No d’ordre

THESE de DOCTORAT de L'UNIVERSITE PARIS VI
Spécialité
Systemes Informatiques
Présentée
par Yan-Mei TANG
pour obtenir le titre de DOCTORAT de L'UNIVERSITE PARIS VI

Sujet de la these :

Systemes d’Effet et Interprétation Abstraite
pour 1’Analyse de Flot de Controle

Soutenue le 28 Mars 1994
devant le jury composé de:

MM. Claude Girault Président
Charles Consel Rapporteur

Michel Mauny Rapporteur
Flemming Nielson Rapporteur
Paul Feautrier Examinateur
Pierre Jouvelot Examinateur

ECOLE NATIONALE SUPERIEURE DES MINES DE PARIS

Rapport A/258/CRI

Résumé

L’analyse du flot de contréle est une technique d’importance majeure pour la compi-
lation efficace des langages de programmation fonctionnelle. Cette technique consiste,
au moment de compiler un programme, & calculer une approximation de son graphe
d’appel, c’est a dire quelles fonctions sont utilisées par le programme, dans quel ordre et
a quel niveau. Bien entendu, la précision de telles informations subordonne le possible
gain en performance d’exécution résultant de leur I'utilisation au moyen d’un compi-
lateur optimisant. Dans cette these, nous considérons deux approches théoriques pour
formaliser ’analyse de flot de contréle: l'inférence d’effet et linterprétation abstraite.
Nous étendons ces deux méthodes d’analyse statique pour ensuite montrer comment
les combiner efficacement dans le cadre de "analyse de flot de controle.

La premiere méthode que nous présentons, 'inférence d’effet, peut étre définie
comme une extension des techniques qui sont utilisées pour la vérification du typage des
programmes en ML. Ainsi, de la méme maniere qu'un type représente I’approximation
d’une valeur, un effet représente 'approximation d’une action ou d’une transition
d’état. Ici, plutot que de nous limiter a adapter les techniques de typage a la ML
pour faire de ’analyse de flot de controle, nous introduisons une notion avancée de
sous-typage qui permet d’augmenter notablement la flexibilité et la précision de cette
technique.

La seconde méthode que nous considérons est l'interprétation abstraite qui, util-
isant des techniques d’approximation de point-fixe, permet notamment d’obtenir des
informations plus précises (sur les fonctions récursives, en particulier), la ou d’autres
techniques utilisent des méthodes de calcul beaucoup plus simples. Nous proposons
de combiner ces deux techniques, introduisant la notion d’analyse sémantique séparée.
Nous proposons d’associer une analyse de programme basée sur 'interprétation ab-
straite, profitant ainsi d’une technique performante pour les expressions closes, avec
I'utilisation d’un systeme d’effet, afin de pouvoir spécifier des informations statiques
en présence de compilation séparée, et donc d’information partielle sur I’ensemble d’un
programme.

Enfin, nous étudions 'application de ’analyse de flot de controle pour la détection
d’échappements, c’est a dire la détection, en ML, des variables dont 'existence dépasse
le cadre lexical de leur définition. Détecter cette information permet au compilateur de
choisir une stratégie optimale pour I’allocation des fonctions. Ainsi, lorsqu’une variable
n’est jamais référencée en dehors du cadre lexical de sa définition, on peux alors la
représenter dans la pile d’exécution. Dans le cas contraire, elle doit étre représentée
dans le tas, c’est & dire gérée par le sous-systéme de gestion mémoire.

Abstract

Control-flow analysis is important in optimizing compilers of functional languages.
It strives to approximate at compile time dynamic function call graphs of program
evaluation. The precision of the approximation drives the efficiency of optimizations
applied in compilers. Control-flow analysis can be expressed by both effect systems and
abstract interpretation. My thesis work extends and combines these two static analysis
approaches and describes their applications to control-flow analysis.

Effect systems extend classical ML type systems with effect information. Just
like types describe the possible values of expressions, effects describe their evaluation
behaviors. My thesis introduces subtyping to improve both flexibility and accuracy
of effect systems. The subtype relation is limited to the inclusion relation on effects.
Control-flow analysis by effect systems collapses different call contexts together, thus
limiting the accuracy of control-flow information.

Abstract interpretation is built upon denotational semantics by approximating the
fixpoint nature of the language semantics. If abstract interpretation performs more
precise static analysis due to its more operational nature, effect systems support sepa-
rate compilation more naturely thanks to module signatures. My thesis introduces the
new notion of separate abstract interpretation that extends abstract interpretation in
the context of separate compilation based on the type and effect information of module
signatures. It makes the control-flow analysis as effective as the abstract interpretation
approach on closed expressions, but is also able to tackle expressions with free variables
by using their types to approximate their abstract values.

Finally, my thesis studies the application of control-flow analysis to escape analysis.
This analysis identifies the free variables that outlive the lexical scope of function
definitions, thus helping compilers choose an efficient closure allocation strategy. Non-
escaping variables can be safely allocated in the stack, while heap-allocation is only
used for escaping ones.

Remerciements

Je remercie Claude Girault, Professeur a I’Université de Paris 6, d’avoir voulu présider
mon jury.

Je remercie Charles Consel, Professeur a I’Université de Rennes, Michel Mauny, Chargé
de Recherche a 'INRIA et Flemming Nielson, Professeur a I’Université de Aarhus pour
m’avoir fait I’honneur d’accepter d’étre mes rapporteurs.

Je remercie Paul Feautrier, Professeur a I’'Université de Versailles, pour s’étre montré
un directeur de these agréable et arrangeant.

Je remercie Pierre Jouvelot, Chargé de Recherche a I’Ecole des Mines de Paris, qui m’a
accueillie au CRI (Centre de Recherche en Informatique) il y a trois ans et encadré
mon travail en y contribuant tres largement. Grand merci a lui, car encore, sans lui
cette these ne serait pas.

Je remercie Michel Lenci, ancien directeur de CRI, de qui je garde le souvenir d’un
directeur unique par sa gentillesse et sa sympathie.

Je remercie Jacqueline Altimira, Corinne Ancourt, Vincent Dornic, Francois Irigoin,
Marie-Thérese Lesage, Francois Masdupuy, Nadine Oliver et tous mes autres collegues
du CRI pour leur aide et amitié.

Je remercie W. Kluge, Professeur a I’Université de Kiel, qui m’a donné une chance
unique de pouvoir venir en Europe il y a cing ans.

Je remercie mes amis, Hai-fu, Zhen-wu Zhang et Lian Gu, qui m’ont beaucoup aidée
et soutenue.

Enfin, je dédie cette these & mes parents en Chine, Gui-Zhen et De-Xin, mes beaux-
parents en France, Annie et Maurice, & mon mari Jean-Pierre et a notre fille Julie.

Contents

1 Introduction

2 Static Analysis Approaches

2.1 Effect Systems e
2.1.1 Effect Semantics oo
2.1.2 Verification and Inference
2.1.3 Analysis Framework 0L
2.1.4 Applications e

2.2 Abstract Interpretation L. L.,
2.2.1 Analysis Framework
2.2.2 Applications L

3 Control-Flow Effect System

3.1 Introduction
3.2 Language Definition o oL
3.3 Dynamic Semanticso oL
3.4 Static Semantics e
3.5 Consistency Theorem oo

3.5.1 Definition e

3.5.2 Fixpointso
3.6 Related Work
3.7 Conclusion e e

4 Subeffecting Effect Systems

4.1 Introduction e e e
4.2 The Subeffecting Rule L oo oL
4.3 Subeffecting-Based Reconstruction
4.3.1 Unification e
4.3.2 Algorithm R L
4.3.3 Constraint Satisfaction
4.3.4 Correctness v v v v i i e e e e e e e e
4.3.5 Example. oo
4.4 System Extensions oL o e
4.5 Conclusion e e e

6 CONTENTS

5 Subtyping Effect Systems 45
5.1 Imtroduction L 45
5.2 The Subtyping Rule o 45
5.3 Subtyping-Based Reconstruction 47

5.3.1 Algorithm & 47
5.3.2 Propertiesof & L 48
5.3.3 Correctness o e 49
534 Example 49
5.4 Related Worko 51
5.5 Conclusion L e 51

6 Separate Abstract Interpretation 53
6.1 Introduction Lo 53
6.2 Dynamic Semanticso oL 54

6.2.1 CPSSyntax e 54
6.2.2 Definition Lo 54
6.3 Abstract Interpretation Semantics oL 56
6.3.1 Definition L L 56
6.3.2 Correctnesso e 57
6.4 Effect System Semantics Lo oo 58
6.4.1 Definition L L 58
6.4.2 Correctness o e 58
6.5 Approximating Abstract Values o L0 59
6.5.1 Approximation Function A 59
6.5.2 Correctnessof A 61
6.6 Separate Abstract Interpretation L0 62
6.7 Optimizations L e 62
6.7.1 Subtyping Effect Systems 0oL 62
6.7.2 Flexibility of Abstract Semantics 63
6.7.3 Local Control-Flow Effects 63
6.8 Related Work o 64
6.9 Conclusion L 64

7 Higher-Order Escape Analysis 65
7.1 Introduction oL 65
7.2 Identifying Escaping Variables 65

7.2.1 IEscaping Variables oL 65
7.2.2 From Types to Escaping variables 66
723 Algorithm Z 66
7.3 A Stack-based Abstract Machine L0 67
7.3.1 Stack Calling Convention 67
7.3.2 Structureo e e 67
7.3.3 Instructions L L 68
7.3.4 Translator Co o e 69
735 Example. oo 70
7.4 Related Work o o 71

7.5 Conclusion e e e 72

CONTENTS 7

Conclusion 73
Bibliography 75
Appendix 1 81
Appendix 2 87
Appendix 3 97

Appendix 4 109

CONTENTS

Chapter 1
Introduction

L’analyse de flot de controéle joue un role-clé dans
les compilateurs optimisants pour les langages de
programmation fonctionnelle.

Motivation

Les langages de programmation fonctionnelle, comme Lisp [Steele90], Scheme [Rees88]
et ML [Mitchell88, Appel90, Milner90] sont largement reconnus pour leur caractere
expressif et sémantique simple et bien-fondée. Cependant, il est beaucoup plus difficile
de compiler efficacement ces langages, a I'instar d’autres langages plus traditionnels,
tels que Fortran ou C. De fait, il existe des différences importantes quant au niveau
d’optimisation que tel compilateur est capable d’opérer sur un programme, considérant
distinctement ces deux classes de langages de programmation. En particulier, un com-
pilateur pour un langage impératif traditionnel emploie typiquement une variété de
techniques d’optimisation inter-procédurales du flot de données, telles que la propaga-
tion de constantes, I’élimination des variables non-utilisées, I’élimination des variables
dites d’induction, etc [Aho86].

Toutes ces optimisations dépendent, bien entendu, de la bonne connaissance du
graphe de flot de controle au moment de la compilation. Malheureusement, dans les
langages de programmation fonctionnelle, comme les fonctions sont des valeurs a part
entiere, c’est a dire pouvant étre passées en parametre ou en résultat a par d’autres
fonctions, le graphe de flot de contréle ne peut pas étre déterminé avec exactitude au
moment de la compilation.

L’imprécision avec laquelle le graphe de flot de contréle peut étre déterminé dans
les langages de programmation fonctionnelle rend bien entendu plus difficile, au mo-
ment de compiler un programme, les optimisations basées sur une connaissance globale
du flot de données. Cette optimisation est pourtant d’importance car, pour ces lan-
gages, une fonction est représentée par son code ainsi qu’un environnement, c’est a
dire une structure de données qui contient les valeurs de ses variables libres, capturées
au moment de sa création. C’est pourquoi de nombreux travaux ont déja porté sur
la détermination du graphe de flot de contréle afin d’optimiser leur allocation ou leur
représentation [Leroy90-1, Appel89, Appel92, Tang92, Wand93]. L’analyse du flot de
controle permet donc d’effectuer de telles optimisations. Elle peut étre exprimée a 1’aide
de l'interprétation abstraite [Shivers91] ou bien & I’aide de I'inférence d’effet [Tang92].

10 CHAPTER 1. INTRODUCTION

Les systemes d’effet utilisent un systéme de regles comme outil de spécification
d’analyse statique. Utiliser un systéeme de regles permet d’établir un jugement des pro-
grammes au regard d’un certain critere. Ce moyen d’expression est facile a comprendre
et permet donc de raisonner sur les propriétés des programmes. L’utilisation d'un sys-
teme de regles comme outil de spécification permet également d’isoler plus précisément
ce qui est du ressort de I'implémentation : 'algorithme. La distinction entre spécifica-
tion et réalisation est notamment avantageuse, s’agissant d’étendre ’analyse statique a
de nouveaux traits du langage. A linstar de cette méthode, l'interprétation abstraite
ne permet pas une si précise distinction entre spécification et réalisation. Cela rend
beaucoup plus difficile la formalisation et la réalisation d’un compilateur optimisant.

Un autre avantage d’un systeme d’effet par rapport a une interprétation abstraite
est I'extension vers un langage de modules. Il est beaucoup plus naturel d’étendre un
systeme d’effet & un langage de module donné (sur des principes similaires au typage)
qu’une interprétation abstraite.

Cependant, il est clair que I'interprétation abstraite, utilisant des techniques d’appro-
ximation de point-fixe, permet d’obtenir des informations beaucoup plus précises (en
particulier sur les fonctions récursives) la ou d’autres techniques utilisent des méthodes
de calcul beaucoup plus simples, et la précision de telles informations subordonne bien
entendu le possible gain en performance d’exécution résultant de leur I'utilisation au
moyen d’un compilateur optimisant.

Afin d’évaluer la relative performance de différents systems de "analyse de flot de
control, [Shivers91] propose de classifier la précision d’une analyse sémantique au moyen
d’une notion d’ordre, qui indique en fait le nombre d’appels de fonctions successifs pris
en compte dans I'analyse d’une expression donnée. Relativement & cet ordre, nous
présentons deux types d’analyses, basées sur les systemes d’effet et l'interprétation
abstraite, qui sont respectivement d’ordre 0 et 1. Nous étudions ensuite "application
de ces techniques a I’analyse de flot de controle afin d’optimiser ’allocation des fonctions
en ML.

Les Systemes d’Effet

La vérification du typage dans les langages de programmation fonctionnelle est un do-
maine de recherche treés actif et bien développé [Milner78, MacCracken79, Damas82,
Cardelli85, Tofte90, O'Toole90]. IL’utilisation de types afin de décrire la structure
des valeurs manipulées dans un programme permet a l'utilisateur de comprendre,
éventuellement de fournir explicitement, la spécification de son application, mais tend
également a favoriser une programmation mieux structurée, et en tout cas a permettre
la vérification des erreurs de typage ainsi qu’une meilleure représentation des valeurs
manipulées dans le programme.

Nous disons qu’un langage de programmation a un typage statique fort lorsque le
compilateur vérifie, contraint et détermine le typage des programmes. Cela permet
notamment de prévenir, au moment de la compilation, de 1'usage éventuellement in-
cohérent des valeurs manipulées par le programme. En ce sens, le typage statique est
la technique d’analyse statique la plus populaire. Cependant, 'utilisation du typage
statique impose des contraintes assez fortes sur I’écriture des programmes et peut donc
tendre a limiter la souplesse et le pouvoir d’expression d’un langage de programmation.

11

En ce sens, I'introduction de notions telles que le polymorphisme [Milner78, Kanellakis®9,

Leroy91] ou le sous-typage [Cardelli88, Aiken93, Fuh88, Stansifer88] a permis d’aller
dans le sens de plus de souplesse et d'un caractére plus expressif pour les langages
de programmation fortement typés, en autorisant notamment le typage de fonctions
génériques ou bien encore en proposant des contraintes plus souples pour leur utilisa-
tion.

L’inférence d’effet [Lucassen87, Lucassen88], peut étre définie comme une extension
des techniques qui sont utilisées pour la vérification du typage des programmes en ML
[Milner78, Tofte87]. Ainsi, de la méme maniére qu’un type représente I’approximation
d’une valeur, un effet représente 'approximation d’une action ou d’une transition
d’état. Les systemes d’effet permettent d’élargir notablement le spectre d’utilisation de
méthodes de calcul existantes pour la vérification ou I'inférence de type. Cependant,
les effets sont souvent représentés dans des algebres plus complexes que celles util-
isées pour les types. A ce jour, les systemes d’effet sont utilisés dans de nombreux
domaines d’application tels que D'analyse d’effets de bord [Talpin92-2, Talpin92-2],
I’analyse de complexité [Dornic91], ou I'analyse de liaison statique (binding-time anal-
ysis) [Consel93].

Le type d’une fonction est usuellement représenté par ¢’ — ¢, olt t' est le type de
son parametre formel et ¢t celui de son résultat. Dans un systeme d’effet, nous notons

t/ £ t le type d’une fonction, et nous décrivons par F la transition d’état consécutive a
I'utilisation d’une fonction de ce type: F est l’effet latent de la fonction. Comme ’effet
latent d’une fonction est propagé a ’aide de son type, il est possible de lier statiquement
I’abstraction d’une fonction au regard de cette propriété depuis sa définition jusqu’a
son utilisation dans le programme.

Cependant, 'introduction de nouvelles sortes, les effets, dans le systeme de type du
langage de programmation peut introduire de nouvelles contraintes quant au caractere
typable des programmes du langage. Nombre de systemes d’effet existants [Talpin92-1,
Dornic91, Tang92] utilisent la notion de sub-effecting pour augmenter la flexibilité du
systeme sur ce point précis. Cette notion consiste a admettre un effet plus grand la
ol cela est nécessaire afin préserver le typage d’'une expression, limitant cependant la
précision de I'information calculée.

A la place de cette notion, nous proposons une notion généralisée de sous-typage
[Tang93]. Cette notion se définit comme une extension de la relation d’inclusion entre
les effets a une relation d’ordre entre les types. Ainsi, a linstar du sub-effecting, une
fonction peut admettre autant de super-types (au sens de cette relation d’ordre) que
nécessaire pour préserver le typage d’une expression. L’apport de cette notion de sous-
typage est certain quant a la précision avec laquelle il devient alors possible d’inférer
I’effet d’une expression. En particulier, I’analyse de flot de contréle peut étre réalisée
au moyen de cette outils, en présence de fonctions d’ordre supérieures, de constructions
impératives et de compilation séparée. Cependant, relativement & la classification de
[Shivers91], sa précision est d’ordre 0.

12 CHAPTER 1. INTRODUCTION

L’Interprétation Abstraite

L’interprétation abstraite [Cousot77, Cousot79, Mycroft81] est un cadre théorique tres
puissant pour formaliser analyse statique de programmes. Cet outil théorique s’appuie
sur un modele de sémantique formel, sémantique dénotationnelle ou bien sémantique
opérationnelle, afin de décrire strictement comment s’effectue 'exécution d’un pro-
gramme.

De cette sémantique, dite standard, du langage est ensuite dérivée une sémantique
dite exacte, qui met en évidence les propriétés que ’on cherche a calculer. Cette séman-
tique exacte peut, par exemple a l’aide de la sémantique dénotationnelle, étre décrite a
l'aide d’équations de point-fixe sur des structures ordonnées. Ensuite, 'interprétation
abstraite consiste a déterminer un point-fixe de ces équations sémantiques, telles qu’elles
apparaissent dans un programme donné. Ces équations décrivent récursivement cer-
taines propriétés du programme et sont définies, non pas sur une algebre rudimentaire
comme pour les systemes d’effet, mais sur des structures de treillis pouvant étre assez
complexes. C’est au moyen de fonctions d’abstraction et de concrétisation que s’établie
ensuite un lien cohérent entre la sémantique exacte et la sémantique abstraite, celle qui
exprime les propriétés du programme effectivement calculables.

Le procédé est, on le voit, assez complexe. D’autre part, comme l'interprétation
abstraite consiste essentiellement a déterminer un point-fixe des équations exprimées
dans un programme, 13 ol l'inférence d’effet utilise I'unification, I'interprétation ab-
straite autorise le calcul de propriétés beaucoup plus précises que les systemes d’effet.
Ceci étant, les systemes d’effet donnent au contraire une information beaucoup plus
facile a comprendre et & utiliser. En particulier, il est facile de spécifier le type et
I’effet d’une fonction dans I'interface d’un module, et de supporter ainsi la compilation
séparée de maniere plus naturelle.

L’interprétation abstraite a été étudiée dans les langages traditionnels (impératifs)
[Cousot77, Cousot79] mais aussi les langages de haut-niveau (fonctionnels) [Mycroft81,
Deutsch90, Shivers91], tels que ’analyse du critere strict (Strictness analysis) [Mycroft81],
I’analyse d’échappement (Escape analysis) [Goldberg90], ou I'analyse du flot de con-
trole [Shivers91]. L’analyse de flot de controle basée sur 'interprétation abstraite peut
en particulier distinguer les différents points d’appel d’une fonction d’'une maniere plus
précise, permettant ainsi de réaliser une analyse d’ordre n, mais au détriment d’une
compilation séparée aisée.

Si une interprétation abstraite permet effectivement de calculer des informations
tres précises sur les programmes, 'utilisation d’un systeme de type et d’effet permet au
programmeur de spécifier une approximation raisonnable des propriétés statiques de
chacun des modules de son programme, interfacés au reste de I’application au moyen
d’une signature [Sheldon90]. Ainsi, les systéemes d’effet sont des outils d’analyse plus
souples et plus adaptés a la compilation séparée.

Afin de profiter de chacun de ces avantages, nous présentons dans cette thése une
notion combinée d’interprétation abstraite séparée [Tang94], qui permet d’utiliser plus
naturellement les techniques d’interprétation abstraite dans le contexte de la compila-
tion séparée. Nous considérons le cadre de la compilation séparée comme la compilation
des composants, ou modules, d’un programme en isolation les uns des autres. Nous
formulons ainsi une analyse de flot de contréle a l'aide de cette technique, qui per-
met d’obtenir des informations tout aussi précises que 'interprétation abstraite stan-

13

dard dans le cas d’un petit programme , mais qui est également capable de traiter
efficacement les différents modules d’un programme plus important, en utilisant les in-
formation de type et d’effets de controle spécifiées dans 'interface des autres modules.
Dans le cadre d’une analyse globale de flot de contréle, I'utilisation d’un systéme de
type et d’effet permet au programmeur de spécifier une approximation raisonnable des
propriétés statiques de chacun des modules de son programme, interfacé au reste de
I’application au moyen d’une signature. Cette signature utilise un systéme de type et
d’effet afin de donner une approximation des informations de flot de controle pour le
reste du programme.

