
60002 0.416 0.628 0.131
80002 0.741 0.391 0.250

120002 1.666 2.556 0.640

– (1) : Basic CPU (2): GPU threaded
– (3) : GPU teams/distribute (4): (3) + GPU team/thread balance
– (5) : (4) + GPU collapse (6): (5) + GPU SIMD

Table 2 lists the different stages of the results, which demonstrate that there
is a significant improvement most of the time. We investigate the effects on
the performances when combined parallelization and vectorization in GPU. In
fact, vectorization using SIMD constructs is very efficient in exploring data level
parallelism since it executes multiple data operations concurrently using a single
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instruction. Therefore, OpenMP4.0 provides the pragma omp simd directive,
which execute multiple iterations of the loop using vector instructions when
possible. As shown in figure 6, the highest performance we have achieved when

Fig. 6: Performance comparison be-
tween different OpenMP GPU of-
floading optimization

Fig. 7: The performance of GPU Of-
floading with OpenMP4 and Ope-
nACC

combined all the directives used in parallelization with the vectorization, which
make the results more fast but the time is still limited due to the heavy implicit
access to memory .

4.3 Managing memory and data optimization

One of the major bottleneck of a GPU is the data transfer latency, because it
takes more than 400-600 cycles to access the global memory. If access to global
memory is frequent, then with the cost of moving data between the CPU and
GPU at every loop, the computation benefit of porting a parallel application
to a GPU will be lost. We discuss now how we schedule memory accesses in
order to reduce the overhead of data exchanges and get ride of intermediate
data accesses whenever possible. We analyze the behavior of the major data
movement with the OpenMP4.0 offloading target using the target data direc-
tives and map clauses to control and reduce data movement between CPU and
GPU. OpenMP4.0 allows an explicit control of data allocation together with the
corresponding transactions through appropriates clauses (copyin, copyout,

present, create) with different map-type (to,from, tofrom,alloc) to op-
timize the mapping of buffers to the device data environment .

Basically, CPUs and GPUs have separate memories and 6 can not access
each other’s memory which must be handled explicitly by programmers. Instead
of this, a new concept of unified memory provided by NVIDIA, which allows the
GPU and the host CPU to share the same global address space. This permits
the host to refer to memory locations on the attached devices, and the devices to
access addresses on their host. The unified memory enables fast memory accesses
with large data sets where the movement data is managed by the underlying
system automatically [1]. There is no need for address translation, and both CPU
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and GPU can use the same pointer. Moreover, leveraging the unified memory
features makes it feasible to run kernels with memory footprints larger than the
GPU memory capacity. In current OpenMP GPU offloading , we illustrate how
the function and data transfer work with the unified memory [1]. To do this,
we use omp-target-alloc for data allocation and is-device-ptr clauses to
pass them to target regions, in contrary to OpenACC compiler which provides
the flag -ta=tesla:managed for the unified memory consideration. When this
option is used at compile time, the PGI compilers will intercept and replace all
user defined allocations with managed data allocations.

6

Table 4: Evaluation of our data
GPU optimization

20002 40002 60002 80002 120002

(1) 0.062 0.094 0.275 0.428 0.882
(2) 0.011 0.024 0.101 0.228 0.689
(3) 0.007 0.014 0.077 0.105 0.481
(4) 0.005 0.010 0.041 0.068 0.137

– (1): Basic GPU parallelization
– (2): (1) + Data movement performance
– (3): (1) + Unified memory
– (4): (2) + pinned

We also highlighted the benefits of using pinned me 6 mory on the mem-
ory copies which offers the best performances. Furthermore, if the memory
is going to be used for many asynchronous transfers, then we request page-
locked memory allocations (pinned memory). It is a memory allocated using the
cudaMallocHost function, which prevents the memory from being swapped out
and thereby provides improved transfer speeds, contrary to the non-pinned mem-
ory obtained with a plain malloc. The benefit of using pinned memory is that we
can solve larger problems because the size of the pinned memory is much larger
than that of the global memory. The pointer association between CPU-GPU is
preserved, thus preventing the operating system from moving this memory to an-
other location. Presently, none of the pragmas can allocate pinned memory and
compiler flag. Hence, OpenMP GPU offloading use the cudaMallocHost function
for pinned memory, which is not the case with OpenACC who considers the flag
compiler -ta=tesla:pinned. The experimental results of our optimization in-
vestigation are summarized in Table 4. The figure 8 outlines the speedup ratio of
the total execution time for each of the different versions compared to the base-
line version. We can see a remarkable speedup with our incremental OpenMP
GPU offloading data optimization, when using a simple data movement with
unified memory and pinned memory directives. We have found that pinning the
same amount of memory was more faster than the use of unified memory and
the basic data movement directives. This technique is more efficient and it of-
ten reduces the overall amount of host-device data transfers. Overall, our work
makes several important research contributions, we evaluate the effectiveness of
OpenMP GPU offloading directives as a potential solution to the performance
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portability problem of modern architectures and we get decent speedups. Right
now, OpenACC support is very selective and limited both for devices and compil-
ers. Whereas, OpenMP GPU offloading is very widely supported and exhaustive.
However, to better understand the computational costs of the different versions,

Fig. 8: Speedup of the three versions
over the baseline version

Fig. 9: Basic CPU and fully opti-
mized GPU

figure 9 displays a comparison between the OpenMP 4.0 implementation and
the OpenACC implementation for each version. As we can see, the management
of the data using directives with OpenMP on the GPU is more costly than with
OpenACC in this stage. However, with the use of the unified memory, we notice
that the OpenMP version is better than the OpenACC version due to the use of
a compiler flag. Moreover, the line labeled OpenMP Pinned Memory shows the
timings of both OpenMP and OpenACC which are so close with pinned memory.

5 Conclusion

In this paper, we have carried out a detailed study of some of the most popular
parallelization approaches and programming languages used to program GPUs.
An OpenMP GPU offloading and OpenACC are used in this work, which are
considered as the most flexible high level languages for GPU deployment. It
makes possible to migrate standard CPU code in a straightforward way without
making too many modifications, and obtain a decent performance compared to
other complex programming models like CUDA and OpenCL. OpenMP 4.x di-
rectives provide an excellent opportunity to GPU deployment. We investigate an
OpenMP deployment of the Lucas-Kanade optical flow algorithm with OpenMP
and strive to obtain better performance than that of a parallel version on a
manycore processor. The performances are very close to our previous OpenACC
version. For the future works, we will investigate a combination of OpenMP and
OpenACC both for GPU and manycore deployments .
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