L’ Analyse d’Echappement

Enfin, nous présentons une application immédiate de "analyse de flot de controle, qui
consiste en 'optimisation de la représentation et de I’allocation des fonctions [Tang92]:
I’analyse d’échappement. Cette technique consiste a identifier les variables d’une fonc-
tion pouvant étre capturées par d’autres fonctions, et ainsi avoir une durée de vie, ou
un cadre d’utilisation, plus grand que le cadre lexical de leur définition.

Cette information est d’importance pour la compilation et permet notamment de
décider la classe de représentation des variables. Ainsi, lorsqu’une variable n’est jamais
référencée en dehors du cadre lexical de sa définition, on peux alors la représenter dans
la pile d’exécution. Dans le cas contraire, elle doit étre représentée dans le tas, c’est a
dire gérée par le sous-systeme de gestion mémoire.

14 CHAPTER 1. INTRODUCTION

Contributions

Dans cette these, nous présentons de nouvelles techniques permettant ’analyse de flot
de controle dans les langages haut-niveau, sur principe de systeme d’effet et interpréta-
tion abstraite. Nous réalisons ’analyse de flot de controle basé sur les systemes d’effet
pour le compilateur Mini-FX.

Nous apportons une contribution notable au domaine des systemes d’effet en intro-
duisant une notion de sous-typage. Cette notion se définit comme une extension de la
relation d’inclusion entre les effets a une relation d’ordre entre les types. Ainsi, a 'instar
du sub-effecting, une fonction peut admettre autant de super-types (au sens de cette
relation d’ordre) que nécessaire pour préserver le typage d’une expression. L’apport de
cette notion de sous-typage est certain quant a la précision avec laquelle il devient alors
possible d’inférer ’effet d’une expression. Nous montrons que I'introduction d’une regle
de sous-typage dans un systeme d’effet permet de spécifier un probleme de résolution
décidable. Nous présentons un algorithme correct par rapport a cette spécification. Le
cadre de ce travail se limite & un langage doté d’un systéeme de type monomorphe. Il
s’étend cependant de maniere parfaitement naturelle en présence de types polymorphes,
comme tout autre systeme de sous-typage doté des mémes caractéristiques.

L’interprétation abstraite est une technique d’importante pour les analyses statiques
des langages de programmation fonctinnelle. Si une interprétation abstraite permet ef-
fectivement de calculer des informations tres précises sur les programmes, un systeme
de type et d’effet peux etre untilise dans le contexte de la compilation séparée. Afin de
profiter de chacun de ces avantages, nous présentons la notion d’interprétation abstraite
séparée qui permet de combiner les techniques d’analyse basées sur I'interprétation ab-
straite et I'inférence d’effet en un seul et méme outil. L’utilisation d’un systeme d’effet
permet de d’interfacer les différents modules d’un programme au moyen d’une spéfifica-
tion du type et des effets de leurs variables exportées, permettant ainsi U'interprétation
abstraite des différents modules du programme.

Nous étudions ’application de I’analyse de flot de controle a la détection des vari-
ables dont 'existence dépasse le cadre lexical de leur définition. Détecter cette infor-
mation permet au compilateur de choisir une stratégie optimisée pour 'allocation des
fonctions. Ainsi, lorsqu’une variable n’est jamais référencée en dehors du cadre lexical
de sa définition, on peut alors la représenter dans la pile d’exécution. Nous définissons
une machine abstraite dotée d’une pile de contréle pour son exécution, et nous mon-
trons comment les variables peuvent étre représentées en pile lorsque les fonctions ne
les capturent pas.

15

Résumé des Chapitres

Chapitre 3 : Un Systéeme d’Analyse de Flot de Controle

L’analyse du flot de controle est une technique utilisée pour la compilation efficace des
langages de programmation fonctionnelle. Elle consiste a calculer une approximation de
son graphe d’appel de fonction du programme. Le flot de controle d’une expression peut
par exemple étre statiquement représenté par un ensemble de fonctions susceptibles
d’étre appelées durant I'exécution de 'expression. Nous présentons dans ce chapitre
une premiere spécification de ’analyse de flot de controle utilisant un systeme d’effet.

Ce chapitre a pour but essentiel de servir d’introduction a un certain nombre de
concepts qui seront plus amplement développés et améliorés dans les chapitres suivants.
Nous définissons le cadre formel permettant de prouver notre spécification, au moins
d’un critere de cohérence vis a vis de la sémantique dynamique du langage. Nous mon-
trons que notre formulation de "analyse de flot de controle a ’aide d’un systeme d’effet
s’adapte tres simplement a des traits variés des langages de haut-niveau: fonctions
d’ordre supérieur, opérations de style impératif, compilation séparée. Cependant, ce
premier systeme n’offre pas de performances remarquables en terme de précision ou de
flexibilité, et nous tenterons dans les chapitres suivant d’améliorer cet outil en ce sens.

Chapitre 4 : Un Systeme d’Effet Flexible

Afin d’améliorer la flexibilité du systeme présenté dans le précédent chapitre, nous
introduisons dans notre spécification de ’analyse de flot de controle une regle autorisant
I'utilisation de la relation d’inclusion sur les effets de controle. Ainsi, si une expression
admet un effet F, elle admet tout effet F/ supérieur & F au sens de cette relation. Cet
ajout a pour conséquence d’augmenter la flexibilité du typage proprement dit, bien
qu’avec une imprécision notable.

Nous présentons un premier algorithme qui permet de calculer le type et 1’effet
de contréle minimal au sens de notre spécification. Nous prouvons formellement les
invariants de cet algorithme par rapport a notre spécification. Enfin, nous montrons
comment étendre cette spécification de maniere & autoriser un typage générique. Pour
cela, nous introduisons une notion de polymorphisme. L’analyse de flot de controle
présentée dans ce chapitre a été réalisée pour le compilateur Mini-FX.

Chapitre 5 : Systemes d’Effet et Sous-Typage

Maintenant, nous remplagons la regle d’inclusion sur les effets, présentée dans le chapitre
précédent, pour I’étendre aux types. Nous définissons ainsi une relation de sous-typage
contra-variante. Cette relation permet a une fonction d’avoir un type différent dans
chacun de ses contextes d’appel.

Ainsi, 1a ou la spécification du chapitre précédent n’admettait qu’une borne supérieure
de I’effet pour plusieurs fonctions susceptibles d’étre propagées aux mémes points d’un
programme, I'information d’effet relative a chaque fonction peut étre maintenant déter-
minée avec plus de localité. Notre nouvelle spécification est en conséquence beaucoup
plus précise qu’auparavant.

16 CHAPTER 1. INTRODUCTION

Nous présentons un nouvel algorithme permettant de déterminer le type minimal des
expressions au regard de notre nouvelle spécification. Nous prouvons que cet algorithme
est correct par rapport a cette spécification en utilisant des outils de preuve similaires
a ceux du chapitre précédent.

Chapitre 6 : Interprétation Abstraite Séparée

Nous considérons le cadre de la compilation séparée comme la compilation des com-
posants, ou modules, d'un programme en isolation les uns des autres. Dans le cadre
d’une analyse globale de flot de controle, I'utilisation d’un systeme de type et d’effet
permet au programmeur de spécifier une approximation raisonnable des propriétés sta-
tiques de chacun des modules de son programme, interfacé au reste de "application
au moyen d’une signature. Cette signature utilise un systeme de type et d’effet afin
de donner une approximation des information de flot de controle pour le reste du pro-
gramme.

L’interprétation abstraite séparée consiste a utiliser un systeme d’effet afin de spé-
cifier le type et les effets des différents modules d’un programme, au moyen d’une
interface. Cette information sert & 'interprétation abstraite de chacun des modules
d’un programme (en isolation des autres) afin de donner une approximation des valeurs
abstraites de leurs variables libres (définies dans d’autres modules du programme).

L’idée de base de notre contribution est de considérer que l'inférence d’effet de
controle est cohérente avec une analyse de flot de controle basée sur l'interprétation
abstraite (& la [Shivers91]). Dans notre systeme d’effet de contréle, les types servent
a représenter statiquement la structure des valeurs. Dans le cas d’une fonction, nous

notons # % ¢ son type. L’effet latent d est ici tres utile, puisqu’il donne un ensemble
de fonctions pouvant correspondre a la valeur ayant ce type, mais aussi les possibles
effets de controle correspondants.

A partir de ce type, il est alors tres facile de donner une approximation de la valeur
abstraite qui correspondrait a la méme valeur, si nous avions utilisé 'interprétation
abstraite pour la déterminer. Nous montrons que notre systeme d’effet de contréle est
une approximation de I'interprétation abstraite du controle pour le méme langage et
en préserve les invariants.

Nous proposons d’associer une analyse de programme basée sur 'interprétation
abstraite, profitant ainsi d’une technique performante pour les expressions closes, avec
I'utilisation d’un systeme d’effet, afin de pouvoir spécifier des informations statique en
présence de compilation séparée, et donc d’information partielle sur 'ensemble d’un
programme.

17

Chapitre 7 : Analyse d’Echappement d’Ordre Supérieur

Nous étudions dans ce chapitre ’application de 'analyse de flot de contréle pour la
détection d’échappements, c’est a dire la détection, dans un programme, des variables
dont D'existence dépasse le cadre lexical de leur définition. Détecter cette information
permet au compilateur de choisir une stratégie optimisée pour ’allocation des fonc-
tions. Ainsi, lorsqu’une variable n’est jamais référencée en dehors du cadre lexical de
sa définition, on peut alors la représenter dans la pile d’exécution. Dans le cas con-
traire, elle doit étre représentée dans le tas, c’est a dire gérée par le sous-systeme de
gestion mémoire.

Nous présentons une nouvelle technique pour 'analyse statique d’échappement,
basée sur l'information que procure notre systeme d’effet de contréle. Il est notable
de considérer que cette analyse peut ici étre mis en oeuvre en présence de fonctions
d’ordre supérieur, de constructions impératives ainsi que de compilation séparée. Nous
définissons une machine abstraite dotée d’une pile de controle pour son exécution,
et nous montrons comment les variables peuvent étre représentées en pile lorsque les
fonctions ne les capturent pas.

18

CHAPTER 1. INTRODUCTION

Introduction

Control-flow analysis plays a key role in optimiz-
ing compilers of functional languages

Overview

Functional programming languages like Lisp [Steele90], Scheme [Rees88] and ML [Mitchell88,
Appel90, Milner90] are widely recognized for their expressive power and straightforward
semantics. Nevertheless they are more difficult to implement efficiently than traditional
languages such as FORTRAN and C. There exists a big gap between the optimization
levels of these two class of languages. Compilers of traditional languages employ a
variety of interprocedural data-flow optimizations like induction-variable elimination,
useless-variable elimination, constant propagation, etc [Aho86].

All these optimizations depend on the knowledge of control-flow graphs of pro-
grams at compile time. In functional languages, however, since functions are first-
class values, i.e. they can be passed as parameters, returned as results of function
calls or stored in memory locations, function call graphs are dynamic in nature. The
lack of control-flow graphs at compile time makes interprocedural data-flow optimiza-
tions quite difficult when compiling functional languages. Moreover since higher-order
functions are represented as closures including their codes and the values of their
free variables, control-flow graphs help compilers optimize closure implementations
[Leroy90-1, Appel89, Appel92, Tang92, Wand93], such as closure representation and
closure allocation. Control-flow analysis is introduced to approximate the dynamic
function call graphs at compile time. Control-flow analysis can be expressed by using
the framework of effect systems [Tang92] and abstract interpretation [Shivers91].

Effect systems rely on a proof system to specify a particular analysis. This new
program analysis technique separates the semantic specification from the implemen-
tation of the analysis. Thanks to such a separation, static analyses based on effect
systems can be easily extended to other language features and used to formally specify
optimization techniques. However abstract interpretation does not provide such a clear
separation. As a consequence, optimization techniques related to an analyzer based on
abstract interpretation are hard to formalize and extend. Another advantage of effect
systems over abstract interpretation is that they can be straightforwardly extended
in the context of separate compilation via module signatures. However the abstract
interpretation approach performs more precise control-flow analysis thanks to fixed
point iteration techniques. The precision of control-flow analysis controls the precision
of the interprocedural optimizations performed by optimizing compilers. [Shivers91]
introduces the notion of order to mesure the precision of control-flow analysis. The

19

20 CHAPTER 1. INTRODUCTION

order indicates the number of pending calls remembered during the analysis of a given
application expression. My thesis presents zeroth and first-order control-flow analysis
systems expressed by both effect systems and abstract interpretation and studies the
application of control-flow information in optimizing closure allocation.

Effect systems [Lucassen87, Lucassen88] extend classical polymorphic type systems
[Milner78, Tofte87] with effect information. Just like types describe the possible values
of expressions, effects specify their possible evaluation behaviors. However the intro-
duction of effects imposes new constraint on the typability of languages. The existing
effect systems [Talpin92-1, Dornic91, Tang92] use the notion of subeffecting to increase
the flexibility of effect systems. It allows expressions to admit larger effects whenever
effect matching would cause type clashes, thus limiting the accuracy of effect systems.
Instead of subeffecting, my thesis introduces the notion of subtyping [Tang93]. The
subtype relation is limited to the subsumption relation on effect information. Sub-
typing allows the same function to have different supertypes at different call sites, as
long as certain they satisfiy certain subtype relations. The introduction of subtyping
improves both flexibility and accuracy of effect systems. Control-flow analysis by effect
systems can be performed in presence of higher-order functions, imperative constructs
and separate compilation. However it collapses different call contexts together, thus
limiting the analysis accuracy to the Oth-order control-flow analysis (0CFA).

Abstract interpretation [Cousot77, Cousot79, Mycroft81] is another static anal-
ysis framework. It approximates language semantics by using the fixed point iter-
ation technique. Control-flow analysis based on abstract interpretation [Shivers91]
can distinguish different call contexts, thus performing nth-order control-flow analysis
(nCFA), but fails to support separate compilation. If the abstract interpretation ap-
proach performs more precise static analysis due to fixed point iteration techniques,
effect systems support separate compilation more naturally via module signatures
[MacQueen90, Sheldon90]. My thesis introduces the new notion of separate abstract
interpretation [Tang94] that combines effect systems and abstract interpretation in a
single framework. It extends abstract interpretation in the context of separate compi-
lation based on the type and effect information of module signatures. The control-flow
analysis expressed by the separate abstract interpretation is as precise as the abstract
interpretation approach on closed expressions, but is also able to tackle expressions
with free variables by using their type and control-flow information to approximate
their abstract values.

As a direct application of control-flow analysis, my thesis presents a new escape
analysis for optimizing closure allocation [Tang92]. Escape analysis identifies the free
variables that outlive their lexical scope in function definitions. This compile-time
knowledge of escaping variables helps compilers choose a more efficient allocation strat-
egy for closures, i.e. non-escaping variables can be safely stored in the stack, while heap
allocation is only used for escaping ones.

Outline

The thesis presents different control-flow analysis systems expressed by effect systems
(Chapter 3, 4, 5) and abstract interpretation (Chapter 6). The related work is discussed
in each chapter and the proofs are presented in the appendix at the end of the thesis.

21

Chapter 2 gives an informal description of what effect systems and abstract in-
terpretation are. We discuss the basic ideas, describe their frameworks for static
analysis and present their applications in several static analyses.

Chapter 3 presents a simple control-flow effect system. We give our language
syntax, define the dynamic semantics, introduce the static semantics for control-
flow analysis and state its consistency w.r.t. the dynamic semantics.

Chapter 4 introduces subeffecting in the static semantics to increase the flexibility
of effect systems. We present a reconstruction algorithm R that reconstructs
type and control-flow information of expressions based on subeffecting and prove
it sound and complete w.r.t. the static semantics.

Chapter 5 introduces subtyping in the static semantics to increase the accuracy
of the subeffecting effect systems. We present a reconstruction algorithm S that
reconstructs type and control-flow information of expressions based on subtyping
and prove it sound and complete w.r.t. the static semantics.

Chapter 6 introduces the new technique of separate abstract interpretation to per-
form control-flow analysis. We describe the abstract interpretation semantics and
state its consistency with the type semantics, show the approach of approximating
abstract values of free variables by their types and control-flow information and
prove that separate abstract interpretation is a conservative extension of abstract
interpretation.

Chapter 7 describes a new escape analysis based on the control-flow effect systems.
We present an algorithm Z to identify escaping variables of functions, introduce
an efficient closure allocation strategy, describe a stack-based abstract machine
and compare our analysis with other escape analyses, particularly that based on
abstract interpretation [Goldberg90].

Finally, we conclude and discuss future work.

22

CHAPTER 1. INTRODUCTION

Chapter 2

Static Analysis Approaches

Effect systems and abstract interpretation pro-
vide general frameworks of static analyses.

Modern compilers perform a variety of program analyses in order to produce good
code [Steele78, Cardelli84, Appel87, Kelsey89, Leroy90-2]. The goal of the analyses is
to approximate at compile time evaluation behaviors of programs, which help compilers
identify optimization opportunities. Standard analysis techniques have been developed
[Aho86] for the traditional languages like PASCAL and C, which are built upon static
control-flow graphs. However the traditional analysis approaches are not applicable to
higher-order programming languages, since control-flow graphs are absent at compile
time. Therefore effect systems and abstract interpretation are introduced to perform
static analysis for the programming languages in which functions are first-class values.

2.1 Effect Systems

Type systems have been developed in both traditional and functional languages [Milner78,
MacCracken79, Damas82, Cardelli85, Tofte90, O'Toole90]. By using types to describe
the data structure of values, programmers can describe the intended specifications of ex-
pressions, which makes programs more structured, and compilers can detect type errors,
which allows greater execution-time efficiency. The static strong typing of programming
languages requires that the type of every expression can be determined at compile time.
It allows type inconsistencies to be discovered at compile time and guarantees that ex-
ecuted programs are type consistent. Static typing is a popular technique used for pro-
gram analysis. Nevertheless by imposing constraints on acceptable expressions, static
type systems, may lead to the loss of flexibility and expressive power of programming
languages. Polymorphism, expressed by both generic types [Milner78, Kanellakis89,
Leroy91] and subtyping [Cardelli88, Aiken93, Fuh88, Stansifer88, Benjamin92] is often
introduced to allow an expression to have more than one type.

Effect systems extend classical type systems with effect information. Just like types
describe the possible values of expressions, effects specify their possible evaluation

23

24 CHAPTER 2. STATIC ANALYSIS APPROACHES

properties. In effect systems, a classical function type ¢/ — ¢ 1 is extended to ¢’ £ t
where the latent effect F records the evaluation property of functions of this type.
Since the latent effect statically links a function from its definition site to its call sites,
it plays an important role in effect systems. The introduction of effects increases the
applicability of type systems. Nevertheless since effects have their own domains and
richer algebras than types, they make type systems much more complicated.

2.1.1 Effect Semantics

Types in effect systems are extended with effect information. A type t can either be
a basic type like int, bool or unit, a reference type ref(t) that represents updatable

memory locations containing values of the type ¢, or a function type t’ £ t representing
a function that accepts arguments of the type ¢’ and return values of the type t. The
evaluation property of the function body is approximated by the latent effect F.

t € Type = BasicTypes| ref(t) |t Lige

Just as types, effects have their own domain and algebra corresponding to the eval-
uation properties we are interested in. For example, in a memory side-effect analysis,
an effect is defined as a set of store operations and belongs to a set algebra. An effect
F can be defined as either the emptyset) meaning the absence of side-effects, a basic
store operation like init, read or write, or a set of side-effects gathered with the infix
union operator U :

Fu=
read | write | init
FUF

The side-effects belong to the following set algebra :

FU(FUF") (FUF)UF”

FUF = FUF
FUD = F
FUF = F

An effect system is uniformly specified by a set of inference rules [Plotkin81]. An
inference rule (called name) is made of a set of predicates P and Py ...P,, which means
that the conclusion P holds if the premises Py ...P,, have been proved. We note:

Pi,...P,
P

(name) :
If the conclusion P always holds, the inference rule is degenerated to an axiom.

(name) : P

In effect semantics, a predicate £ F e : T,F means that in an environment &, the
expression e is evaluated to a value of the type T and its possible evaluation behavior

!The whole syntax is formally presented in Chapter 5

2.1. EFFECT SYSTEMS 25

is recorded by the effect F. Note that the environment & defines the types of the free
variables in the expression e.

Using inference rules, the effect semantics inductively specifies the predicate for each
expression on its structure. The crucial rules are the (abs) rule for lambda abstractions
and (app) rule for applications.

Given a type environment £ and a lambda abstraction (A (x) e), x is of the type
t' the function body e is evaluated to a value of the type ¢ in the extended type
environment £[x — t'] and the evaluation property of e is approximated by the effect

F. Then the lambda abstraction has the function type ¢/ £ t. The latent effect is thus
introduced in the function type.

E[x—t]Fe:t,F
EF(A(x)e):t Ee,0

(abs) :

When such a function is applied in the application case, its latent effect appears in
the resulted effect of the application expression to approximate the evaluation property
of the function body. Given a type environment & and an application (e e’), if e and

e’ are evaluated to values of the type ¢ F t and ¢, and their evaluation behaviors are
approximated by the effects F and F’ respectively, then (e e’) is of the type t and its
evaluation behavior is approximated by F U F U F” where F” represents the evaluation
behavior of the function body.

El—e:t’it,F
(app): v 1 F
EF(ed):t,FUFUF”

Note that the latent effect statically links functions from their definition sites to their
call sites, thus playing a key role in effect systems.

2.1.2 Verification and Inference

There are two families of effect systems based on either verification or inference. FEf-
fect verification systems ask programmers to explicitly specify the types and effects
of some expressions in a program, and statically verify the type and effect correct-
ness of the program based a type checking technique. The effect system presented in
[Gifford87, Lucassen87, Hammel88] defines the FX programming language and uses
an effect verification system [Jouvelot88] to check polymorphic types and side-effect
declarations in FX programs.

In order to spare programmers from specifying type and effect information, [Jouvelot91,
Talpin92-1] introduce a new effect system that automatically determines the types and
effects for implicitly typed programs. This effect inference system extends classical
type inference systems [Milner78, Tofte’7] with effect information and introduces the
notion of algebraic reconstruction and considers the type and effect inference issue as
a constraint satisfaction problem.

The difference of these two sorts of effect systems is represented by the (abs) rule
for the lambda abstraction. In inference systems, the type of the parameter of each

26 CHAPTER 2. STATIC ANALYSIS APPROACHES

lambda abstraction is computed automatically by a reconstruction algorithm, while in
verification systems, it has to be explicitly specified by programmers like below :

Elx—t]Fe:t,F
S (x:t)e):t g

(abs) :

2.1.3 Analysis Framework

Effect systems provide a general framework for performing static analysis of programs.
Suppose we have a program written in some programming language, and we wish to
approximate at compile time some property X about the program evaluation process.
For instance, X can be the set of side-effects performed during the evaluation of the
program, or the time that the programs need to run, etc. We use the following three-
step process to obtain the approximation of the property X.

1. We start with a dynamic semantics for the language that precisely defines what
the program means. The dynamic semantics defines the result value V and the
property X of the program.

2. Then, we develop a static semantics that conservatively approximates the dy-
namic semantics. The static semantics defines the type T and effect F of the
program where the type T describes the data structure of the result value V , and
the effect F is an approximation of the property X.

3. The static semantics defines the static analysis we wish to perform. However the
semantic specification is too abstract to tell how to compute the static informa-
tion. The final step is to define a reconstruction algorithm that computes the
type T’ and the effect F/ of the program.

To guarantee that the static information obtained by this effect system is a conserva-
tive approximation of the program property, we have to prove the following correctness
results :

e The static semantics must be consistent with the dynamic semantics, which means
that the effect F defined by the static semantics is a conservative approximation
of the property X defined by the dynamic semantics.

e The reconstruction algorithm must be sound and complete w.r.t. the static se-
mantics, stating that, for each program, the type T’ and the effect F’ computed
by the reconstruction algorithm satisfy the static semantics and cover all types T
and effects F derivable by the static semantics.

2.1.4 Applications

Effect systems have been used to perform several static analyses [Jouvelot88, Talpin92-1,
Dornic91, Tang92, Consel93]. Effect systems have the following properties : (1) latent
effects are introduced in function types to approximate the evaluation property of func-
tions; (2) Memory locations are explicitly expressed by reference types ref(t), which
makes them clearly manifest at compile time ; (3) Types and effects can be expressed in

2.2. ABSTRACT INTERPRETATION 27

module signatures. Thanks to these properties, static analysis based on effect systems
can be performed in the presence of higher-order functions, imperative constructs and
separate compilation. Here we give some examples of static analyses performed by
effect systems.

o Side-effects analysis

[Talpin92-1] introduces a static side-effect analysis system based on a type and
effect inference system that approximates the memory operations like read, write
and initialize. The notion of region [Gifford87] is used to specify possible memory
sharing. [Talpin92-2] uses an observation criterion that discards the side-effects
related to local data structures, thus allowing more precise side-effect informa-
tion. The compile-time knowledge of side-effects is important to parallel code
generation. A prototype compiler [Talpin93-1] has been designed that targets the
FX programming language to the Connection Machine.

e Complexity analysis

[Dornic91] suggests an effect system to estimate the worst-case evaluation time
of expressions. Even if it fails to accurately approximate recursive functions, it is
helpful for choosing an efficient load balance strategy when compiling programs
for multiprocessors.

¢ Binding-time analysis

[Consel93] uses an effect system to determine which variables can be bound to
their values at compile time. This binding-time information is of importance
when performing partial evaluation or constant folding on programs.

e Control-flow analysis

[Tang92] applies effect systems for approximating dynamic function call graphs
of functional languages at compile time. By using the type and control-flow infor-
mation, an escape analysis is performed to statically identify the free variables of
functions that outlive their definition scopes, which helps compilers choose an ef-
ficient closure allocation strategy. [Tang93] introduces subtyping in effect systems
to avoid effect information to be merged together, thus improving both flexibility
and accuracy of effect systems. [Tang94] introduces a more precise control-flow
analysis by extending abstract interpretation to support separate compilation
based on type and control-flow information. These control-flow analyses form
the core of this thesis.

2.2 Abstract Interpretation

Abstract Interpretation [Cousot77, Cousot79, Mycroft81] is a theory of semantics ap-
proximation which provides a powerful approach for static analysis [Mycroft81, Deutsch90,
Goldberg90, Shivers91]. It is built upon the denotational semantics by approximating
the fixpoint nature of the language semantics. Denotational semantics was developed
to define the formal semantic descriptions of programming languages. It uses semantic

28 CHAPTER 2. STATIC ANALYSIS APPROACHES

evaluation functions which map syntactic constructs in programs to the abstract val-
ues which they denote. Since these evaluation functions are usually recursively defined,
they may or may not suggest a way of implementing the language.

The classical framework starts from a standard denotational semantics describing
the evaluation process of a programming language. Then an exact semantics is designed
to precisely describe the program properties. The exact semantics is often described
using fixpoints on ordered structures. Since the exact semantics is not always com-
putable, an abstract semantics is designed to approximate it. The connection between
the static and the abstract semantics is specified by abstraction functions, which map
exact values to their abstract counterparts. The definition of the abstract function
is based on the fixpoint approximation. The static fixpoint approximation approach
simplifies equations of the exact semantics to abstract ones that approximate the exact
semantics.

Since the abstract interpretation approach is built on the fixpoint approximation
of the exact semantic, which requires the whole structure of programs, while effect
systems use an unification-based reconstruction algorithm that only relies on the local
structure of program syntax, abstract interpretation allows more precise static analysis
than effect systems. Nevertheless type and effect information can be easily specified by
module signatures, so that effect systems support separate compilation more naturally.

2.2.1 Analysis Framework

Abstract interpretation provides a general framework for static analysis. Suppose we
have a program written in some programming language and we wish to approximate
at compile time some property X about the program evaluation process. We use the
following three-step procedure to obtain the approximation of the property X.

1. We start with a standard denotational semantics for the language that precisely
defines what the program P means. The standard denotational semantics specifies
the result value V of the program.

2. Then, we develop an exact semantics that precisely expresses the property X of the
program. We derive this exact semantics from the original standard semantics.
So, if the standard denotational semantics specifies the evaluation result V of
the program, then the exact semantics describes its evaluation property X, which
constitutes a precise, formal definition of the property we want to analyze.

3. Since the precision of the exact semantics typically implies that it may be uncom-
putable at compile time, an abstract semanticsis defined to approximate the exact
semantics. The abstract semantics defines the approximation X of the evaluation
property of the program by trading accuracy for compile-time computability.

The correctness of this abstract interpretation approach requires the following cor-
rectness results :

e The equations defining the exact and abstract semantics have solutions.
e The abstract semantics safely approximates the exact semantics.

e The abstract semantics is computable.

2.2. ABSTRACT INTERPRETATION 29

2.2.2 Applications

Abstract interpretation has been used for both imperative [Cousot77, Cousot79] and
higher-order languages [Mycroft81, Deutsch90, Shivers91]. It provides a basic frame-
work for performing static analysis of programming languages in presence of higher-
order functions and side-effects.

e Strictness analysis

[Mycroft81] extends the idea of abstract semantics to a functional language and
uses a complex semantic structure called a powerdomain. He applies the abstract
interpretation framework to perform a static strictness analysis for normal-order
languages that identifies opportunities to evaluate function arguments with the
call-by value rule instead of the call-by need rule without changing the result of
the program.

e Escape analysis

[Goldberg90] presents an application of abstract interpretation for escape anal-
ysis, which helps optimize the allocation of closures. An interesting point of
this analysis is that, for any function, its type can be used to approximate its
arguments that cause the greatest escapement possible.

e Control-flow analysis

[Shivers91] uses abstract interpretation to approximate control-flow graphs of a
higher-order language allowing side-effects. Programs are transformed to CPS
form (Continuation-Passing Style) so that transfers of control are uniformly rep-
resented as tail-recursive function calls. This abstract interpretation approach
can perform nth-order control-flow analysis, but fails to support separate compi-
lation.

30

CHAPTER 2. STATIC ANALYSIS APPROACHES

Chapter 3

Control-Flow Effect System

Control-flow analysis can be expressed by effect
systems.

3.1 Introduction

Control-flow analysis strives to approximate dynamic control-flow behaviors of func-
tional languages at compile time. Control-flow information can be defined as the set
of function names possibly called during the evaluation of expressions. This chap-
ter presents a new control-flow analysis based on effect systems. Effect systems extend
classical type systems with effect information. By using effects to specify program eval-
uation behaviors, effect systems provide a powerful method to perform static analysis in
the presence of higher-order functions, imperative constructs and separate compilation.

In the sequel, we present our language syntax (Section 3.2), describe the dynamic
semantics (Section 3.3), define a simple static semantics of control-flow analysis (Section
3.4) and state its consistency with respect to the dynamic semantics (Section 3.5).
Finally we describe related work (Section 3.6) before concluding (Section 3.7). All
proofs are presented in Appendix 1.

3.2 Language Definition

My thesis focuses on a simple functional language for the simplicity of presentation.
Nevertheless it could be extended to more complicated languages including imperative
constructs, let-bindings, module constructs, etc. Possible extensions are discussed in
each chapter.

en= X value identifier
(An (x) e) abstraction
(recn (f x) e) recursive function
(e)] application

Note that function definitions and function calls are tagged with unique labels (n
and 1) that allow to uniquely distinguish them.

31

32 CHAPTER 3. CONTROL-FLOW EFFECT SYSTEM

n € LFun = Label Label of functions
1 € LCall = Label Label of function calls

How this labeling is actually performed is not important, as long as the uniqueness
property is preserved. However these labels will appear in types and, eventually, module
type signatures, so they must be easily understandable by the user. For instance, the
label of a function could consist of an identifier (indicating the name of the module
where it is defined) and a number (distinguishing it from other functions in the same
module)

3.3 Dynamic Semantics

The dynamic semantics not only defines the values of expressions, but also keeps track
of control-flow traces occurring during their evaluation.

A computable value v is either an integer ¢, or a closure. The closure ¢l is com-
posed of the function name, the argument name, the body expression and the lexical
environment in which the function is defined. The environment F is a finite map from
identifiers to values. The control-flow behavior b of an expression is a set of function
names that are called during its evaluation. The empty set indicates the absence of
control-flow traces.

v € Value = Int 4+ Closure value

cl € Closure = LFun xId *« Exp « Env closure

e Env = Id — Value environment

f € Trace = P(LFun) control-flow trace

The dynamic semantics is specified by a set of inference rules [Plotkin&1]. Given
an environment F , it associates an expression e with the value v it computes and the
set of function names b called during its evaluation. We note :

EFre—uvb

x € Dom(L)
Etx— E(x),0

(var):

(abs): EF (An (x) e) — (n,x,e, Fx),0

cl = (n,x,e, K[f — cl])
Et(recn (fx)e)— ¢l

(rec) :

Ete—(nx,e" E)b
Etre — oV

(app) : E/[X . v/] Fe — v, b
Etr(ee)—v,bUd U U{n}

3.4. STATIC SEMANTICS 33

where for any function f, f[x — v]is the extension of f with the property that f[x —
v](x) = v and f[x — v](y) = f(y), Dom(f) is the domain of f and fx is f in which x
is unbound.

We use a simple example demo to show how control transfers during the evaluation
of the program.

where the lambda expression n, is bound to the variable £ at the call site 1; and is
applied to the arguments (An, (a) a) and (An, (b) b) at the call sites 1, and 1.

At the call site 1,, the function n, (via £) is called by binding the identity function
n, to the variable g; then control transfers to the function body of n,, where n, (via
g) is applied to the argument 1 at 1,; then control transfers to the function body of
n,, where there is no function calls, i.e. its call set is (). Therefore, the control-flow
traces of (£ (Ap, (a) a)) is recorded by the call set {n,,n,} meaning that during the
evaluation of this function application, the functions n, and n, are called. Similarly
with the application (£ (An, (b) b)), its call set is {ny,ny}.

In functional languages, since functions are first-class values, control-flow traces
defined by the dynamic semantics can not be determined at compile time. Therefore
we define a static semantics to approximate the dynamic one.

3.4 Static Semantics

For each expression the static semantics specifies its type and a set of functions possibly
called during its evaluation.

The control-flow effect ¢ abstracts the trace b in the dynamic semantics and thus
records all functions possibly called during the evaluation of an expression. A control-
flow effect ¢ can either be a constant () meaning the absence of function calls, a singleton
{n} where n is a function name, or a set of function names indicated by the infix union
operator U. A type t can either be the basic type int, or a function type # = t
where the latent control-flow effect ¢ records the set of functions possibly called when
a function of this type is called. A type environment £ is a finite map from identifiers
to types.

c€ Control c:: =0]|{n}|cUd control-flow effect
t e Type te =ant |t St type
£ e TEnv = Id — Type type environment

The static semantics is specified by a set of inference rules. Given a type envi-
ronment £, it associates an expression e with its type ¢ and control-flow effect ¢. We
note :

EFe:tc

The latent control-flow effect is introduced in function types by the (abs) rule for
lambda abstraction and used to approximate control-flow traces of function bodies in
the (app) rule for function application. In the abstraction case, the current function

34 CHAPTER 3. CONTROL-FLOW EFFECT SYSTEM

name is added to the control-flow effect of the lambda body; the resulting set is the
latent control-flow effect of the lambda expression. When such a function is applied, in
the function application, this latent control-flow information is used to determine the
functions possibly called while evaluating the function body.

~ x € Dom(&)
(var) : Ehx— E(x),0
; Elx—t]Fe:tec
s e m (1) o) 7 ™ g
CEE =t (An (x)e): 1,0
(rec) : EF(recn (fx)e):t,0

Ere:t' Ste
(app): EFe ¢
EF(ed):t,cudud

3.5 Consistency Theorem

We use the proof method introduced in [Tofte87] to show that the static and dynamic
semantics are consistent with respect to a structural relation between values and types,
defined as the maximal fixed point of a monotonic function.

3.5.1 Definition

We introduce “:” to define the consistency relation between values and types, noted as
v :t. This can be easily extended to their environments.

Definition 3.1 (Types of Values and Environments)

v :ant
(n,x,e,F):te 38, st. £:& and EF (An (x)e):t
E:& & Vxe Dom(LE), x € Dom(E) and E(x):&E(x)

The above structural property does not uniquely define a relation between values
and types and must be regarded as a fixed point equation on the domain R = Value *
Type. We define a function F on P(R) — P(R), which for any @ C R, satisfies the

following definition :

F(Q)={(v,t) e Q|
if v=1 then t = int
if v=(n,x,e,F) then 3E,s.t.Vx € Dom(F)
x € Dom(€) and (FE(x),E(x)) € Q and EF (A (x) e) : 1}

Its fixed points are the relations on R that verify the structural property defined by
Definition 3.1. In order to guarantee the existence of the fixed points of F, it is sufficient
to show that F is monotonic [Stoy77].

3.5. CONSISTENCY THEOREM 35

Lemma 3.1 (Monotony of F) If Q and Q' are two subsets of the domain R.
QC O = F(Q) CFQ

3.5.2 Fixpoints

Since the function F is monotonic, it has a minimal and a maximal fixpoint in the
complete lattice (P(R), C), namely

fp(F)={QCR|F(Q)C Q}
and
gfp(F)=UH{QCR|QC F(Q)}

To reach the least fixpoint of F, we start from a bottom set Q@ = () and gradually
construct its least fixpoint Ifp(F). The set F() consists of those relations that can be
proved without reference to any other relations. For example we have (1,int) € F(()
for the F we have defined. Next, F(F(()) contains the relations that can be proved
based on the relations already proved by F(0) and so on. Since F is monotonic, the
limit of the chain

0 C F(0) C F(FO). ..

is the least fixpoint of F. For any relation ¢, ¢ € {fp(F) if and only if ¢ can be proved
true by F.

The maximal fixpoint finding begins with a top set and gradually eliminates those
relations that have been proved wrong. Starting from @ = R, meaning that at the
outset F rejects nothing, F(R) is the set of relations that cannot be rejected based on
the relation in R. By using the monotonic F we have

LF(F(R)CF(R)C R

and the limit of this chain is the maximal fixpoint of F. For any relation ¢, ¢ € gfp(F)
if and only if F can never prove g to be wrong.

Maximal fixpoints are of more interest whenever we define consistency relations,
since in some cases such as in languages with side-effects, the least fixpoint cannot be
constructed (see [Tofte87]) and the minimal fixpoint Ifp(F) is strictly contained in the
maximal fixpoint gfp(F). Therefore we choose the maximal fixpoint of the function F
to define the relation between types and values.

Definition 3.2 (Types of Values)
vit & (v,t)€ gfp(F)

The subset operation C is used to define the consistency between dynamic and
static control-flow information.

Using these definitions, we can express that the static semantics conservatively
approximates the dynamic semantics.

Theorem 3.1 (Consistency of Static Semantics)

EFte—uv,b -1
Ete:tc = {bC
E: & = ¢

Proof See Appendiz 1

36 CHAPTER 3. CONTROL-FLOW EFFECT SYSTEM

3.6 Related Work

Shivers’s thesis [Shivers91] presented a control-flow analysis based on abstract inter-
pretation. This analysis is more precise than the one presented here. It can distinguish
certain call contexts, but fails to support separate compilation, thus limiting its prat-
ical application. By contrast, our control-flow analysis is performed by a type and
effect system that supports the separate compilation of modules, but collapses all call
contexts together.

Control effects, defined in [Jouvelot89], are somewhat related to the control-flow in-
formation we gather here. However, these control effects are targeted to non-functional
behaviors, such as those created by branches or continuations. Also, this analysis is
targeted to an explicitly typed language, which allows explicit polymorphism.

The flow analysis described in [Bondorf93], which is used in their binding-time
analysis system, traces the flow of function values in an untyped language. The only
information gathered there for first-class functions is the possible arities of functions
reaching a given program point. Since we restrict ourselves to typed languages, this
information is a special case of our type analysis. Their flow constraint set is generated
by a one-pass compositional run over programs and solved by a rewriting system, which
has the same complexity as our type and effect inference system.

Effect systems have been used to approximate program evaluation behaviors in
higher-order language, such as side-effects [Talpin92-1], evaluation complexity [Dornic91],
etc. Control-flow analysis is another application of effect systems.

3.7 Conclusion

We presented a new control-flow analysis system based on effect systems. This control-
flow effect system can be used in presence of higher-order functions, imperative con-
structs and separate compilation. We defined the dynamic semantics of the language,
described a static semantics for control-flow analysis, and stated its consistency w.r.t.
to the dynamic semantics.

If this simple static semantics is useful to lay the ground to control-flow analysis by
effect systems, it suffers from shortcomings that are going to be presented and dealt
with in Chapter 4,5. Thus even though a reconstruction algorithm could easily be
designed for this semantics, we will delay this aspect until the next chapters.

Chapter 4

Subeffecting Effect Systems

Subeffecting improves flexibility of effect systems
but at the price of their accuracy.

4.1 Introduction

We extend the static semantics defined in Chapter 3 with the subeffecting rule. Subef-
fecting allows expressions to admit larger effects when a type mismatch occurs, thus
improving the flexibility of the effect system. However it forces a function to have a
unique type in different call contexts by merging their effects together, thus limiting
the accuracy of the effect system. We introduce a reconstruction algorithm that for
each expression computes its type and control-flow effect based on subeffecting. The
reconstruction algorithm is sound and complete w.r.t. the static semantics.

We introduce the subeffecting rule (Section 4.2), present the corresponding recon-
struction algorithm and prove it sound and complete w.r.t. the static semantics (Section
4.3). Finally we describe system extensions (Section 4.4) before concluding (Section
4.5). All proofs are presented in Appendix 2.

4.2 The Subeffecting Rule

The effect system defined in Chapter 3 extends classical type systems with effect in-
formation. However the interplay of types and effects introduces new constraint on
the typability of expressions. Effect checking may force the rejection of programs that
would be type checked if no effects were present, thus reducing the flexibility of effect
systems. We use the example demo to show this problem. For clarity, we use ¢ to
indicates the type int.

In classical type systems, since the lambda expressions (An, (a) a) and (An, (b) b)
have the same type ¢ — 1, the variable £ admits the same type (¢ — ¢) — ¢ in its three
instances. Therefore this program can be type checked.

In the previously defined effect system, due to the introduction of the latent control-
flow effects {n,} and {n}, the lambda expressions (An, (a) a) and (An, (b) b) have

37

38 CHAPTER 4. SUBEFFECTING EFFECT SYSTEMS

{n

a} . {nb} .
—

the different types i v and ¢ — ¢2. Therefore £ cannot keep the same type at the
different call contexts 1, and 1. Thus the program is rejected by type checking.
Subeffecting has been used to improve the flexibility of effect systems [Talpin92-1,
Dornic91, Tang92]. It allows expressions to admit larger effects when a type mismatch
occurs. The subeffecting approach forces a function to have identical type in different
call contexts by merging their effects together, thus limiting the accuracy of effect

systems.

Subeffecting is introduced by the (does) rule that allows an expression to admit a
larger effect ¢ instead of ¢’. This rule can be used whenever a type mismatch occurs in
the application rule (app) due to its latent effect.

Ete:t,d
(does): ¢ Ce
EFe:tc

For the same example demo, by using the subeffecting technique, the lambda ex-

pressions (An, (a) a) and (Ap, (b) b) admit a unique type : MaDed; Therefore £ can

. ay . n 7na7n . 0 . .
keep the same type (i (e Do) i) oy =) 1 at the different call sites 1, and 1p, thus this

program can be type checked. Note that subeffecting forces the latent effects of the
lambda expressions (An, (a) a) and (Ap, (b) b) to be merged together, thus limiting
the accuracy of effect systems.

4.3 Subeffecting-Based Reconstruction

We present an algorithm based on subeffecting for reconstructing types and control-flow
effects of expressions. To stay as close as possible to classical unification-based algo-
rithms, the basic idea is that latent effects of functions are always represented by effect
variables. Thus the type unification can be applied on both type and effect variables.
Beside reconstructing types and control-flow effects of expressions, the algorithm also
computes a set of subsumption constraints between effect variables and control-flow ef-
fects of the form {(; O ¢; | i = 1..s}. Thus the reconstruction of types and control-flow
effects of expressions is viewed as a constraint satisfaction problem. For an expression
that admits a type and control-flow effect in the static semantics, its corresponding
effect constraint set must have at least one solution. This solution satisfies the crite-
ria of the maximality of the type with respect to substitution on type variables, and
minimality of the effect with respect to the subsumption on effect variables.

k € Constraint = P(EfVar * Control)

4.3.1 Unification

The unification algorithm U [Robinson65] solves the equations on types and effect
variables built by the reconstruction algorithm. It returns a substitution # as the most
general unifier of two terms, or fails. Note that the reconstruction algorithm only unifies
effect variables. Substitutions # are defined as maps from type or effect variables to
their corresponding values. We note Id is the identity substitution.

4.3. SUBEFFECTING-BASED RECONSTRUCTION 39

§ € Subst = (TyVar — Type)+ (EfVar — Control)

U(t,t') = case (t,1) of

(int,int) = Id

(o,) = [a— o]

(a,)|(t, @) = if a € fu(t) then fail else [a — 1]

(to 2t ty £ 11) = let 0 =[Co— (i) and 0 = U(B1y,0t;)

in UBOL,. 001,)0'6
(--) = fail

where for any substitutions § and €', 8¢ is the application of the substitution # to ¢ and
8¢’ is the composition of the substitutions with the property that 66'(J) = 6(¢'(9)).

Lemma 4.1 (Correctness of if) Let t andt' be two type terms in the domain of U.
If6 =U(t,t'), then

o U is sound : 6t = 6,

o U is complete : If 8't = 0't', there exists a substitution 6" such that 8’ = 0"6.

Proof U unifies terms over a free algebra, and is thus complete following [Robinson65].

4.3.2 Algorithm R

Given an expression e and its type environment & , the reconstruction algorithm R
computes a substitution 8, its type ¢, control-flow effect ¢ and a constraint set k. We
note :

R(E,e)=(8,t,c,K)

The effect constraint set is built during the reconstruction of lambda expressions
where a latent effect is introduced into the function type.

R(E,x) =
if x € Dom(€)
then (Id,&(x),0,0)

else fail

R(E,(An (x) e)) =
let a,(new

(0,t,c,5) = R(E[x — al,e)
in (6,00 = 1,0,k U{¢ 2 cU{n}})

R(E,(recn (f x) e)) =

let o, a,(new

=€t~ d LS al[x — o]

40 CHAPTER 4. SUBEFFECTING EFFECT SYSTEMS

(0,t,c,5) =R(Ee)
¢ =U(ba,t)
in (0/6,00(a’ < 0),0,6'(k U{6C D {n} U c}))

R(E,(ee)) =
let (0,t,c,r) = R(E,e)
(0,1, K"y = R(6E, &)
a, (new

0" = Ut S a)

in (676'9,6",0"(6'c U ¢’ U (), 00 UK

Note that by the unification of two effect variables ¢ and (’, the inequalities {(D
¢, (" D '} in the constraint set are replaced by {¢ D ¢,(2 ¢}, which is equivalent to

{{Dcud}.

4.3.3 Constraint Satisfaction

An expression e with its type environment & is type and effect safe if and only if
R(E,e) does not fail and the returned constraint set x admits at least one solution.
The constraint set is of the normal form {(; O ¢; | i = 1..s}, which guarantees the
existence of solutions. We are interested at the minimal one.

The substitutions satisfying s are called effect models.

Definition 4.1 (Effect Model) A substitution u is an effect model of a constraint
set k, noted as p |= Kk, if and only if V{ D ¢ € k, p¢ D pe.

Theorem 4.1 (Satisfaction) FEvery normal form constraint set k = {(; 2 ¢; | ¢ =
1..s} admits at least one effect model.
Proof {(; — ¢, | i =1...n} is an effect model of K, where ;. = U ¢; \ U, (;.

A constraint set may admit more than one effect model, among which we are
interested in the minimal one. We define a function Min to characterize the minimal
effect model of a constraint set x. Note that the solution is independent of the order
of inequalities in k.

Min(0) =1d
Min({¢ 2 ¢} UK") =let p= Min(k'") in {(— pc\ (p

The constraint set of the reconstruction algorithm always admits a unique minimal
model with respect to the subsumption relation 2 on effects.

Theorem 4.2 (Minimality) Any constraint set admits a unique minimal effect model.
Proof By induction on the constraint set.

4.3. SUBEFFECTING-BASED RECONSTRUCTION 41

4.3.4 Correctness

The reconstruction algorithm terminates and is sound and complete with respect to
the static semantics.

Theorem 4.3 (Termination) For all inputs (€,e), the algorithm R either fails or
terminates.

Proof Since the reconstruction algorithm R is defined on the structure of expres-
stons of finite height, it terminates or fails.

The soundness theorem states that the application of any effect model of the recon-
structed constraint set to the reconstructed type and effect satisfies the static semantics.

Theorem 4.4 (Soundness) Given an expression e and its type environment &, if
R(E,e) = (0,t,c,K), then, for any effect model i of k, one has:

HoE = et ut, e

The completeness theorem states that the reconstructed type ¢ and control-flow
effect ¢ are maximal with respect to any type t; and control-flow effect ¢; derivable by
the static semantics, for some substitution p that satisfies the computed constraint set
K.

Theorem 4.5 (Completeness) If ;& F e : t1,¢1, then R(E,e) = (0,t,¢,k) and
there exists an effect model p of k such that:

0, = pbE and ty = put and ¢ O pc

4.3.5 Example

We use the same example demo to show the reconstruction process by solving the effect
constraint set. Here we give the following table to show the type of the variables f, g
and the lambda expressions ny,n,,np,n,.

£ (i%0) 25
G

g: 11

RV EDEY
G

ng,: =1
G

n,: 11
SN

ng: (i=1i)=1

The constraint set is of the form:

{1 2 {ne,mp}, 2 1{ng} UG, (32 {ns}UC}

The minimal solution of this constraint set is as below :

Cl = {navnb}v CZ = {ngvnavnb}v CB = {nfvngvnavnb}

42 CHAPTER 4. SUBEFFECTING EFFECT SYSTEMS

4.4 System Extensions

The subeffecting effect system can be straightforwardly extended to imperative con-
structs and let-bound expressions in a way as presented in [Talpin92-1]. A reference
type ref (t) needs to be introduced to represent updatable memory locations containing
values of the type t.

The parametric polymorphism introduced in ML type systems [Milner78, Tofte87]
can be extended to effect systems [Talpin92-1]. The type of ¢’ in (let (x ') e) can be
generalized on both type and effect variables, if ¢’ is side-effect free. Therefore its effect
variables can be instantiated to different effects in different call contexts, thus increasing
the accuracy of effect systems. [Tofte87] introduces an expansivenessfunction to detect
if expressions have side-effects or not. A non-expansive expression is syntactically
guaranteed to be side-effect free. By using side-effect analysis [Talpin92-1], especially by
introducing an observation criterion [Talpin92-2], type generalization in let-expressions
can be performed in a more precise way. One can use syntactic substitution to avoid
the complication of introducing sophisticated type schemes. We write e'[e/x] for the
textual substitution of e for x in e’. The syntactic substitution e’[e/x] reflects the
fact that different types of e can be used for each occurrence of x in ¢’. In the static
semantics, the type generalization of let expression is specified by the following (let)
rule :

—expansive|e]
Ete:t,0

EFele/x] 1,
EF(let (x e) &)t

(let):

In the reconstruction algorithm, in order to avoid recomputing the type of expres-
sions bound in let constructs, we use algebraic type schemes to generalize their types
and associated constraints. Here algebraic type schemes, noted Vv _,.(t,%), are com-
posed of a type t and a set of inequalities x universally quantified over type and effect
variables vy . Algebraic type schemes are used to implement the textual substitution
specified in the let rule in the statics semantics. The type and constraint set associated
with e only depend on the free variables of e and, thereby, on the type environment
E. An algebraic type scheme caches the effect constraint that would have to be recom-
puted each time e appeared in the substituted body. Constrained type environments
& map value identifiers to algebraic type schemes.

Vo1 ,.(t,5) € TyScheme type scheme
& € TEnv = Id — TyScheme type environment

The reconstruction algorithm only needs to be modified for the case of identifiers
and let-bound expressions.

R(E,x) =
if x—=VYu,.(tk)€EE
then let {v] , } new
0 ={v,—v |i=1...n}
in (0,6t,0,0r)

else fail

4.5. CONCLUSION 43

R(E,(let (x e) &) =
let (0,t,c,k) =R(E,e)
in let vy, = (fo(t) U fo(k))\ fo(€)
E=0Ex U{x— Yo (LK)}
0,1, k") =R(E,E)
in (60,1, ¢ k)

The example program demo can be equivalently written in the let-binding form.

let-demo= (let (f (An, (g) (g 1)1,))
(+ (f (Mn, (2))1,
(f (An, () D))1,))

The type of the let-binding expression (An, (g) (g 1)) can be generalized to V(1 (2.((¢ 4
i) & i,0). When it is called (via £) at the call site 1, and 1, it can be instantiated to

(i 4 i) % jand (i 4 i) S respectively and the constraint set is as below:

{¢i 24na. ' 2{m}, G2{n U, G 2{n U, G2{ntUGUEGY

By solving the constraint set, we get the minimal solution of this constraint set :

C{ = {na}v C{/ = {nb}v Cé = {ngvna}v Cél = {ngvnb}v CB 2 {nfvngvnavnb}

Therefore the control-flow information at the call site 1, or 1; is {n,,n,} or {n,,ny}
respectively. With the previously defined subeffecting effect system, the control-flow
information of (£ (An, (a) a)) and (£ (An, (b) b)) are both {n,,n,,n}, even if only
{ny,n,} or {ny,ny} are called during their evaluations, thus collapsing different call
contexts together.

Here we give the following table to compare the control-flow information at the call
sites 1, and 1; collected by effect systems with and without the introduction of the
generic types. Note that the introduction of generic types can distinguish different call
contexts (n, and np), thus performing more precise control-flow analysis.

Dynamic Semantics | Effect Systems | Generic Types
1, {ngvna} {ngvnavnb} {ngvna}
1 {ngvnb} {ngvnavnb} {ngvnb}

4.5 Conclusion

We introduced subeffecting to improve the flexibility of effect systems. The subeffecting
approach allows expressions to admit larger effects when a type mismatch occurs. We
presented the subeffecting rule in the static semantics, discussed the reconstruction
algorithms R and proved it sound and complete w.r.t. the static semantics. Finally,
we described how to extend generic polymorphism in effect systems. This polymorphic
control-flow effect system has been implemented in a Mini-FX compiler [Grundman92]
where Mini-FX is a variant of the Scheme programming language [MIT90].

44

CHAPTER 4. SUBEFFECTING EFFECT SYSTEMS

Chapter 5

Subtyping Effect Systems

Subtyping improves both flexibility and accuracy
of effect systems.

5.1 Introduction

Instead of subeffecting, we introduce subtyping in effect systems. Subtyping allows a
function to have different types in different call contexts, as long as they obey certain
subtype relation. The subtype relation is induced by a subsumption rule on effects. This
subtyping effect system avoids effect information to be merged together when forcing
two types to be identical, thus collecting more precise effect information than the
previous effect system based on subeffecting. We introduce a reconstruction algorithm
that for each expression computes its type and control-flow effect based on subtyping.
The reconstruction algorithm is sound and complete w.r.t. the static semantics.

We introduce the subtyping rule (Section 5.2), present the corresponding reconstruc-
tion algorithm and prove it sound and complete w.r.t. the static semantics (Section
5.3). Finally we describe related work (Section 5.4) before concluding (Section 5.5).
All proofs are presented in Appendix 3.

5.2 The Subtyping Rule

The subtype relation is defined between types of the same structure. The type structure
is defined by the classical types. A classical type 7 can either be int, a type variable
a, or a function type 7/ — 7.

r€ CType =int|al|7 — 71 classical type

An effect, here specified by a set of function names, can be conservatively approx-
imated by one of its supersets. The subeffect relation is thus the usual set inclusion
relation.

If two function types have the same structure, the subtype relation < is defined
via the inclusion relation between their latent effects. To properly define this notion,

45

46 CHAPTER 5. SUBTYPING EFFECT SYSTEMS

we introduce the Frase function which transforms types to classical types by deleting
latent effects.

Frase(int) = int
Frase(a) a
Erase(t' % t) = FErase(t') — Frase(t)

The type structure of t is Erase(t). Two types ¢ and ¢’ have the same structure if and
only if Erase(t) = Frase(t').

The subtype relation ¢ < ¢’ is defined whenever ¢ and ¢ have the same structure.
Note that the subtype relation between function types is contravariant.

Definition 5.1 (Subtype)

th = 1o 2y e <t A to<ty ANepDeg

The function Eff generates the set of effect inequalities corresponding to a given
type inequality. An effect inequality is a pair (¢;, ;) written ¢; D ¢l

Fff (int < int)
Fff(a < a)
Eff(th = to <17 = 1)

0]
0]
{er

Dot UEf(t) <th)UEf(to <ty)

Subtyping is introduced by the following (sub) rule that allows a larger type t to
be used in lieu of ¢'. This increases the flexibility of the static semantics by allowing a
function to admit different types, as long as a certain subtype relation is satisfied. It
avoids merging effect information together when forcing two types to be identical, thus
collecting more precise effect information than the subeffecting technique.

Ere:t
(sub): ¢ <t
Erle:t

We use the same example demo to show how subtyping improves the accuracy of
effect systems compared to subeffecting. When the function £ (bound to ny) is called

AN} . {NgNeng) . {ny} . {ngn.ngd .
at 1, and 1, it can admit the supertypes (i {—>} i) @y ¢ o} i and (¢ {—b>} i) @y % b} ?

respectively instead of having the unique type (¢ {na—’l>1b} i) {ng,n_>a,nb} t. The following

table shows the difference between subeffecting and subtyping. We give the types of £
at these three occurrences (ty, t’f and t’Jﬁ), and the types of the arguments n, and ny
(tna and tnb)

5.3. SUBTYPING-BASED RECONSTRUCTION 47
Subeffecting Subtyping
t . {navnb} . {ngvnavnb} . . {navnb} . {ngvnavnb} .
O 3 B A I A S B
t/ (l {n(ilb} ’L) {ngvlivnb} ’L (l {Iil)} ’L) {ngvgavnb} ’L
!
. {naynb} . . {na} .
tn, | ¢ — 2 1 — 1
t/f/ (’L {na_{lb} ’L) {ngvlgvnb} 'L (’L {E} ’L) {ngvn_glvnb} ’L
. {naynb} . . {nb} .
tn, | ¢ — 2 T =1
ty = t;j ty < t;j

Notice that, when using subeffecting, all occurrences of f are forced to have the
same type, while, when using subtyping, they only have to obey a subtype relation,
leading to more precise local control-flow information.

5.3 Subtyping-Based Reconstruction

The reconstruction of types and effects based on subtyping operates on the expressions
that are already typed by classical type systems. For each expression e annotated with
classical types, the reconstruction algorithm & computes its type, its effect and a set of
type inequalities based on subtyping. Since the subtype relation in our system is defined
by the subsumption relation on effects and the structures of the types are known, type
inequalities amount to sets of effect inequalities. Therefore solving type inequalities
is reduced to solving the corresponding effect inequalities. Thus the subtyping-based
reconstruction can be also viewed as an effect constraint satisfaction problem. For
every expression that has a type and a control-flow effect in the static semantics, its
effect constraint set must have at least one solution, which satisfies the set of type
inequalities.

For any expression e, the classical type reconstruction algorithm computes its prin-
cipal type 7 w.r.t. the types ¢ defined by the static semantics (modulo Erase). In other
words, for any expression, if 7 is its type computed by the classical type reconstruc-
tion algorithm and ¢ is derivable from the static semantics, then there exists a type
substitution 6, such that :

Frase(t) = 6t

5.3.1 Algorithm &

Given a type environment £ and an expression e assumed priorly decorated with its
classical type (we use a straightforward expression annotation mechanism to express
this information in the algorithm), the reconstruction algorithm & computes a type {,
an effect ¢ and an effect constraint set k. We note :

S(€,e) = (t,c, k)

The effect constraint set is partly built by application of Eff to type inequalities and
partly during the reconstruction of lambda and rec expressions:

48 CHAPTER 5. SUBTYPING EFFECT SYSTEMS

S(&,x) =
let t'=£&(x)
t = New(Frase(t'))
i (1,0, EF(¢ < 1)

S(E&,(An(x:7)e)) =
let ' = New(r)
¢ new

(t,e, k) = S(E[x —t'],e)
in (t' 5 1,0,kU{¢ D {n}uc})

S(€,(recn (f:7 —=7x:7")e)) =
let 5= New(t" — 1)
(" e, k) = S(E[£ — ' S A[x — 1], e)
in (¢S 40,5UEFA" <) U{¢ D {n}uel)

S(&,(ed)) =
let (1" = t,e,k) = S(E, e)
(t',d, k") =8(€,¢)
in (t,eud U kUK UEff(t <))
where the function New transforms a classical type 7 to a type ¢ by adding fresh latent
effect variables to 7. Its proper definition is:

New(int) = int
New(a) =
New(r" — 1) = New(r') 5 New(t) for fresh ¢

Note that subeffecting can be easily related to subtyping by noticing that its related
reconstruction algorithm R is similar to &, except that < is replaced by the more
restrictive =, implemented by unification.

5.3.2 Properties of S

We can easily prove by induction that the reconstruction algorithm & has the following
properties :

Lemma 5.1 (Properties of §) For any &, e, if S(€,e) = (t,c,k), then :
o t only includes fresh effect variables.
o All environment extensions within § refer to types with only fresh effect variables.

The previous lemma implies that the constraint set computed by the reconstruction
algorithm & has the following normal form property:

Lemma 5.2 (Normal Effect Constraints) IfS(€,e) = (t,¢, k), then k has the fol-
lowing normal form:

{(i D¢ |i=1.s}

5.3. SUBTYPING-BASED RECONSTRUCTION 49

As stated in Chapter 4, effect constraint sets in this normal form guarantee the
existence of unique minimal effect models. The following lemma shows how to satisfy
a type inequality by solving its corresponding effect constraint.

Lemma 5.3 (Solution of Type Inequality) If ¢t and ' have the same structure,
then

plE EfE <t) e ut’ <put

Proof By induction of the structure of types.

5.3.3 Correctness

Since the reconstruction algorithm § is defined by induction on the structure of expres-
sions, which are of finite height, it always terminates. It is sound and complete with
respect to the static semantics.

The soundness theorem states that the application of any effect model of the re-
constructed type constraint set to the reconstructed type and effect satisfies the static
semantics.

Theorem 5.1 (Soundness) Given an expression e and its type environment £, if
S(&€,e) = (t,c, k), then for any effect model p of K, one has:

nE e ut, e

The completeness theorem states that the reconstructed type ¢t and the control-flow
effect ¢ are maximal with respect to any type t; and control-flow effect ¢; derivable from
the static semantics, modulo some substitution g that satisfies the computed constraint
set K.

Theorem 5.2 (Completeness) If 61E - e : ty,¢q, then S(E,e) = (t,c, k) and there
exists an effect model p of K, such that:

0, = p& and pt <ty and ¢ D pe

5.3.4 Example

We use the same example demo to show how the reconstruction algorithm & works
for expressions already typed with classical types. After applying the classical type
reconstruction algorithm, the program demo is annotated by classical types like below :

demo-annotated=((An, (f:(i— 1) — 1)
(+ (£ (An, (a:i—1i)a)),
(f (An, (b:7—1i)b))y,))
(An, (g:1—1) (g 1)1,)1,)

We apply the algorithm S to demo-annotated. Here we give the following table to
show the type of the variable f,g and the lambda expression n,,n;,ny,ny. Note that
the variable £ has different types in its three occurrences 1y, 1, and 1y.

50

CHAPTER 5. SUBTYPING EFFECT SYSTEMS

£(1,): (12025
f(1): (1202
£(1): ()2
¢
g P2
. Ca -
n, i
G -
n, L)
n, (i&w)—gw
. C G G2y G
ny: (1=10)=2i) =i

The constraint set is the union of following inequalities:

which is equivalent to :

EFGE L i< Sy,
Ca 2 {na}v

Ef(isi<i Sy,
D EI R ED)
Cb 2 {nb}v

Ef(ii<isly),
(3 2 {ns} U U,
Cg 2 {ng} U G,

EF(GE) 2i<i Ly

{¢52 ¢, G121,
Ca 2 {na}7

C{ 2 Ca?

é/ 2 627 Cl 2 C{lv
G 2 {ny},

{/ 2 va

G21{nf UG UG,
Gy 2 1{ng} U Cé?
(22 Gy ¢y 20}

5.4. RELATED WORK 51

The minimal solution of this constraint set is as below :

Ca = {na}7

Cb = {nb}v

G = i},

{/ = {nb}v

G1 {navnb}v

C; = {navnb}v

Cg s {navnbvng}v
Co {ngvnavnb}v
Cé = {ngvnavnb}v
él s {ngvnavnb}v
(3 — {ns,ng,n,,np}

5.4 Related Work

Subtyping [Cardelli88] adds flexibility to type systems by allowing type coercions to
be performed if a type mismatch occurs. It relaxes the form of the type constraints
from equations X = Y to inclusions X C Y. The subtyping problem is reduced to
the question of whether a system of inclusion constraints has a solution. However
there have been no general results on solving inclusion constraints. The algorithms for
type inference based on solving inclusion constraints are quite restrictive [Wand87,
Stansifer88, Aiken93, Fuh88, Benjamin92]. The subtyping effect system limites the
subtype to a subsumption relation on effects. If classical types of expressions are known,
the subtyping-based type and effect inference is reduced to solving effect constraints.

Subtyping in effect systems has been previously introduced in explicitly typed lan-
guages [Gifford87, Consel93]. There, a subsumption rule similar to the one presented
above was used, but since only type checking was performed, its treatment was simpler
than ours. The subtyping approach introduced in my thesis shows that type and effect
reconstruction may be performed in an implicitly typed language.

Previous effect systems [Talpin92-1, Dornic91, Tang92] have used subeffecting that
forces a function to have an identical type in different call contexts. My thesis in-
troduces subtyping that allows the same function to have different types for different
function calls, as long as they obey certain subtype relation. This subtyping effect
system avoids effect information to be merged together when forcing two types to be
identical, thus improving the accuracy of effect systems based on subeffecting.

5.5 Conclusion

We introduced subtyping in effect systems that allows a function to have different types
in different call contexts, as long as they obey certain subtype relation. This subtyping
effect system avoids effect information to be merged together when forcing two types
to be identical, thus collecting more precise effect information than the previous effect
system based on subeffecting. We defined the subtype relation, presented the subtyping
rule in the static semantics, discussed the reconstruction algorithms & and proved it
sound and complete w.r.t. the static semantics.

52

CHAPTER 5. SUBTYPING EFFECT SYSTEMS

Chapter 6

Separate Abstract
Interpretation

Type and effect information can be used to ex-
tend abstract interpretation in the context of
separate compilation.

6.1 Introduction

Abstract interpretation is another basic method for performing static analysis of pro-
grams. It is based on denotational semantics by approximating the fixpoint nature of
the language semantics. If the abstract interpretation approach performs more precise
static analysis due to its more operational nature, effect systems support separate com-
pilation more naturally via module signatures. We introduce the new notion of separate
abstract interpretation that combines two approaches in a single framework. It extends
abstract interpretation in the context of separate compilation based on the type and
effect information of module signatures. Types, enriched with effect information, are
used to conservatively approximate abstract values of the free variables of programs,
thus enabling abstract interpretation to be performed on non-closed expressions. We
use control-flow analysis as a motivating example of this new idea.

Shivers’ thesis [Shivers91] presents a control-flow analysis based on abstract in-
terpretation. Since a CPS form is used as intermediate representation of programs,
control transfers are uniformly represented as tail-recursive function calls. Since this
abstract interpretation approach is built on the fixpoint approximation technique, it
can distinguish between call environments, thus allowing precise control-flow analysis.
Nevertheless fixpoint approximation requires the syntax of function bodies to be known
and thus fails to support separate compilation.

Separate abstract interpretation use type and control-flow information to approx-
imate abstract values of free variables in an expression. The basis of the separate
abstract interpretation approach is that the abstract semantics of control-flow analysis
defined in Shivers’ thesis is consistent with the effect semantics used in effect systems.
Types describe the structure of values. In particular, from the latent definition d of

53

54 CHAPTER 6. SEPARATE ABSTRACT INTERPRETATION

a function type #/ LA t, one can determine the set of functions this type may corre-
spond to, together with their control-flow behavior. From such types, one can define
conservative approximations of abstract values which are used to pursue the abstract
interpretation. We have proved that this new static system conservatively extends the
abstract interpretation system and retains all its properties. The control-flow analysis
expressed by separate abstract interpretation is as precise as the abstract interpretation
approach on closed expressions, but is also able to tackle expressions with free variables
by using type and control-flow information to approximate their abstract values.

In the remainder of the chapter, we give the syntax and semantics of CPS programs
(Section 6.2), describe an abstract interpretation for control-flow analysis (Section 6.3),
adapt the type and effect system of Chapter 4 to CPS programs (Section 6.4), show
how these two techniques can be merged together (Section 6.5) to perform separate
abstract interpretation (Section 6.6), discuss optimizations for increasing its flexibility
and accuracy (Section 6.7), discuss the related work (Section 6.8), before concluding
(Section 6.9). All proofs are presented in Appendix 4.

6.2 Dynamic Semantics

6.2.1 CPS Syntax

Since Shivers’s abstract interpretation approach uses CPS-transformed programs, we
need to define an extended syntax for CPS programs. The main difference with the
language defined in Chapter 1 is the introduction of binary functions (to deal with
continuation arguments) and the restriction of arguments to self-evaluating expressions.

an= X value identifier
(An (x k) e) user-defined function
(An (x) e) continuation function
eu= (aa'a’)y function application
(aa')] continuation application

User-defined functions are always binary, while continuation functions are unary. In
the sequel, without loss of generality, we only specify the semantics of unary functions
and calls. By convention, we use k as identifiers of continuation functions.

6.2.2 Definition

The dynamic semantics not only defines the values of expressions, but also keeps track of
control-flow information during evaluation. We restrict the presentation of the dynamic
semantics to CPS expressions.

Following [Shivers91], we use the notion of contours to keep track of scoping in-
formation. A contour b is a list of labels of function calls describing the current call
path. A contour environment (also called a call environment) § maps any variable to
the call path that precedes its actual value binding. A wvalue v is either an integer or a
closure. A closure ¢l is composed of a lambda expression (including the function label,
argument name and function body) and contour environment. A binding environment

6.2. DYNAMIC SEMANTICS 55

F is a finite map from pairs of identifiers and contours to values, recording the bindings
of identifiers in a given contour.

b € Contour = LCall* contour

6 € ContourEnv = Id — Contour contour environment
v € Value = Int 4+ Closure value

cl € Closure = Fun * ContourEnv closure

I’ € Binding = Id * Contour — Value binding environment

The control-flow information records the set of functions called at a given call
environment. It is defined as a set of tuples {(1,/,s)} where the functions in s are
called at call site 1 and the call environment (3; we write such tuples {(1,5) ~ s}. In
the dynamic semantics, this set is always a singleton. We use sets to be compatible
with the subsequent non-standard semantics, where they usually have more than one
element. The emptyset () indicates the absence of control-flow information.

¢ € Control = P(LCall * ContourEnv « P(LFun)) control-flow information

The dynamic semantics is specified by a set of inference rules [Plotkin81]. The usual
value environment is split in Shivers’ approach in two components: a contour environ-
ment 8 and a binding environment F. The purpose of this uncoupling is to separate
the syntactic component of closures from their semantic aspect. This is of outmost
importance when performing abstract interpretation where this syntactic component
is furthermore restricted to finite expressions.

The inference rule g, K F a — v associates the argument a in the contour envi-
ronment 4 and global binding environment F with the value v it evaluates to. In the
(var) rule, the value of x is retrieved from the binding environment £ according to the
contour where it was bound (recorded by the current contour environment). In the
(abs) rule, the closure is built with its lambda expression and current contour environ-
ment. Note that since abstraction expressions are uniquely identified by their function
label, we use the function label n instead of the lambda expression.

(var): 8, F Fx — FE(x,[(x))

(abs): B, E+n— (n,p3)

The inference rule b, 3, £ F e — v, c associates the function application e in the
current contour b, contour environment S and global binding environment £ with (1)
the value v it evaluates to and (2) the control-flow information ¢ recording the control-
flow traces during its evaluation. In the (app) rule, control reaches the function call
site 1 in the contour environment /3, binding environment F and contour b, where
the function n is called. Then control enters the function body e, whose control-flow
information is ¢. Note that the binding environment F is global to the whole expression
evaluation.

B, Et a— (An(x) e, ')
B, EFa —
=01
(app) : V,3x—b],EFe—uv,c
E(x,b)="1
b5, EF (a 2]y — 0,cU{(L3) — {a}}

56 CHAPTER 6. SEPARATE ABSTRACT INTERPRETATION

6.3 Abstract Interpretation Semantics

In Shivers’ thesis, first-order control-flow analysis (1CFA) is performed with an abstract
interpretation. The contour of the dynamic semantic, which is a call path, is abstracted
to a single call site, which is the last element of the call path. Shivers uses a denotational
approach for specifying his analysis; we give here a new presentation of this technique
using an operational framework which allows us to merge it nicely with the type and
effect approach (see Section 6.5).

6.3.1 Definition

The abstract domains correspond to those in the dynamic semantics, except that,
since control-flow analysis only deals with functions and ignores integers, values are
abstracted to sets of abstract closures. The empty set () represents any integer.

b € Contour = LCall contour

ﬁ € ContourEnv = Id — Contour contour environment

& € Value = P(Closure) value

cl € Closure = Fun * ContourEnv closure

E € Bilﬁng = Id * Contour — Value binding environment

¢ € Control = P(LCall + ContourEnv * P(LFun)) control-flow information

The inference rule ﬁ, E F a — % associates the argument a in the contour environ-
ment 4 and global binding environment F with the value v it evaluates to.

(var) : B,E Fx— E(X,B(X))
(abs) : B,E Fn— {(n,ﬁ)}

The inference rule ﬁ,E F e — ©,¢ associates the function application e in the
contour environment 3 and global bmdmg environment £ with (1) the value # it eval-
uates to and (2) the control-flow information é. In the (app) rule, when control reaches
the function call site 1 in the contour environment § and binding environment E, the
function a is evaluated to a set of closures, while the actual argument a’ is evaluated
to its value ®’. Each function n; is possibly called at 1 at the call environment ﬁ from
which control transfers to its function body e;. Note that, compared to the dynamic
semantics, the call path b is limited to a single call site; so, calls to the same function
but in different environments in the dynamic semantics may get merged together.

BB+ a—{On(x)end)i=1...1}

(app) : 5

G, EF(aa')y — U 9;,U_ (& U{(1,5) ~ {n;}})

where [x; — v; | ¢ = 1..n] is shorthand for [|[x; — v1]...[x, — v,,] and [] is the empty
constant function.

6.3. ABSTRACT INTERPRETATION SEMANTICS 57

6.3.2 Correctness

Since the abstract interpretation semantics is defined on finite domains, it terminates.
We prove it is well-formed and consistent w.r.t. the dynamic semantics.

Contour environments 3, global binding environments E and abstract values 4 are
related. We define a well-formedness relation WF between them that ensures that free
variables of abstract closures are appropriately bound:

Definition 6.1 (Well-Formedness)

WE(o,L) & Y(n,3)€d, WFQSE)

WEF(3,E) & Vxe Dom(B), (x,8(x))€ Dom(E) N WF(E(x,3(x)), E)
Using this definition, we prove that the abstract interpretation semantics is well-formed.

Lemma 6.1 If 3, E+a— & and WF(3, E), then WF (4,).
Proof By direct application of Definition 6.1.

Theo;‘e{n 6.1 (Well-Formedness of Abstract Semantics) Ifﬁ,E Fe—0,¢and
WEF(B, F), then

o (ﬁ,E) is well-formed.
o All (ﬁl, E/) used in the — derivation tree of e are well-formed.

We define the < relation as an approximation relation between abstract values:
~ ~f ~f ~
(0, F) < (', K) if (¢, 1) is a conservative approximation of (4, F). This relation can
be straightforwardly extended to compare exact and abstract values.

Definition 6.2 (Consistency of Abstract Values) For the well-formed (v, F) and

(8, £) < (', E') & V(n,p)ed, 30, st (@mi)ed A (5, E)< (5, E)

~1 !

(3.B)< (8, & ¥xeDom(B), x € Dom(B) n (E(x,3(x)), E) < (E'(x,5'(x)),

We next define the C relation as an approximation relation between abstract control-
flow effects: ¢ C ¢’ if ¢’ is a conservative approximation of c¢. In other words, ¢ is a
more precise control-flow information than c’.

Definition 6.3 (Accuracy of Abstract Effects)
cCd & VY(1,8)~ sec, 35/,5’ s.t. (l,ﬁ/)v sed N sCs

Using the previous definitions, we can express that the abstract semantics safely ap-

proximates the dynamic one for both arguments and expressions:

Lemma 6.2
B, FEFa—w
B, EFa—i = (v,E)< (8, E)
(B, E) < (5. E)

Proof By direct application of Definition 6.2.
Theorem 6.2 (Consistency of Abstract Semantics)

ﬁ,El—e—ch

bﬁ,El—e—ch
- |
(B, E) < (B, E)

£

58 CHAPTER 6. SEPARATE ABSTRACT INTERPRETATION

6.4 Effect System Semantics

We designed in Chapter 4 an effect system to perform Oth-order control-flow analysis
in which all call environments are collapsed together. We adapt below this system to
CPS expressions.

6.4.1 Definition

A type t can either be the basic type int, a user-defined function type (' x t") <t or
continuation function type ¢’ 2 4. The latent definition d is a set of possibly aliased
functions n; of the same data type, together with their control-flow effect ¢;. A type
environment £ is a finite map from identifiers to types.

d € Def ={(n,¢)} | d'Ud Junction definition
t €Type =ant| (' +t") 2t |t Lt type

£ € TEnv = Id — Type type environment
¢ € Control

The control-flow effect ¢ of an expression records all the function calls that possibly
occur during its evaluation. Since this type and effect semantics does not keep track of
call environments, all contour environments that appear in the domain of control-flow
effects are unknown, and thus denoted by the empty constant function [].

The inference rule £ F a : ¢ associates the argument a in the type environment
& with its type t. In the (abs) rule, the function label n paired with its control-flow
effect ¢ is added to the latent definition d of the function type. These rules use implicit
subeffecting by adding more functions to d, thus allowing functions of the same data
type to be gathered together. This can be used whenever a type mismatch occurs in
an application.

(var): EF x: E(x)
Ex[lx—t]Fe:t,c

(abs): (n,e)€d
EFOn(x)e):t' Lt

The inference rule £ - e : t, ¢ associates the function application e with its type ¢
and control-flow effect ¢. In the (app) rule, the latent definition of the function type is
used to determine all the functions n possibly called at the call site 1 and their possible
control-flow effect ¢.

Sha:t Ly
(app): EFa -t
EF(aa)] tUngedcU{(1,[])~ {n}})

6.4.2 Correctness

We prove that the type and effect semantics is a conservative approximation of the
abstract semantics, which means that the abstract interpretation performs more precise
control-flow analysis than the effect system.

6.5. APPROXIMATING ABSTRACT VALUES 59

To define the consistency between the abstract interpretation and the effect system,
we introduce the “:” relation between abstract values, abstract environments and types,

noted as (%,) : . This can be easily extended to environments.
Definition 6.4 (Types of Abstract Values) For the well-formed (ﬁ,E),

(0, E) : int
(?z,EA):t =3 V(n,ﬁ)eﬁ,ﬂg, st (B, E): € A EI—An:t
(3, E): & & Vxe&Dom(f), x€ Dom(§) N (E(x,0(x)),) : £(x)

Using these definitions, we can express that the type semantics conservatively approx-
imates the abstract semantics for both arguments and expressions.

Lemma 6.3

Proof By direct application of Definition 6.4.
Theorem 6.3 (Types of Abstract Semantics)

EFe:te 5 B -
B Ete—i,¢ = {(év)it
(B,E): €

6.5 Approximating Abstract Values

As stated before, control-flow analysis by abstract interpretation is more precise than
the one based on the type and effect inference system since it distinguishes between
call environments. It however fails to support separate compilation because the value
environments ﬁ and E are unknown for separately compiled expressions. Note that the
type environment £ would be available in this setting.

6.5.1 Approximation Function A

The key idea is to determine a priori the unknown abstract value environment from the
type environment, therefore extending the abstract interpretation technique to support
separate compilation. The approximation function A takes a type ¢t and returns its
abstract value 4, along with a binding environment E that binds the free variables of .
Abstract closures are thus either built from actual function definitions or approximated
from function types.

The type int denotes integers; its abstract value is thus () and its binding environ-
ment [].

A(int) = (0,]])

The function type (¢’ * tg) LA t1, where d is {(n;,¢) | ¢ = 1...q}, describes a set
of user-defined functions n; with their control-flow effect ¢; possibly occurring when

60 CHAPTER 6. SEPARATE ABSTRACT INTERPRETATION

calling n;. Since the program is in CPS form, ¢y is a continuation type ¢ L t1 where t is
the type of the result value passed to the final continuation. Thus the abstract value %’
corresponding to the function type is a set of closures {(An,(x k;) e;), BZ |it=1...q}1in
which the body e; simulates the control-flow effect ¢; and the contour environment ﬁl
binds a fresh variable x; to a fresh coutour 1;. The binding environment ol correspond-
ing to the function type maps the pair x; and 1 to the abstract value & corresponding
to the return type ¢t. By binding x; to ¢ in E and applying, in e;, the final continua-
tion k; to x; (see below), the abstract value of the result type is passed to its final
continuation k;.

A((t x 1) LN ty) = let {x;}, {1} and 1 fresh
to =1t 1
(8, £) = A1)
{ei} = {S(Ei,ki,xi,l)}
o' ={(An,(x ki) e [x — 1)) |i=1...¢}
B = El(x, 1) — b |i=1...q]
n (o, E)

where

d={(ne) |i=1...q}

¢ = {(1]‘,[])'\» {nﬂ .. .an} | 7=1.. .8}

FEach closure body e; simulates the control-flow effect ¢; where, for each call site 1;,
all n;, functions may be called. The expression S(¢,k,x,1) simulates the control-flow
effect ¢ and, eventually, applies the continuation k to the result x at call site 1. It is
defined by induction on control-flow effects as below:

x)1

S([l & x,1) (k
S'({n1...n,},7,1 k,x,1)

S(@U{.)~ {n...n}} k. x,1)

S'(0,7,1k,x,1)
S'(su{n'}, 7,1, k,x,1)

S(,k,x,1)
((An/(k/) Sl(slvélvllvkvxv 1)) k)1/
where k' is fresh

At each call site 1’ in ¢, the function S calls 8" which is recursively defined on the set
of functions {n; ...n,} possibly called at 1’. Simulating the behavior of ¢ may require
replicating call site labels; this is nonetheless acceptable here since this abstract value
is automatically generated.

This general definition of & being somewhat notationally confusing, we give below
an example of a closure body for the simple control-flow effect ¢:

¢ = {1, ()~ {m}, (12, []) ~ {n2,n3}}

where the number of call sites is limited to two, and each call site can only call one or
two functions. The corresponding closure body S(¢, k;, x;,1) is then:

6.5. APPROXIMATING ABSTRACT VALUES 61

((An, (k1)

6.5.2 Correctness of A

The approximation function A has the following properties :
Lemma 6.4 (Well-Formedness of A(t)) A(t) is well-formed.

Note that the abstract values %" defined by A include simulated call environments
whose domains contain only fresh variables. We thus extend the approximation relation
< to compare the abstract values and the approximated ones in the following way:

Definition 6.5 (Consistent Abstract Values) For the well-formed (%, E) and (ﬁ’,E/),
if (¢, E/) is defined via A, then

(8,)< (¢, E") & V(n,B)ed, 35, st (nf) e
Using this extended definition, we get:
Lemma 6.5 (Consistency of A(t)) If (¢, E) : t, then (¢,) < A(t)

Since simulated call environments do not correspond to actual call environments, we
define, for the purpose of comparing them, a function D that deletes these simulated
environments in the control-flow effects obtained by abstract interpretation.

) i
DEU{(L.5)~ s)) = D(&)U{(L.[)~ s}

Using the initial identity continuation /d at a given call site 1, the abstract inter-
pretation of any of the g expressions e;, built by the function § from the control-flow
effect ¢; given by the type semantics, yields a control-flow effect ¢; which, modulo D,
is the same as é¢;.

Lemma 6.6 (Simulation) For any 61 and Ey, if

Bylxi — Lil[ki — k], Er[(xi,15) — 0][(ks, 11) — {Id}] F S(&i ki, %i,1) — 6, &

then D(¢;) = ¢; U{(1,[]) ~ {Id}}.

62 CHAPTER 6. SEPARATE ABSTRACT INTERPRETATION

6.6 Separate Abstract Interpretation

Separate abstract interpretation uses types and effects to compute conservative approx-
imations of abstract values of the free variables occurring in a separately compiled CPS
expression e. These values are used to create initial environments in which the classical
abstract interpretation is performed. These initial abstract value environments ﬁo and
Ey are defined via the function A, based on the type environment & of e.

Given a CPS expression e, its initial contour environment 50 maps free variables
to the fresh call site labels, since their actual binding call sites are unknown. Its initial
binding environment Ey is defined not only on the free variables of e, but also on
those introduced by A; these additional identifiers are bound in the additional binding
environments I given by A.

Bo= [x—1|x€ Dom(&) A fresh 1]

Lo = UxeDom(E) A (3,E)=AE(x)) El(x. fo(x)) — 9]

where U is the function union with the property that (fU¢)(x) = f(x)U g(x).
The approximated initial environments have the following properties, corresponding
to those of the approximation function A.

Lemma 6.7 (Well-Formedness of (BO,EO)) (BO,EO) is well-formed.
Lemma 6.8 (Consistency of (BO,EO)) If (ﬁg,Eg) : &, then (ﬁg,Eg) < (BO,EO)

Classical abstract interpretation can then simply be applied on e with these ap-
proximated initial environments:

B, Eo ke — ¢

to implement the notion of separate abstract interpretation. Thanks to these approx-
imated environments, we extended the abstract interpretation approach to support
separate compilation. This new interpretation enjoys all the properties of the abstract
interpretation semantics presented above, i.e. it terminates and is well-formed. It is
thus a conservative approximation of abstract interpretation.

Theorem 6.4 (Separate Abstract Interpretation) Separate abstract interpretation
is a conservative extension of abstract interpretation.

6.7 Optimizations

6.7.1 Subtyping Effect Systems

As stated in Chapter 5, subtyping can be introduced to improve the accuracy of effect
systems based on subeffecting. Therefore we can extend abstract interpretation with
subtyping effect systems to perform more precise control-flow analysis.

6.7. OPTIMIZATIONS 63

6.7.2 Flexibility of Abstract Semantics

The abstract interpretation semantics defined in Section 6.3 restricts a lambda expres-
sion n in the value environment 3, F to a singleton {(n, B)}, which limits the number of
programs derivable by the abstract semantics. To increase the flexibility of the abstract
semantics, we could adjust (abs) rule to (abs’), which allows a lambda expression to
admit a larger abstract value as long as its type is persevered.

(abs’): WF(v,F)

By direct application of Definition 6.1 and Definition 6.4, we can see that the (abs’)
rule preserves the properties of (abs), namely (1) well-formedness, i.e. if Wf(ﬁ,E),
then WF({(n,3)} U %, E) and (2) typability, i.e. ({(n,8)}U #, E):¢. Thus this
new abstract semantics enjoys all of the properties (see Section 6.3 and Section 6.4) of
the previous abstact semantics, but is more flexible. It terminates, is well-formed, is
a conservative approximation of the dynamic semantics, and is more precise than the
type semantics.

6.7.3 Local Control-Flow Effects

Even though the previously described approximation function A enables abstract in-
terpretation to be applied in the presence of separate compilation, it has the major
drawback of limiting its accuracy. Indeed, in the function types of CPS expressions, the
control-flow effects in their latent definitions d represent not only the local control-flow
effects of function bodies but also,via final continuation calls, those of the continuation
of the program. Consequently, the accuracy of separate abstract interpretation is only
as good as the one of the type and effect analysis.

To improve the analysis requires the use of A on types restricted to local control-
flow effects. This can be achieved by computing the abstract values of the free variables
on the basis of their direct, non-CPS type in the following way.

Using the previous notations, the continuation type tg = ¢ LA t1, where d' =
{(n},¢)|i=1...p}, describes a set of continuation functions n} and their control-flow

effect ¢.. User-defined functions of type (¢ * #o) 4 t1, where d = {(n;,¢;) | i =1...q},
accept continuations of type tg, beside the argument of type t’. The control-flow effects
¢; of their bodies include the control-flow effects that correspond to applying the final
continuation to their result. By subtracting this control-flow effect Ul_, ¢! from ¢;, the
remaining effect only corresponds to the local control-flow effect of the body of the
function n;. This is equivalent to the control-flow effect recorded in the corresponding
direct function type, if one ignores all continuation calls in CPS types.

To summarize, given a non-closed expression e, control-flow analysis using separate
abstract interpretation is performed according to the following steps:

64 CHAPTER 6. SEPARATE ABSTRACT INTERPRETATION

1. Apply type and effect inference to get the type environment & of e.

2. Use the function A onto &£ to approximate the corresponding initial abstract value
environment (g, Eo).

3. Transform e to its CPS form &'

4. Apply the classical abstract interpretation algorithm to e’, based on (ﬁo, Eo), to
get the control-flow information.

6.8 Related Work

In Shivers’s thesis [Shivers91], control-flow analyses of arbitrary order (nCFA, where
n is the order) on programs written in continuation-passing style (CPS) [Appel89] are
defined and performed by using an abstract interpretation approach. These control-
flow analyses are able to distinguish different call environments but fail to support
separate compilation, thus limiting their real-world application.

Effect systems extend type systems with effect information. Just as types describe
the possible values of expressions, effects describe their possible evaluation behaviors.
Our previous papers [Tang92, Tang93] presented a type and control-flow effect system
where the inferred control-flow effects of expressions describe all control-flow traces
possibly occurring during their evaluation. This analysis supports separate compilation
but collapses call environments together, thus is less precise.

Here, we extend the abstract interpretation approach for 1CFA to support mod-
ularity, i.e. separate compilation, by approximating unknown value environments of
expressions via their type environments. Thus our control-flow analysis performs 1CFA,
and possibly nCFA, even in the presence of separate compilation.

6.9 Conclusion

This chapter introduced a new technique to extend abstract interpretation approach in
the context of separate compilation based on type and effect information. This separate
abstract interpretation makes the control-flow analysis as effective as the abstract in-
terpretation approach on closed expressions, but is also able to tackle expressions with
free variables, using their type to approximate their abstract value. We proved that the
control-flow information obtained by this new analysis is a conservative approximation
of abstract interpretation and is more precise than the type and effect system.

Chapter 7

Higher-Order Escape Analysis

Control-flow analysis is helpful to choose an
efficient closure allocation strategy.

7.1 Introduction

Escape analysis helps compilers optimize closure allocation in functional program im-
plementation. It determines, at compile time, the free variables of functions that outlive
the environment in which they are defined. Therefore non-escaping variables can be
safely allocated in the stack while reserving the heap only for escaping ones. We present
a new static escape analysis based on the control-flow effect systems (Chapter 3 4, 5).
The escape analysis can be performed in presence of higher-order functions, imperative
constructs and separate compilation. We design a stack-based abstract machine where
closures are allocated in the stack and whenever functions are called, their escaping
free variables are copied from the stack to the heap.

In the sequel, we present a static criteria for identifying escaping functions (Section
7.2), design a stack-based abstract machine to show an optimized allocation strategy
(Section 7.3) and discuss related work (Section 7.4) before concluding (Section 7.5).

7.2 Identifying Escaping Variables

7.2.1 Escaping Variables

Function values are represented by compilers as closures. Closures are composed of
the function code and the free variables that form its environment. Since functions
are first-class values, their free variables may outlive the environment in which they
are defined. Here we use integers to specify the lexical level of each expression. The
top-level expression has the lexical level 0. The escaping variables do not obey the
LIFO stack-allocation strategy used in traditional call mechanism and must be heap-
allocated. Heap allocation is more general than stack allocation in the sense that heap
allocation can be used for all free variables of functions, while stack allocation is only
safe for non-escaping ones. However, stack allocation is cheaper than heap allocation

65

66 CHAPTER 7. HIGHER-ORDER ESCAPE ANALYSIS

because useless storage is simply reclaimed by updating a pointer instead of calling the
garbage collector. Finding an efficient allocation strategy for closure environments is
therefore important for optimizing compilers of functional languages. A good strategy
of closure allocation for functional languages is to stack allocate non-escaping variables
of functions while reserving the more expensive heap allocation to escaping ones. The
key problem is thus to identify escaping variables at compile time safely and as precisely
as possible.

7.2.2 From Types to Escaping variables

Escaping variables can be identified based on the types and control-flow effects inferred
by the previously defined control-flow effect systems (see Chapter 3,4,5). For any type-
checked function call (e ¢’) at the lexical level 1, e must have a function type t' = ¢
where t' is the type of the argument e’ and ¢ is the result type of this function call.
If a function n is returned as the result of this function call, it must be recorded by ¢
via its latent control-flow effects; If ¢’ is evaluated to a memory location loc, ¢ must
be ref(t"). When a function n is allocated in loc during the evaluation of e, it must
be recorded by ¢ via its latent control-flow effects. Note that the function type t’ = ¢
includes the information that helps identify the escaping variables of functions. More
precisely, for each function, we identify its escape-level and escape-set. The escape-level
is the smallest lexical level at which the function escapes (or infinity if the function
does not escape) while its escape-set is the set of free variables of the function body
that are bound within its escape-level and definition site. The variables recorded by
the escape-set are escaping variables.

To compute this information, we use two environments, LE and EE. The lezical
environment LE maps identifiers to the integer lexical levels at which they are bound.
The escape-environment EE maps a lexical level 1 defining a lambda expression to
the function type ¢t = ¢/; this type records, via the latent control-flow effects possibly
present in ¢ or t/, the names of all of the functions that may escape at the level 1. A
function n, defined at the level 1/, escapes at the level 1 by being either part of the
value returned at the level 1 (its name is free in ¢') or stored in a location bound at the
level 1 (its name is free in ?); the function n is then said to escape from 1’ to 1.

7.2.3 Algorithm 7

Given a lexical environment LE and an escape-environment EFE, the algorithm 7 up-
dates, for an expression e at the level 1, the identification function 7. This identification
function maps a function name to its escape-set. A function may escape to multiple
lexical levels; conservatively, the escape-level is the minimum of them. The escape
set records all of the free variables of a function bound at a lexical level larger than
the escape-level. These two escape attributes are conservative approximations of their
dynamic counterparts.

We assume in 7 that the expression is completely typed, the type and control-flow
information having been previously inferred by the effect systems.

7.3. A STACK-BASED ABSTRACT MACHINE 67

T(e) LEEE1 i =
X = 1
(e e’) = Z(e) LEEE 1 (Z(¢') LE EE 1 1)
(An (x:t)e':t) =
let el = Min{l | n € fn(EE(1))}
es = {y € file) | LE(y) > el}
i" =7(¢) (LE{x — 1})
(BE{1 — ¢t 2)
(1+1)4

in i'{n — es}

where fv computes the set of free variables of expressions and environments, while fn
restricts this set to function names. By convention, Min(is defined to be infinity. The
identification function of a whole program expression p is given by calling 7 on p with
the empty environment, lexical level 0 and the identity function.

The previously computed escaping variables can be used to efficiently allocate clo-
sure environments. For any function, only its escaping variables need to be allocated in
the heap; the others can, as before, be allocated in the stack. We introduce an abstract
machine to show how to use this optimized closure allocation strategy.

7.3 A Stack-based Abstract Machine

7.3.1 Stack Calling Convention

The abstract machine is built upon the stack calling convention. Following compilers
of traditional languages [Aho86], an activation record is built for each function call,
which records the arguments of the function call, together with other information,
such as return point, etc. The activation records are allocated in a control stack,
obeying the LIFO strategy. The only difference is that when functions are called, their
escaping variables, which do not obey the LIFO stack-allocation strategy, have to be
copied from the control stack (the activation records), to the heap, while all other non-
escaping free variables remain in the control stack. These heap allocated environments
are called escaping environments. Therefore closures in our compiler include two kinds
of environments : non-escaping environments recorded in the activation records in the
control stack, and escaping environments in the heap. When compiling non-escaping
functions, our compiler is as efficient as compiling traditional languages. When escaping
functions exist, it is more efficient than compiling other functional languages such as
SML or SCHEME [Krantz87, Steele78, Appel87] where the static escape information is
unknown or less precise. We present the structure of the abstract machine, describe
the semantics of its instructions, and give an algorithm C to transform the programs
to a list of instructions.

7.3.2 Structure

The state of the abstract machine is specified by the following five elements :

68

CHAPTER 7. HIGHER-ORDER ESCAPE ANALYSIS

(Code, Accu, TempS, EsEnv, ContS)

which respectively are :

User program (Code) : it includes a list of instructions of the abstract machine,
which are defined in Section 7.3.3.

Accumulator (Accu) : it stores the immediate result values of the abstract ma-
chine. The values can be integers or closures. The closure is composed of the
code of the function body, its escaping environment recorded by FsFEnv and non-
escaping environment recorded in the activation records ActR;

Temporary stack (TempS) : it temporarily stores the environments of functions.
It is organized as a list of values.

Escaping environment (Fsknv) : it records the escaping free variables of a func-
tion, which is represented as a vector. Accessing escaping variables is by their
indices in the vector. All escaping environments are allocated in the heap.

Control stack (ContS) : it stores the activation records of function calls linked
together by the access link. They obey the LIFO allocated strategy. An acti-
vation record is composed of the argument of the function call, the access link
pointing to another activation record, the return point where control will return
at the end of the function call. The return point includes the code and its escap-
ing environment. The environments of functions are recorded in the activation
records. Accessing them is by their indices in the linked activation records.

7.83.3 Instructions

The abstract machine has a set of instructions:

e stack(i): accesses the value of a variable in the linked activation records allocated

in the control stack ContS via the function access(s,?) where 1 is its index in the
linked activation records. The function access(s,i) accesses the value recorded
in the ¢th activation record starting from s.

access(0,1) = fail
access(s'.(v,s,7),1) =
access(s'.(v,s,7),1) = access(s,i—1)

heap(i) : accesses the value of an escaping variable in the escaping environment
FEsEnv allocated in the heap, where ¢ is its index of in the vector.

push: pushes the current value on the temporary stack Temps.

close(m,c) : closes a function with the code ¢ of its body, its escaping envi-
ronment including m elements (poped from the temporary stack TempS) and its
current activation record (including non-escaping variables).

7.3. A STACK-BASED ABSTRACT MACHINE 69

e call: updates the control stack ContS by building a new activation record for
the function call. This activation record is formed by the argument of the called
function (poped from the temporary stack TempsS), the access link (copied from
the non-escaping environment in the closure), and the return point (including
the rest of code and the current escaping environment). The current escaping
environment is updated with the one recorded in the closure and then control is
transferred to the code of the function body.

e return: updates the control stack ContS by poping the activation record, updates
the current escaping environment FsFnvwith the one recorded by the return point
of the poped activation record and transfers control to the code recorded by the
return point.

The semantics of the abstract machine is operationally given by the state transition
[Plotkin81] of each instruction.

Code Accu TempS EsEnv ContS
stack(?) ; ¢ v a e s

¢ access(s,) a e s
heap(7) ; ¢ v a € = V1..0;..0, s

c ; a € 5
push; ¢ a e s

c v a.v € 5
close(m,c’); ¢ v a.vy ... v e s

¢ (' A{vr...om},8) e s
call ; ¢ v= (¢, 9 a.v’ € s

d v a 4 s.(v', 8 (e, e))
return ; ¢ e s.(v', 8 (L e))
¢ v a 4 s

7.3.4 Translator C

The translator C transforms an expression to a list of instructions of the abstract
machine based on the result of previous escaping analysis.

A stack environment F; maps identifiers to their indices in the control stack ContS.
A heap environment Fj maps escaping variables to their indices in the escaping envi-
ronment FsEnv. The identification function ¢ maps all function names in the expression
e to their escaping variables. Given an identification function ¢, a stack environment
FE, and a heap environment Fp, the translator C transforms the expression e at the
lexical level [into a list of instructions of the abstract machine.

For a variable, if it is an escaping variable then its value is accessed by its index in
the escaping environment, otherwise it is accessed in the control stack.

70 CHAPTER 7. HIGHER-ORDER ESCAPE ANALYSIS

Clx] i Es Ey | =
if x € Dom(Lp)
then heap(Fp(x))
else stack(l — Fy(x))

For an application, the expression in the argument position is compiled and its
result is temporarily pushed onto the temporary stack TempS. Then the expression in
the function position is compiled, by building its closure. Finally the function is called
by constructing its activation record in the control stack ContS.

Cllee)] i Es Bl =
Cle'] i Es Ep 15 push; Cle] ¢ Es Epp 1 call

For an abstraction, all its escaping variables (recorded by the identification function
i) should be copied from the control stack and temporarily stored in the temporary
stack TempS. The function is closed with the code of its body, the escaping variables
moved from TempS and the current control stack pointer.

Cl(An (x)e)] ¢ Es Ep 1=
let {x1..x,} =1i(n)
{i1. i} = {Es(x1)... Es(x1,) }
in stack(l— 1) ; push;

étack(l —iy) ; push;
close(m,Cle] i (Fys[x —I]) ([][x1 — 1]...[xn — m]) (I + 1) ; return)

7.3.5 Example

We use the example exam to show how our abstract machine hehaves.

exam = (An. (2) ((An, (%) (An, (¥) x)) 2))

After applying previous escape analysis to the program, we get its identification
function ¢ which maps the lambda expressions n,,n, and n, to their escaping variables,
0, 0 and {x} respectively. The translator C starts from the empty initial environments
F, and Fj and the initial lexical level 0.

Since the lambda expression n, has no escaping variables, it is closed with the code
of its body and the pointer of the current control stack.

Cl(An. (2) ((An, (x) (An, (v) %)) 2))] ¢ [J]1 0=
close(0, C[((An, (x) (An, (y) x))2)] 7 [z~ 0] [] 1 ; return)

For the function application ((An, (x) (An, (y) x)) z), the variable z has to be
accessed in the stack by stack(1); Then the lambda expression n, is compiled.

7.4. RELATED WORK 71

Cl((An, (%) (An, (v) x)) 2)] i [z = 0] [] 1 =
Clz] i[z— 0] [] 1 ; push ;
Cl(An, (%) (An, (v) x))] [z — 0] [] 1;

call ;
where C[z] i [z — 0] [] 1 = stack(1)

The code for n, is similar to that of n,.

Cl(An, (x) (An, (v) x))]i[z—0][] 1=
close(0, C[(An, (v) x)] i [z+— 0,x— 1] [] 2 ; return)

sicnce the lambda expression n, has the escaping variable x, x has to be copied from
the control-flow stack ContSto the temporary stack TempS by performing stack(1) ; push.
Then n, is closed by the code of its body, the pointer of the current control stack and
its escaping environment (popped from the temporary stack TempS5).

Cl(An, (1) D) [z —=0,x—=1][]2=

stack(1) ; push ;

close(1,C[x] ¢ [z— 0,x+— 1,y — 2] [x — 1] 3 ; return)
where C[x] ¢ [z +— 0,x— 1,y — 2] [x — 1] 3 = heap(1)

The abstract machine code of the program exam is thus as below :

close(0, stack(l) ; push;
close(0, stack(1) ; push ; close(1, heap(1) ; return) ; return) ;
call ; - -
return)

7.4 Related Work

Escape information can be identified either at compile time, based on a static analysis
of programs, or at run time, using a run-time checking mechanism [Baker92]. Here we
only discuss compile-time approaches.

A simple escape analysis was used in the Scheme [Rees88] compilers Rabbit [Steele78]
and ORBIT [Krantz87] to optimize closure allocation. These analyses are syntax-based,
i.e., the escaping functions are identified by their syntactical context through a recur-
sive walk of expressions. Our analysis is based on the type and control-flow information
of expressions, computed by a type and effect inference system, thus is more precise,
in particular when dealing with higher-order functions.

A higher-order escape analysis [Goldberg90] on a typed functional language was per-
formed using abstract interpretation. This analysis computes abstract escape functions
of the programs based on fixpoint approximations. Our analysis applies an identifying
algorithm to the programs based on their types and control-flow information, which
makes our analysis process a lower cost; Another benefit of using effect systems is
that it can straightforwardly deal with imperative constructs in functional languages
thanks to explicit reference types of locations. Another main difference between these

72 CHAPTER 7. HIGHER-ORDER ESCAPE ANALYSIS

two analyses is the definition of escape information, which decides the way that they
are used for optimizing closure allocation. Goldberg’s analysis identifies, for each func-
tion call, which arguments possibly outlive this function call. The escaping arguments
are allocated immediately in the heap whenever the function call is performed. Our
analysis identifies, for each function, the free variables that possibly outlive the envi-
ronment where they are defined. The escaping free variables have to be copied to the
heap whenever these functions are called at run time, which makes our system more
expansive at run-time application.

Taking the example used in Goldberg’s paper, we can see the differences between
these two analyses.

let fxyz = x+y+z
gab=1fba
in g12

In Goldberg’s analysis, abstract escape functions for the function f and g are formed
by fixed point iteration. With these abstract escape functions, the system identifies
if their arguments escape from the calls to them. Here since 1 and 2 escape from the
function call (¢ 1 2), they have to be allocated in the heap when compiling the function
call.

In our analysis, the identifying algorithm identifies that z,y are escaping variables

of the function An, (2) (z 4+ y + =z) from the result type int Bed it of (g 12).
Whenever the function n, is called at run time, their values have to be copied from the
stack to the heap.

Finally we compare the accuracy of these two analysis. Generally, the abstract
interpretation approach performs more precise analysis than effect systems due to its
more operational nature. However, since our escape information is used together with
run-time evaluation, only the escaping variables of functions that are reached at run
time need to be allocated in the heap, which makes our analysis more precise in some
cases, for example, in conditional expressions.

7.5 Conclusion

We presented a new higher-order escape analysis based on type and effect systems, sup-
porting higher-order functions, imperative constructs and separate compilation. The
escape analysis determines, at compile time, the free variables of functions that outlive
the environment in which they are defined. Based on these compile-time knowledge of
escape information, we designed a stack-based abstract machine, where non-escaping
variables are safely allocated in the stack and only escaping variables are allocated in
the heap.

Conclusion

My thesis work lies on the border of the
theory and the practice.

We extend and combine two static analysis approaches — effect systems and abstract
interpretation, and study their application in performing control-flow analysis.

We present new control-flow analysis systems based on effect systems. Subtyping is
introduced to increase the flexibility of effect systems. The subtype relation is defined
by a subsumption relation on effect information. A new type and effect reconstruction
algorithm is designed, which for each expression already typed with classical types,
reconstructs its type and effect based on subtyping. The subtyping approach allows
functions to have different types in different call contexts instead of having a unique
type, thus improving the accuracy of effect systems based on subeffecting. The current
subtyping effect system is built upon a monotonic type system. However it can be
extended to ML polymorphic type systems, which makes subtyping effect systems more
powerful. Another open issue is how to use the subtyping effect system in the presence
of side-effects.

We introduce the new notion of separate abstract interpretation which combines
effect systems and abstract interpretation in a single framework. By approximating
abstract values of free variables based on type and effect of module signatures, effect
systems provide a method to extend abstract interpretation in the context of separate
compilation. This separate abstract interpretation makes the control-flow analysis as
effective as the abstract interpretation approach on closed expressions, but is also able
to tackle expressions with free variables, using their type to approximate their abstract
value.

The goal of control-flow analysis is to implement functional languages more effi-
ciently. The static knowledge of control-flow information plays an important role in
optimizing compilers of functional languages, such as interprocedural data-flow opti-
mizations and closure optimizations. There remain a lot of open issues in pragmatic
use of this control-flow information. We present an application of control-flow informa-
tion in optimizing closure allocation. This optimization is based on escape analysis, a
direct application of types and control-flow information. The escape analysis identifies
the free variables that outlive the lexical scope of function definitions. This compile
time knowledge of escaping variables helps compilers choose a more efficient allocation
strategy for closures, i.e. non-escaping variables can be safely stored in the stack, while
heap allocation is only used for escaping ones.

73

74

CHAPTER 7. HIGHER-ORDER ESCAPE ANALYSIS

Bibliography

[Aho86] Aho, A. V., Sethi, R. and Ullman, J. D. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[Aiken93] Aiken A. Type Inclusion Constraints and Type Inference. In Conference on
Functional Programming Languages and Computer Architecture. August, 1993.

[Appel87] Appel, A. W. and MacQueen, D. B. A Standard ML compiler. In Functional
Programming Languages and Computer Architecture, volume 242 of Lecture Notes
in Computer Science. Springer-Verlag, 1987.

[Appel89] Appel, A. W. and Jim, T.Y. Continuation-Passing, Closure-Passing Style.
In ACM Symposium on Principles of Programming Languages, pages 293-302, 1989.

[Appel90] Appel, A. W.and Mac Queen, D. B. Standard ML Reference Manual. AT&T
Bell Laboratories and Princeton University, October 1990.

[Appel92] Appel, A. W. Compiling with Continuations. Cambridge University Press,
1992.

[Baker92] Baker, H.G. CONS Should not CONS its Arguments, or, a Lazy Alloc is
Smart Alloc. In ACM SIGPLAN Notices Volume 27, No.3, 1992.

[Benjamin92] Benjamin, P. Intersection Types and Bounded Polymorphism. In LFCS
Report Series, University of Edinburgh, 1992.

[Bondorf93] Bondorf, A. and Jorgensen, J. Efficient Analyses for Realistic Off-line Par-
tial Evaluation. In Journal of Functional Programming, Vol 3, Part 3, Cambridge
University Press, July 1993.

[Cardelli84] Cardelli, L. Compiling a Functional Language. In ACM Symposium of
LAFP, 1984.

[Cardelli85] Cardelli, L. On Understanding Types, Data-Abstractions, and Polymor-
phism. In Computing Surveys, 17(4),1985.

[Cardelli88] Cardelli, L. Structural Subtyping and the Notion of Power Type. In ACM
Symposium on Principles of Programming Languages, pages 70-79, 1988.

[Consel93] Consel, C. and Jouvelot, P. Separate Polyvariant Binding-Time Analysis.
In Technical Report, CRI, Ecole des Mines de Paris, 1993.

75

76 BIBLIOGRAPHY

[Cousot77] Cousot, P. and Cousot, R. Abstract Interpretation, a unified lattice model
for static analysis of programs by construction of approximation of fixpoints. In
ACM Symposium on Principles of Programming Languages. 1977.

[Cousot79] Cousot, P. and Cousot, R. Systematic Design of Program Analysis Frame-
works. In ACM Symposium on Principles of Programming Languages. 1979.

[Damas82] Damas, L. and Milner, R. Principal type-schemes for functional programs.
In ACM Symposium on Principles of Programming Languages, pages 207-212. 1982.

[Deutsch90] Deutsch A. On Determining Lifetime and Aliasing of Dynamically Al-
located Data in Higher-Order Functional Specifications. In ACM Symposium on
Principles of Programming Languages, 157-168,1990.

[Dornic91] Dornic, V. and Jouvelot, P. Polymorphic Time Systems for Estimating Pro-
gram Complexity. In LOPLAS’91, Bordeauz, France, 1991.

[Fuh88] Fuh. Y. and Mishra, P. Type Inference with Subtypes. In Furopean Symposium
on Programming, pages 94-114. 1988.

[Gifford87] Gifford, D. K., Jouvelot, P., Lucassen, J. M. and Sheldon, M. A. FX-
87 Reference Manual. MIT/LCS/TR-407, MIT Laboratory for Computer Science,
September 1987.

[Goldberg90] Goldberg. B. and Park, Y. G. Higher Order Escape Analysis, Optimizing
Stack Allocation in Functional Program Implementation. In Furopean Symposium
on Programming, volume 432 of the Lectures Notes in Compuler Science, pages
152-160. Springer- Verlag, 1990.

[Grundman92] Grundman., D, Stata, R. and Toole, J.O. Mini-DX/DLX — A Pedagogic
Compiler, M.I.T, 1992.

[Hammel88] Hammel, R. T. and Gifford, D. K. FX-87 Performance Measurements:
Dataflow Implementation. MIT/LCS/TR-421, MIT Laboratory for Computer Sci-
ence, November 1988.

[Jouvelot88] Jouvelot, P. and Gifford, D. K. The FX-87 Interpreter In International
Conference on Computer Languages, 1988.

[Jouvelot89] Jouvelot, P. and Gifford, D. K. Reasoning about Continuations with Con-
trol Effects. In International Conference on Progamming Language Design and Im-
plementation. ACM, New-York, 1989.

[Jouvelot91] Jouvelot, P. and Gifford, D. K. Algebraic Reconstruction of Types and
Effects. In ACM Symposium on Principles of Programming Languages. 1991.

[Kanellakis89] Kanellakis, P. and Mitchell, J. C. Polymorphic Unification and ML Typ-
ing. In ACM Symposium on Principles of Programming Languages, 1989.

[Kelsey89] Kelsey, R.A. Compilation by Program Transformation. Ph.D. Thesis. Yale
University, May 1989.

BIBLIOGRAPHY 77

[Krantz87] Krantz, D. ORBIT: An Optimizing Compiler for Scheme. Ph.D. Thesis.
Yale University, Feb. 1988.

[Leeuwen90] J. Van Leeuwen. Formal Models and Semantics. In Handbook of Theoret-
tcal Computer Science, volume B. The MIT press, 1990.

[Leroy90-1] Leroy, X. The ZINC Experiment: an Economical Implementation of the
MI Language. Technical report 117, INRIA, 1990.

[Leroy90-2] Leroy, X. Unboxed Objects and Polymorphic Typing In ACM Symposium
on Principles of Programming Languages, 1990.

[Leroy91] Leroy, X. and Weis, P. Polymorphic Type Inference and Assignment. In ACM
Symposium on Principles of Programming Languages, 1991.

[Lucassen87] Lucassen, J. M. Types and Effects, Towards the Integration of Functional
and Imperative Programming. MIT/LCS/TR-408 (Ph. D. Thesis). MIT Laboratory
for Computer Science, August 1987.

[Lucassen88] Lucassen, J. M. and Gifford, D. K. Polymorphic Effect Systems. In ACM
Conference on Principles of Programming Languages. ACM, New-York, 1988.

[MacCracken79] MacCracken, N. Investigation of a Programming Language with a
Polymorphic Type Structure. Ph. D. Thesis, Syracuse University, 1979.

[MacQueen90] MacQueen, D. B. Modules for Standard ML. In ACM Conference on
Lisp and Functional Programming, pages 198-207. ACM Press, New-York, 1990.

[Milner78] Milner, R. A Theory for Type Polymorphism in Programming. In Journal
of Computer and Systems Sciences, Vol. 17, pages 348-375. 1978.

[Milner90] Milner, R., Tofte, M. and Harper, R. The Definition of Standard ML. The
MIT Press, Cambridge, 1990.

[MIT90] Mini-FX Reference Manual. MIT, 1990.

[Mitchell88] Mitchell, J. C. and Harper, R. The Essence of ML. In ACM Symposium
on Principles of Programming Languages, 1988.

[Mycroft81] Mycroft, A. Abstract Interpretation and Optimizing Transformations for
Applicative Programs. PhD Thesis, University of Edinburgh. 1981.

[0'Toole90] O’Toole, J. W. Type Abstraction Rules for References: a Comparison of
Four which Have Achieved Notoriety. Technical Report 390, MIT Laboratory for
Computer Science, 1990.

[Plotkin81] Plotkin, G. A Structural Approach to Operational Semantics. Technical
Report DAIMI-FN-19. Aarhus University, 1981.

[Stansifer88] Stanifer, R. Type Inference with Subtypes. In ACM Symposium on Prin-
ciples of Programming Languages, 1988.

78 BIBLIOGRAPHY

[Robinson65] Robinson, J. A. A Machine Oriented Logic Based on the Resolution Prin-
ciple. In Journal of the ACM, Vol. 12(1), pages 23-41. ACM, New-York, 1965.

[Rees88] Rees, J. and Clinger W., Editors. Fourth Report on the Algorithmic Language
Scheme. September 1988.

[Siekmann89] Siekmann, J. H. Unification Theory. In Journal of Symbolic Computa-
tions, volume 7, pages 207-274. Academic Press, 1989.

[Sheldon90] Sheldon, A. M. and Gifford, D. K. Static Dependent Types for First Class
Modules. In ACM Conference on Lisp and Functional Programming, 1990.

[Shivers91] Shivers, O. Control-Flow Analysis of Higher-Order Languages. Ph. D. The-
sis and Technical Report CMU-CS-91-145, Carnegie Mellon University, Pittsburgh,
May 1991.

[Steele78] Steele, G. Rabbit: A Compiler for Scheme. In MIT-AI Technical Report No.
474. MIT Laboratory for Computer Science, May 1978.

[Steele90] Steele, G. L. Common Lisp, the language. Digital Press 1990.

[Stoy77] Stoy, J. E. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. The MIT Press, 1977.

[Talpin92-1] Talpin, J. P. and Jouvelot, P. Polymorphic Type, Region and Effect Infer-
ence. In the Journal of Functional Programming, volume 2, number 3. Cambridge
University Press, 1992.

[Talpin92-2] Talpin, J. P. and Jouvelot, P. The Type and Effect Discipline. In IFFFE
Conference on Logic in Computer Science. Santa Cruz, California, June 1992.

[Talpin93-1] Talpin, J. P. and Jouvelot, P. Compiling FX on the Connection Machine.
In Workshop on Static Analysis, Sept 1993.

[Talpin93-2] Talpin, J. P. Type Discipline. PhD Thesis. May 1993

an ang, Y. M. and Jouvelot, P. Control-Flow ects for Closure Analysis. In

Tang92] Tang, Y. M. and J lot, P. C I-Flow Eff for Cl Analysis. 1
proceedings of the 2nd Workshop on Semantics Analysis, Bigre numbers 81-82, pages
313-321. Bordeaux, Octobre 1992.

[Tang93] Tang, Y. M. and Jouvelot, P. Effect Systems with Subtyping. In Technical
Report, CRI, Ecole des Mines de Paris 1993.

[Tang94] Tang, Y. M. and Jouvelot, P. Separate Abstract Interpretation for Control-
Flow Analysis. International Symposium on Theoretical Aspects of Computer Soft-
ware. Japan, Avril 1994.

[Tofte87] Tofte, M. Operational Semantics and Polymorphic Type Inference. PhD The-
sis and Technical Report FCS-LFCS-88-54, University of Edinburgh, 1987.

[Tofte90] Tofte, M. Type Inference for Polymorphic References. In Information and
Computation, 89(1), pages 1-34, 1990.

BIBLIOGRAPHY 79

[Wand87] Wand, M. A simple algorithm and proof for type inference. In Fundamenta
Informaticae, volume 10, pages 115-122. North Holland, 1987.

[Wand93] Wand, M. and Steckler, P. Selective and Lightweight Closure Conversion In
Technical Report 1993

80

BIBLIOGRAPHY

Appendix 1

Proof of Lemma 3.1

Lemma 3.1 [Monotony of F| If Q@ and Q' are two subsets of the domain R.
QC O = F(Q) CFQ

Proof

Taking any ¢ = (v,1), s.t. ¢ € F(Q)

Since ¢ € F(Q), by the definition of F
(1)geQ

Since Q@ C Q'
(2)qe Q@

Now we prove that ¢ € F(Q")

o Case v =1
Since ¢ € F(Q), by the definition of F
(3) ¢ = (i int)

From (2)(3), by the definition of F
(4) g € F(Q)

e Case v = (n,x,e, V)
Since g € F(Q), by the definition of F, 3¢ s.1.
(5) Vx € Dom(E), x € Dom(&)
(6) (E(x),E(x)) € Q
(M EF(An(x)e):t

From (6), since Q C Q'
(8) (E(x),&(x) € &

From (2)(5)(8)(7), by the definition of F
)

81

82 BIBLIOGRAPHY

From (4)(9)
(10) Vg € F(Q), g € F(Q)

From (10)
F(Q)c F(Q) &

Proof of Theorem 3.1

Theorem 3.1 [Consistency of Static Semantics]

EFte—uv,b -
EkFe:tc = {bgc

E: &
Proof By induction on the number of reduction steps of expressions.

e Case of (var)

The hypotheses are
(1) E:€&

(2) E+ x— FE(x),0
(3)EFx:E(x),0

From (2), by (var) in the dynamic semantics
(4) x € Dom(E)

From (3), by (var) in the static semantics

(5) x € Dom(E)

From (1)(4)(5), by Definition 3.1
E(x): E(x)

e Case of (abs)

The hypotheses are

(1) E:€&

(2) E+ (An (X) e) - (n7X7 evEX)7®
(3)EF (A (x) o) : ' 0 g

From (1), by Definition 3.1
(4) EX : &

From (3)(4), by Definition 3.1

(n,x,e, Fx): t/ e,

BIBLIOGRAPHY

83

e Case of (rec)

The hypotheses are

(1) E:€&

(2) E* (recn (fx)e) — ¢,
(3) EF (recn (f x) e): 1,0

From (2), by (rec) in the dynamic semantics
(4) el = (n,x,e, F')
where E’' = E[f — cl]

From (3), by (rec) in the static semantics
(5) & F(An(x)e):t,0
where &' = E[f +— {]

By Definition 3.2, for proving ¢l : ¢
we have to prove : (cl,t) € gfp(F)

We define @ = gfp(F)UA{(cl, 1)}

By the definition of gfp(F), for proving (cl,t) € gfp(F)
we have to prove : @ C F(Q)

Taking any ¢, s.t. ¢ € Q

— Case ¢ € gfp(F)
Since ¢fp(F) C Q and F is monotonic
(6) F(gfp(F)) € F(Q)

By the definition of gfp(F)
(7) gfp(F) C Fgfp(F))

From (6)(7

)
(8) gfp(F) €
thus ¢ € F(Q

F(Q)

)

— Case ¢ = (cl,t)
From (1), by Definition 3.2
Vx € Dom(F), x € Dom(&)
(9) (E(x),£(x)) € gfp(F)

From (9), since gfp(F) C Q
(10) (F(x),&(x)) € Q

84

BIBLIOGRAPHY

From (10), since (¢l,t) € Q
Vx € Dom(F), x € Dom(&)
(11) (E'(x),&'(x)) € Q

From (11)(5), since (¢l,t) € Q, by the definition of F
(12) (el, 1) € F(Q)
thus ¢ € F(Q)

From (8)(12)
QCF(Q)

By the definition of gfp(F), since (¢l,t) € Q
(cl.t) € gfp(F)

By Definition 3.2
cl:t

Case of (app)

The hypotheses are

(1) E:€&

(2) EF(ee)—v,bUb U U{n}
(3)EF(ee):t,cudU

From (2), by (app) in the dynamic semantics
(4) FFe— (n,x,&" L), b

(5) EFe =V

(6) E'[x — v F e — v, b"

From (3), by (app) in the static semantics
(7)5|—e:t’c—”>t,c
8y EFe& 1,

From (1)(4)(7) and (1)(5)(8), by inductions
(9) (n,x,&", By : t g
(10)bCe

From (9), by Definition 3.1
(13) 3¢, verifying E' : &'

BIBLIOGRAPHY

85

1

(14) €' F (A (x) ") ' St

From (14), by (abs) in the static semantics
(15) &'z =t e t, "
(16) ¢ = ¢ U{n}

From (13)(11)
(17) E'x — 0] : E'[x — 1]

From (17)(6)(15), by induction
vt
(18) b// g C///

From (10)(12)(18)(16)
bUV UV U{n} CcUd U

86

BIBLIOGRAPHY

Appendix 2

Proof of Theorem 4.4

Theorem 4.4 [Soundness] Given an expression e and its type environment &, if R(E,e) =
(0,1, ¢, k), then, for any effect model p of k, one has:

HoE = et ut, e
Proof By induction on the number of reduction steps of expressions.

e Case of (var)

The hypotheses are
(1) R(&,x) = (Id, £(x),0,0)
(2) 0

From (1), by the definition of R
(3) x € Dom(E), i.e. x € Dom(pu&(x))

From (3), by (var) in the static semantics

pEFx:p€(x),0

e Case of (abs)
The hypotheses are
(1) R(E,(Mn (x) €)) = (6,0 > 1,0,k U {C D {n}Ue})
(2) = rU{C2{n}Uc}

From (1), by the definition of R
(3) R(&[x — a],e) = (0,t,¢,K)

From (2), by the definition of effect models
(4) pfr
(5) i E{C2) Ue) ie. u¢ D {n} U

From (3)(4), by induction
(6) ub(Elx — a]) b e : ut, uc

87

88

BIBLIOGRAPHY

From (6)(5), by (does) in the static semantics
(7) pbE[x — pba]) et pt, pug

From (7), by (abs) in the static semantics

POE F (An (x) e) : p(fa 5 1),0

Case of (rec)

The hypotheses are

(1) R(E,(recn (f x)e)) = (6'6,0'6(% a),0,0' (kU {6C O {n} Uc}))
2)pE0(kU{0 2 {n}Uc})

From (1), by the definition of R
(3) R(E[f — o/ & allx o], e) = (B.1,c, k)
(4) 0" =U(fa,t)

where o', a, (are fresh

From (2), by the definition of effect models
(5) 8 =
(6) ud' =0¢ 2 {n}Uc,ie. pub'6¢ 2O {n}uUpubc

From (3)(5), by induction
(7) po'o(E[f — o S allx— o)) Fe:pbt pd'c

From (7)(6), by (does) rule in the static semantics
(8) ut'0(E[f — o S allx — o) Fe:pd't, nb'6¢

From (4), by the correctness of unification
(9) 00 = 0"t i.e pbba=pub't

From (8)(9)
(10) pd'0(E[f — o 5 allx — o']) Fe: pbfo, ub'o¢

From (10), by (rec) in the static semantics

pb'0E = (recn (f x) e) : pnb'0(c’ 5 a),l

Case of (app)

The hypotheses are
(1) R(E,(ee))=(0"6"0,0"a,0"(0'cUU(C), 070k UK))
(2) 1 = 0(0 U)

BIBLIOGRAPHY 89

From (1), by the definition of R
(3) R(E,) = (6,1, ¢, k)

(4) R(OE, &) = (0,1, k)

(5) 0" =uU(o't,t LS a)

for fresh variables a and (

From (2), by the definition of effect models
(6) ut"8' = 1
(7) b |

From (3)(6) and (4)(7), by inductions
(8) nb"0'0E e : " 0't, ub"6'c

9 e : t c

(9) pd" 96 &« pub"t!, "¢’

From (5), by the correctness of unification
(10) ¢"0't = 0"(t 5 a),ie. pd"0't = po"t g w8 o

From (8)(9)(10), by (app) in the static semantics
pl"0'0E = (e &) pd" o, 0" (0'c U ' U Q) &
Proof of Theorem 4.5
Theorem 4.5 [Completeness] If 6:€ F e : #1,¢1, then R(E,e) = (0,t,¢,k) and there
exists an effect model p of x such that:
0, = pbE and ty = pt and ¢4 D pc

Proof By induction on the number of reduction steps of expressions.

e Case of (var)

The hypothesis is
6:&Fx:60:E(x),0

By (war) in the static semantics
x € Dom(&)

By the definition of R
R(E,x) = (Id,E(x),0,0)

Taking p = 61, such that u =0
015 = ,uE
61&(x) = pé(x)

90

BIBLIOGRAPHY

e Case of (abs)

The hypothesis is
.EF (A (x) o) : 1) P19 ¢ g

By (abs) in the static semantics
(D) bi&[x =t Fe:ti,e

Suppose a new, we define a substitution 8, such that :

egﬁ:{ h v=a

0.9 otherwise

By the definition of 7, (1) is equivalent to
(2)01(E[x—a])Fe:ty, ¢

From (2), by induction

(3) R(E[x — a],e) = (0,t,¢,K)
Ju, p |E K, such that

(4) 0}([x — a]) = pb(€lx — a])
(5) tl = ,ut

(6) 1 D pc

From (3), by the definition of R
R(E, (Mn (x) @) = (0,00 = 1,0.5U{¢ 2 {n} U c})

where (is fresh
We define a substitution u' on fo(0€,8a,t, ¢,) and .

1y — p(9) ¥ € fu(6E,0a,t,c, k)
po= {n}Uec; 9=¢

By the definition of 1’

(M pW'¢={n}uac

(8) ({H}U ¢) = {n} U pc
(9) W'e = px

From (6)(7)(8), by the definition of effect models
(10) ' E{C 2 {n} U c}

From (9), since p = &
(1) 1 |

BIBLIOGRAPHY

From (10)(11), by the definition of effect models
W UG D fm) U}

From (4), by the definition of #] and g/
61& = po& = p'o¢
(12) t) = pba = p'ba

From (5), by the definition of '
(13) tl = ,u’t

From (7)(12)(13)
o Py~ rea S0

e Case of (rec)

The hypothesis is

61E F (recn (fx)e):) nyer 1,0

By (rec) in the static semantics

(1) 0:€[f — ¢, P 1k =] F e sty

Suppose o, a,(new, we define a substitution 8], such that :

) v =a

rq t1 ¥ =a

v = {n}Uec; ¥=¢
0.9 otherwise

By the definition of 7, (1) is equivalent to
(2) OL(E[f— o' S allx — o)) F ety e

From (2), by induction

(3) R(E[f o' & allx v o], e) = (.1,c, k)

Ju, p |E K, such that

(4) 4(€[£ — o' £ allx — o)) = pB(E]E — o’ < a]lx — o))

From (4), By the definition of 6]
(7) 0.& = poe

(8) ¢ P = e £)

(9) t1 = pba

92

BIBLIOGRAPHY

(10) {n} U ey = pb¢

From (5)(9)
(11) pt = pba

From (11), by the correctness of unification
(12) 30",0' = U (t,00c)

and Jy’, such that:

(13) = 0

From (3)(12), by the definition of R
R(E, (recn (n,x) o)) = (06, 0'6(’ ™% 0),0,0/(x U {6C 2 {n} U e}))

From (13), since p = &
(1) 1 |

From (6)(10)
(15) ¢ 2 {n} U pe

From (15)(13), by the definition of effect models
(16) 4 = {#6C > {n} U O'c)

From (14)(16), by the definition of the effect models
i 85 0 {0C 2 {n} U e))

From (7)(13)
0,€ = 10E = WO0E

From (8)(13)
) g = p'0'6(a < a)

Case of (app)

The hypothesis is
h&éF(ee):ty,qquci U

By (app) in the static semantics

(1) 1€ Fe:t] 2t
(2) 1 EFE),

From (1), by induction
(3) R(£,e) = (6,1, ¢, k)

BIBLIOGRAPHY 93

Ju, p | K, such that:

(5)th 2ty = pt
(6) c1 D pc

From (4), (2) is equivalent with:
(7) (6 F o+ 1y}

From (7), by induction

(8) R(0E, &) = (8,1, k')
u’, 1 | k', such that:

(9) pbE = p'o'e¢
(10)), = 't
(11) ¢ D e

Let «, (be fresh. We define a substitution 6y on fo(6E,t,¢, k), f(6'0E,1', ¢, k'),
a and (

pd 9 € fu(BE,t, ¢, k)
w9 e fu(0'0,t, ¢ k)
tl ¥ =«

g 9=

fov =

Note that Vo, if ¥ € fu(0€,t,¢,k) and ¥ € fo(0'0E 1, k)
then by the definition of R, ¥ € fu(6€) and ¥ € fu(6'0E), which means §'0 = ¥
From (9), we know pd = p/9, thus 6 is well defined.

From (10), by the definition of 6,

1

(12) (1! & a) = 't 2ty =) 2y

By the definition of R, V¢ € fu(t, ¢, k)
v is either in fv(0E) or is a fresh variable introduced by R(&, e).

— case U € fu(0E)
By the definition of 84
(13) 6p(0'68) = p/(8'0E)

From (9)(13)
(14) 608 (6) = p(0E). 1. e 0,80 =)

— case ¥ is fresh
Since ¥ € fu(t, ¢, k), by the definition of 6,
(15) 69 = pv

94

BIBLIOGRAPHY

From (15), since 6’9 = 9
(16) 6p8' 0 = 69 = pv

From (14)(16)
(17) V0 € fu(t,c, k), 0ot = p

From (5)(17)

1

(18) ¢4 2 1y = 6p8't

From (12)(18)
(19) 8(8't) = Bo(t' > a)

From (19), by the correctness of unification, 36" such that

(20) 0" =U(0't, ¢ % a) and Iy’ such that

(21) 00 — IMHOH

From (3)(8)(20), by the definition of R
R(E,(ee))=(0"0'6,0"a,0"(6'cUUC), 070"k UK))

From (17), since p = &

(22) 600 |=

Since p’ |= K/, by the definition of 6y
(23) 6y E <’

From (22)(23), by the definition of effect models
(24) 6y = ' UK

From (24)(21), by the definition of effect models
ILL// |: 0//(0/"{ U Hl)

From (4)(9)(21), by the definition of 8y
(25) 6.& = p(0'6E) = 6p(8'0E) = p"0"0'6E

From (21), since g = t;
t o= 1"

From (6)(17)(21)
(26) ¢1 D pe = 6pb'c = p"0"0'c

BIBLIOGRAPHY

95

From (11)(21), by the definition of 6y
(27) ¢} D e = Boc = 0"

From (21), by the definition of 6y
(28) ef = 6o¢ = p"0"¢

From (26)(27)(28)
U ud Dp'd"(@cudU]()

96

BIBLIOGRAPHY

Appendix 3

Proof of Lemma 5.2

Lemma 5.2 [Formal Effect Constraints] If S(&,e) = (¢, ¢, k), then & is of form:
{(i D¢ li=1.s}

Proof By induction of the structure of expressions.

e Case of x

The hypothesis is
S(&,x) = (1,0, Eff (¥ < 1))

By the definition of &

(1)t = &(x)
(2) t = New(Frase(t'))

From (1), by Lemma 5.1
(3) ¢ includes only fresh effect variables

From (2)(3), by the definition of Eff
Eff(t' <t) verifies the lemma.

o Case of (An (x) e)
The hypothesis is
S(E (M (x:7)e)) = (' S 1,0,kU{¢ D {n}Ue})
By the definition of &
(1) ¢ new
(2) (t,e,) = S(E[x 1], ©)

From (2), by induction
(3) k verifies the lemma

From (1)(3)
kU {{ 2 {n} Uc} verifies the lemma

97

BIBLIOGRAPHY

o Case of (recp (f x) e)

The hypothesis is
S(&,(recn (f:7 —71x:7")e)) = (¢ 5 6,0,k UEff(t" <t)U{¢ D {n}Uc})

By the definition of &
(1)t L= New(r' — 1)
(2) (1", e, 5) = S(E[f 1 > H][x — 1] &)

From (1), by the definition of New
(3) t = New(r)
(4) ¢ new

From (2), by Lemma 5.1
(5) " includes only fresh effect variables

From (2), by induction
(6) k verifies the lemma

From (3)(5), by the definition of Eff
(7) Eff (t" < t) verifies the lemma

From (6)(7)(4)
kU Eff(t" <t)U{¢ 2 {n} Uc} verifies the lemma

o Case of (e &)

The hypothesis is
S(€,(e€))=(t,cUd U, KUK UE({ <t")

By the definition of &
(1) (t" = t,e,k) = S(E, e)
(2) (', k") = S(&,¢)

From (1)(2), by Lemma 5.1

(3) " < ¢ includes only fresh effect variables
(4) t' includes only fresh effect variables

From (3)
(5) t” includes only fresh effect variables

From (1)(2), by induction
(6) x and &’ verify the lemma

BIBLIOGRAPHY 99

From (6)(4)(5), by the definition of Eff
kUK U Eff(t' <t") verifies the lemma)

Proof of Theorem 5.1

Theorem 5.1 [Soundness] Given an expression e and its type environment &, if S(&,e) =
(t,c, k), then for any effect model u of x, one has :

nE e ut, e
Proof By induction on the structure of expressions

e Case of (var)
The hypotheses are
(1) S(&,x) = (1,0, Eff (1" < 1))
2)nEA{ <t}

From (1), by the definition of S
(3)t' = &(x),1.e. p&(x)=pt

From (3), by (var) rule in the static semantics

() pE Fx:pt', 0

From (2), by Lemma 5.3
(5) pt" < put

From (4)(5), by (sub) rule in the static semantics
pE b x:pt,

e Case of (abs)

The hypotheses are
(1) S, On(x:7)e)) = (' S 6,0,kU{¢ D {n}Ue})
2)pErU{{D{n}Uc}

where t' = New(7) and { new

From (1), by the definition of S
(3) (t,c.) = S(E[x — 1], o)

From (2), by the definition of effect models
(4) p =5
G)uEAC2{n}uc} ie p¢2pu({ntuc)

100 BIBLIOGRAPHY

From (3)(4), by induction
(6) p(E[x — 1) F e : ut, e

From (6), by (abs) in the static semantics

(7) 1€ F (n (x) &) s (' 20,0

From (5), by the definition of subtype relation
(8) (' 0y < (e S 1)

From (7)(8), by (sub) rule in the static semantics
nE O (x) e) s p(t = 1),0

e Case of (rec)
The hypotheses are
(1) S(&,(recn (£f: 7" —7x:7")e)) = (¢ s, t,0,kUEff(t" <t)U{¢ 2 {n}Uc})
(2) pE rUEFE"<t)U{¢ 2 {n}Uc}

where ¢! 5 { = New(t" — 1)

From (1), by the definition of S
(3) (1" c.) = S(ElE = ' = dllx = 1]

From (2), by the definition of effect models
(4) pFr

(5) = B < 1)

(6) i {C2) Ue), ie. uC D {n} Upc

From (3)(4), by induction
) u(EE =t S Ax — 1)) F e s ut", e
p pt” o

From (5), by Lemma 5.3
(8) pt" < put

From (7)(8), by (sub) in the static semantics
(9) p(€lf — ' S tlx = t]) b e : pt, e

From (9), by (abs) in the static semantics

(10) ()£ = p(t' S O] F (n (x) &) = (¥ 0,0

From (6), by the definition of subtype relation

(1) (0 < £y

BIBLIOGRAPHY 101

From (10)(11), by (sub) rule in the static semantics

(12) (E)[E — u(t' = O] F (An (x) o) : p(t' = 1),0

From (12), by (rec) rule in the static semantics
pEF (recn (fx)e):pu(t 5 t),0

o Case of (app)

The hypotheses are
(1)S(E,(ee))=(t,cudu kUK UEff(<t")
(2) pErUKRUEf(t <t")

From (1), by the definition of S
(3) S(E,e) = (1" L t,c, k)
(4) S(&,¢") = (', k)

From (2), by the definition of effect models
(5) pw

(6) p |= '

(1) p = B <1")

From (3)(5) and (4)(6), by induction

C//

(8) p& ke xpu(t" = 1), pe
(9) pE F e pt',ud

From (7), by Lemma 5.3
(10) jt’ < put”

From (9)(10), by the (sub) rule in the static semantics
(11) pE =&+ ut”, ue

From (8)(11), by (app) in the static semantics
pE (e e)pt,u(cud U’ &

Proof of Theorem 5.2

Theorem 5.2 [Completeness] If ;& F e : #1,¢1, then S§(&,e) = (t, ¢, k) and there exists
a effect model p of k, such that:

0 = pE and pt <ty and ¢ D pc

Proof By induction on the structure of expressions

102

BIBLIOGRAPHY

e Case of (var)

The hypothesis is
01EFx:t,0

By (war) and (sub) rules in the static semantics
(1) 11 = &(x)
(2) 01t) <ty

From (1), by the definition of S
S(E,x) = (1.0, Eff(t; < 1))
where t = New(Frase(t}))

Since t includes only fresh effect variables, taking 6, such that:

(3) 0t = 1,

We define the effect model pu, such that :

w:{ 00 V€ fu(t)

0.9 otherwise

Note that since ¢ includes only fresh effect variables, p is well defined.

From (2)(3), by the definition of p
(4) ,ut’ = 0115’1 S tl
(5) pt = 0t = 1

From (4)(5), by Lemma 5.3
pE Ef(t <t)

By the definition of u
015 = ,uE

From (5)
pt <ty

Case of (abs)

The hypothesis is
016 F (An (x) e):th 2 15,0

By (abs) and (sub) rule in the static semantics

(1) 01 F (An (x) o) : ¢ 540
(2) 1 Py < 2y,

BIBLIOGRAPHY 103

From (1), by (abs) rule in the static semantics

(3) (01€)[x = 1] F ety 0

If x is of the principal type 7, let ' = New(r)
then there exists a substitution 6, such that:
(4)t) =6t

we define a substitution 67, such that :

W:{ 00 0 € fo(t')

0.9 otherwise
Note that since ¢’ includes only fresh effect variables, 8] is well defined.

From (4), by the definition of 7, (3) is equivalent with :
(5) 0 (Ex—1t])Fe:iti,a

From (5), by induction
(6) S(Elx —], e) = {1, ¢,)
dpe, such that :

(7) p = x
() 01(E[x — 1)) = p(Elx — 1))
(10) c D pe

From (8)(4), by the definition of 8]
(12) =

From (6), since ¢’ = New(r), by the definition of &

(13) S(EAn (x:7)) = (' S 1,0, kU {¢ D {n}Uc))

where (new
We define a effect substitution g’ on fo(€,t',t, ¢, k) and (, such that :

ra)oY fo(E,t 8 e R)
“ﬂ—{cz 9=

Note that since (is fresh, u' is well defined.

From (7), by the definition of '
(14) 1 |

104

BIBLIOGRAPHY

By the definition of u/
(15) p'¢ = 2
(16) ({0} U e) = {n} U pe

From (10)(16), by the definition of p’
(17) {n} Uer 3 p(fn} U o)

From (2), by the definition of subtype relation
(18) 11 <ty

(19) 1, < 1,

(20) ¢ 2 {n} Uy

From (20)(15)(17), by the definition of effect models
D u E{C2{n}uc}

From (14)(21), by the definition of effect models
i UL D fm) Ue)

From (11)(12), by the definition of g/’
015 = ,u’E
(22) 1) = W't

From (9), by the definition of '
(23) ,u’t S tl

From (22)(23)(15), by the definition of subtype relation
) pt S)<t 2y

From (18)(19), by the definition of subtype relation
(25) 1) 21 <t 2ty

From (24)(25)
P S < 2,

Case of (rec)

The hypothesis is
0. - (recn (£ x) e):th 2 5,0

By (rec) and (sub) rule in the static semantics
’ {n}Uc1

(1) 1E F (recn (£ x)e):t) "= 11,0
(2) ¢ B < 2

BIBLIOGRAPHY 105

From (1), by (rec) rule in the static semantics

(3) (BE)E — 1, M k=] et

If £ and x is of the principal type 7/ — 7, 7' respectively,
let (¢/ 5 t) = New(r' — 7), then there exists a substitution 6, such that:
(4) ¢, Py — g S

We define a substitution of effect variables 67, such that :

¢
g9 t =t
0119 — { € fu(t' = t)

0.9 otherwise

Note that since ¢ - # includes only fresh effect variables, 8] is well defined.

From (4), by the definition of 7, (3) is equivalent with :
(5) 01 (E[f — 1 < tx—t)Fe:ts,eq

From (5), by induction

(6) S(E[E — ¢ S t][x — 1],) = (", ¢, k)

dpe, such that :

(M pEx

(8) 0L(E[£ — t' S t][x — 11]) = p(E[£ — ' S A][x — 1))
(9) ut" <ty

(10) ¢1 D pe

From (6), since ¢’ L= New(r" — 1), by the definition of §
(11) S(E,(recn (f: 7" —=71x:7")e)) = (I s, t,0,kUEff(t" <t)U{¢ D {n}Uc})

From (8)(4), by the definition of 6]
015 = ,uE

(12) ¢ Py = £

(14) {n} Uey = ¢

From (9)(13), by Lemma 5.3
(15) 1 | (1" < 1)

From (14)(10), by the definition of effect models
(16) p = {¢ 2 {n} U c}

106 BIBLIOGRAPHY

From (7)(15)(16), by the definition of effect models
pE /U B <10 U{CD {n) Uc)

From (12)(2)

' S0 <t 2

o Case of (app)

The hypotheses is
h&éF(ee):ty,cquci U

v (app) and (sub) rules in the static semantics
)015|—(e):t,qududf
t <ty

A/_\
_/

From (1), by (app) in the static semantics

(3)héFe:t) -
(4) 0 EF & 1),

From (3), by induction
(5) S(&,e) = (" = C —t,¢K)
dpe, such that :

(6) p =&
015 ,uE

(7)
S pt" Loy < Ly
(9) ¢1 D e

From (4), by induction
(10) S(&,¢") = (t', ', k)
du’, such that :

(1) ' s

(1) 015 = ,u’E
(13) J't < 1}
(14) ¢, 2 e

1
2
3
From (5)(10), by the definition of §

S(€,(ee))=(t,cUdU KUK UL <t"))

We define a substitution p” on fo(€,t" = t,¢,k), and fu(E,t', ¢, k)

" = pd 9 e fo(€,t" Lt t,¢,K)
W ve fo(E K

BIBLIOGRAPHY 107

Note that V9, if 9 € f(E,t, ¢, k") and ¥ € fu(E,t, ¢, k)
then by the definition of S, ¥ € fu(€)
By (7)(12), p9 = p/0, thus p” is well defined.

From (6)(11), by the definition of p”
(16) 1" |= &
(1) 4" = o

From (8), by the definition of p”

1

(18) (1" Ly =pt" Loy <ty Ty

From (18), by the definition of subtype relation
(19) ,u”t S tl

(20) t/l S ILL//t//

(21) ' D e

From (13), by the definition of p”
(22) ILL//t/ — ILL/t/ S tll

From (20)(22), by Lemma 5.3
(23) ILL// |: Eﬂ‘(t/ S t//)

From (16)(17)(23), by the definition of effect models
p'ERrRUR UEF(<t

From (19)(2)
,UJ//t S t2

From (9)(14)(21), by the definition of p”
audud Dp'(cudud) &

108 BIBLIOGRAPHY

Appendix 4

Proof of Theorem 6.1

Theorem 6.1 [Well-Formedness of Abstract Semantics] If3,EFe— b, ¢and Wf(ﬁ, E),
then

e (0, F) is well-formed.
o All (ﬁl, E/) used in the — derivation tree of e are well-formed.
Proof By induction on the number of reduction steps of expressions.

e The hypotheses are
(1) 8, Bk (2 a')p — Uiy 80, Uiy (& U {(L,) ~ {n:}})
(2) WF(B, E)

From hypothesis (1), by (app) in abstract semantics

(3)ﬂ,EFae{(An(xz) e, B) |i=1...r}
(4)ﬁ,El—a —

(5) Bilxi = 0], B+ &) — by, ¢;
(6) E(x“b/) =
Whereb =landi=1.

From (2)(3
(T) WF(
(8) WF(#,

)(4), by Lemma 6.1

An (xi) o0, 50) | = 1.1},)

L)

From (7), by Definition 6.1
Al A

(9) WF(B;, I)

From (6)(8)(9), by Definition 6.1
(10) WF(3i[x; — B, F)

From (10), by induction
/

All (4, E) used in the — derivation tree of e are well-formed

109

110 BIBLIOGRAPHY

From (5)(10), by induction
(11) (94, &) is well-formed

From (11), by Definition 6.1
(Ul 04, V) is well-formed &

Proof of Theorem 6.2
Theorem 6.2 [Consistency of Abstract Semantics]

(v, E) < (b, E)

3. F - D, ¢
ﬁ? e_>v7c Cgé

b,0,FFe—w,c
A
(B, E)< (B, E)

Proof By induction on the number of reduction steps of expressions.

e The hypotheses are

(1) (8.) < (5, &)
(2) b, AEF(aa)l—”f cU{(1,5)~ {n}}
(3) B, £ F (aa')y — Uy 81, Uiy (é U {(1. 5) ~ {ni}})

From hypothesis (2), by (app) in the dynamic semantics
(4) ﬁvE Fa— (/\n(x) evﬁ/)

(5) B, Eta =

(6) 0,5 [x—V],Ete—v,c

(7) E(x,b") =

where b' = b.1

From hypothesis (3), by (app) in the abstract semantics
(8) 3. £+ a— {(dn,(x:) ei.)}

(9) ﬁ,E Fa' — o

(10) Bix; — 0], B+ e; — 5, ¢

(11) E(xz,b/) =

where & =1 and i =1.

From (1)(4)(8) and (1)(5)(9

((
(12) ((An(x) &,), B) < ({(
(13) (v, E) < (#',)

), by Lemma 6.2
An,(xi) e,) | i = 1...r), E)

From (12), by Definition 6.2, 35 (1 < j <) s.L.
(14) An(x) © = An, (x;) e;
()(ﬁlv)—(ﬁ]?E)

BIBLIOGRAPHY

111

From (15)(7)(11)(13), by Definition 6.2
(16) (8'[x — b, B) < (8[x; — b1, E)

From (16)(6)(10), by induction
(17) (v, B) < (9, E)
(17) cC ¢4

From (17), by Definition 6.2
(0, F) < (Of_y i,)

From (14)(17)’, by Definition 6.3)
cU{(1,8)~ {n}} E UL, (& U{(1,5) ~ {ni}})

Proof of Theorem 6.3

Theorem 6.3 [Types of Abstract Semantics]

Proof By induction on the number of reduction steps of expressions.

The h potheses are

1) (8.B): ¢
)f‘{F(aa)l t,Umn,e)ed(c U{(1)~ {n}})
) B

A/_\

(3) B, B+ (a @)1 — Uiy #:, Uiy (& U {(L,) ~ {n:}})
From (2), by (app) in the type semantics

(4 Era:t 2y

(5) Rt

From (3), by (app) in the abstract semantics

(6)ﬂ,EFae{(An(xz) e 0 |i=1...1}
(7)ﬁ,El—a — 9

(8) Bi[x; — b],E Fep — by,
(9) E(xz,b/) = 9
Whereb =landi=1.

From (1)(4)(6) an A/(l)()(7), by Le{nma 6.3
(10) ({(An, (%) &5, B) [i = 1.0}, B) s/ S 1
(11) (', E) : ¢/

112 BIBLIOGRAPHY

From (10), by Definition 6.4, Vi (i = 1...r), 3&} s.t.
(12) (3, B) : €
(13) & F (A, (%) &) 1t/ 21

From (13), by (abs) in the type semantics
(14) ngi[xi =t ke it
(15) (n;,) € d

From (12)(11)(9), by Definition 6.4
(16) (Bifxi = 01, E) = Eix, [xi 1]

From (16)(8)(14), by induction
(17) (9;, £) : t
(17)/ &G Cg

From (17), by Definition 6.4
(1= lv“)

From (15)(17), by Definition 6.3
Uy (6 U{(1,0) ~ {n}}) E Umeea@U {(1,)~ {n}}) L

Proof of Lemma 6.4
Lemma 6.4 [Well-Formedness of A(t)] .A(¢) is well-formed.

Proof By induction on the structure of types

o Case int

By the definition of A
A(int) = (0,[])

By Definition 6.1
A(int) is well-formed

o Case (t' *1p) 4 t; where tg = ¢ LA t

By the definition of A
A((5 10) % 10) = (¢, E)

where

(1)A {On(x ki) ei [xi = L]) [i=1...q]
(2) £' = E[(x:,1;) — 1]

(3) (8, &) = A(t)

BIBLIOGRAPHY 113

From (3), by induction)
(4) A(t) is well-formed, i.e. (9,F) is well-formed

From (2)(4), since x; is fresh , by Definition 6.1

(5) (2, El) is well-formed

From (5), by Definition 6.1
(6) ([x; — 1], E/) is well-formed

From (6)(1)(2), by Definition 6.1
A((t * 1) 4 1) is well-formed)

Proof of Lemma 6.5

Lemma 6.5 [Consistency of A(t)] If (, E) : t, then (9, E) < A(t)

Proof By induction on the structure of types

o Case int

By the definition of A
(1) A(int) = (0,[])

Since (9, E) : t, by Definition 6.4
(2) (0, F) : int

From (1)(2), by Definition 6.5
(0,) < A(int)

o Case (t'xtg) <4
By the definition of A

(1}3 A t0) % 11) = (¢, E)
B = {(/\ni(X kZ) ei,[xi — 12]) | 1=1.. .q}
d=A{(n;, &) |i=1...q}

Since (A,AEA) t, by eﬁmtlon 6.4
(2) V(n, B) € 9, 3¢, s.t. (B.£): €
(3)ébkmn:t

From (3), by the (abs) rule in the effect semantics
(4) 3¢, s.t. (n,¢) €d

114 BIBLIOGRAPHY

2)(4), by Definition 6.5

Proof of Lemma 6.6

Lemma 6.6 [Simulation] For any 3, and Ey, if
Bylxi = L[k — i), Bal(xi, 1) = 9][(ki, 1) = {I1d}] - S(ei, ki %i,1) — 6,6

then D(¢;) = ¢; U{(1,]])~ {Id}}.

Proof By induction on ¢;

Supposing V5 > 1
!

ﬁj Bx; — 1]k — 14]

£ = Ei[(%i, 1) — 9][(ki, i) — {Id}]
e Case ¢; =]

By the definition of &
Sl ki xi, 1) = (ki xi)1

By the abstract semantics, since k; is bound to I/d

i, By F (ki xi)1 — 0. {(1, 8y) ~ {1d}}

By the d/eﬁnition of D
D({(1, 51) ~ {1d}}) = {(1,[) ~ {1d}}

e Case¢; = U{(1,[])~ {n1...n,}}

By the definition of &
(1) S(Eivkivxivl)zsl({nl -}, 6,1 k%4, 1)

By the definition of &', Vj = 1.

(2) Sl({nj"'nT}vcml k;, x4,) ((’\n]() ({n]-|—1 nT}v zvlvkkvxivl)) k;)1’
Note that {nj4;...n,} =0

By induction on j, we prove that

ﬁ;,E; FS'({n;...n.}, ¢, ki, %x,,1) — 0,& such that
D() = u{(L,[)~ {Id}} u{(X.[)) ~ {n; ..., }}
Where A A/

f=eu{als D 3 A)~)
ﬁAj+1 A [k — 1']

Ejpa = Ejl(kj, 1) — ki

BIBLIOGRAPHY 115

— Case j=r+1
By the definition of &', since {n,y1...n,} =0
(3) $'(0, 6,1, ki, xi,1) = S(¢ ki, %i, 1)

From () by the induction on ¢;
~l

Bry1s B T-I-l FS(0,¢,1 k;,%;,,1) — ©,¢ such that

D(&) = e; u{(L,)~ {1d}}

— Casej=1...r
By induction on j
~! A~/ n
(4) Bjp1> iy F S ({njy1 .. onp), 6,1 ki, %0, 1) — 0,¢ such that

(5) D(&') = c; UL, [) ~ {Id}} u{(1,[) ~ {njs1 .. .0, }}

where

¢ =& U{(. Biyy) ~) @A) ~ {0, })

From (2)(4), by the abstract semantics
B By S (g cone} 1w, 1) — 0,8 U)~ ()

From (5), by the definition of D
D& UL, B~ 1)) = G UL)~ (T} U (2)~ fmy - om 3

From (1), using the initial abstract value environments ﬁ; and E;, we get :
BQ,E; FS(¢, ki, %x;,1) — ,¢ such that

D(&) = ¢ U{(L,[]) ~ {1d}}

where)

é =& U{(V,5) ~ {m}}.. {1, 5) ~ {n,}})

Proof of Lemma 6.7

Lemma 6.7 [Well-Formedness of (3, Fo)] (g, Eo) is well-formed.
Proof

e By the definition of (ﬁ 0)
(1) Vx € Dom(530), (x, 0
(2) Eo(x, Bo(x)) =0
(3) Dom(E) C Dom(ko)
(4) (8, E) = A(&(x))

Ey))
(x)) € Dom(Eo)

From (4), by Lemma 6.4

(5) (9,) is well-formed

From (5)(3), by Definition 6.1

(6) (0, o) is well-formed

116 BIBLIOGRAPHY

From (1)(2)(6), by Definition 6.1
(ﬁo, Eo) is well-formed &

Proof of Lemma 6.8

Lemma 6.8 [Consistency of (BO,EO)] It (ﬁg,Eg) : £, then (ﬁg,Eg) < (BO,EO)
Proof

e By the definition of (ﬁo, Eo)
Vx € Dom(&), x € Dom(f3y)
Eo(x, ﬁo() =10

(1)
(2) .
(3) Dom(E) C Dom(Ey)
(4) (8, E) = A(&(x))
Since (ﬁg, Eg) : £, by Definition 6.4
(5) Vx € DOTn(ﬁg), x € Dom(E)
(6) (Eo(x. Bo(x)), Eo) - £(x)

From (6), by Lemma 6.5
(7) (Eo(x, Bo(x)), Eg) < A(E(x))

FromA(/7)(4A)/ y)
(8) (Eo(x, By(x)), Eo) < (9, E)

From ()(3) by Definition 6.2
(9) (F(x, Bo(x)), Fo) < (0, Fo)

From (5)(1) ,)
(10) Vx € Dom(fB,), x € Dom(f,)

From (10)(9)(2), by Definition 6.2
(Bo: E) < (o o) &

