
The New Framework for Loop Nest
Optimization in GCC: from Prototyping to

Evaluation

Sebastian Pop1, Albert Cohen2, Pierre Jouvelot1, and Georges-André Silber1

1 Centre de recherche en informatique, Mines Paris, Fontainebleau, France
2 ALCHEMY group, INRIA Futurs, Orsay, France

Abstract. This paper presents a practical prototyping tool for SSA
transformations based on PROLOG, and a case study of its applicabil-
ity using the New Framework for Loop Nest Optimization of the GNU
Compiler Collection (GCC). Using this approach, we implemented an in-
duction variable analysis in GCC and performed several experiments for
assessing different issues: performance of the generated code, effective-
ness of the analyzers and optimizers, compilation overhead, together with
possible improvements. This evaluation, based on the SPEC CPU2000,
MiBench and JavaGrande benchmarks on different architectures, suggests
that our framework could be of valuable use in production compilers de-
velopments such as GCC.

1 Introduction

The GNU Compiler Collection (GCC) is the leading compiler suite for the free and
open source software. The large set of target architectures and standard com-
pliant front ends makes GCC the de facto compiler for portable developments
and system design. However, until recently, GCC was not an option for high per-
formance computing: it had infrastructure neither for data access restructuring
nor for automatic parallelization. Furthermore, until recently, the compilation
research community had no robust, universal, free, and industry-supported plat-
form where new ideas in compiler technology can be implemented and tested
on large scale programs written in standard programming languages. For more
than a decade, the field of advanced compilation has been plagued by redundant
development efforts on short-lived projects, with little impact on production en-
vironments. In this paper, we propose an overview and a preliminary evaluation
of the new infrastructure of GCC for analysis and loop nest optimizations. Based
on this evaluation we intend to show the potential of GCC to address the needs
of a free compiler in the compiler research and high performance computing
communities.

Modern compilers implement some of the sophisticated optimizations intro-
duced for supercomputing applications [23, 3]. They provide performance models
and transformations to improve fine-grain parallelism and to take into account

GENERIC

GIMPLE

C C++ Java F95 Ada

Asm

GIMPLE ! SSA

GIMPLE

Machine Description

Induction variable analysis
Data dependence analysis
Scalar and Loop Nest Optimizations

Front!ends

Middle!end

Back!end RTL

Fig. 1. The infrastructure of GCC 4.

the memory hierarchy. Most of these optimizations are loop-oriented and as-
sume a high-level code representation with rich control and data structures:
do loops with regular control, constant bounds and strides, typed arrays with
linear subscripts. Yet these compilers are architecture-specific and designed by
processor vendors, e.g., IBM, SGI, HP and Intel. In addition, the most advanced
optimizations are limited to Fortran and C, and performance is dependent on the
recognition of specific patterns in the source code. Some source-to-source com-
pilers implement advanced loop transformations driven by architecture models
and profiling [12]. However, good optimizations require manual efforts in the
syntactic presentation of loops and array subscripts (avoiding, e.g., while loops,
imperfect nests, linearized subscripts, pointers). In addition, the source-to-source
approach is not suitable for low-level optimizations, including vectorization for
SIMD instructions and software pipelining. It is also associated with pattern-
based strategies that do not easily adapt to syntactic variations in the programs.
Finally, these compilers require a huge implementation effort that cannot be
matched by small development teams for general-purpose and/or free software
compilers.

Several projects demonstrated the interest of type enriched low-level repre-
sentation [14]. They build on the normalization and simplicity of three-address
code, adding data types, Static Single-Assignment (SSA) form [8, 17] to ease
data-flow analysis and scalar optimizations, and control and data annotations
(loop nesting, heap structure, etc.). Recently, GCC 4 adopted such a represen-
tation called GIMPLE [19, 16], a three-address code derived from SIMPLE, the
representation of the McCAT compiler [11]. The GIMPLE representation was
proposed by Sebastian Pop and Diego Novillo, from RedHat, for minimizing the
effort in the development and the maintenance of new analyzes and transforma-

tions. GIMPLE is used for building the SSA representation that is then used by
the analyzers and the scalar and loop nest optimizers. After these optimizations,
the intermediate representation is translated into RTL, where machine-specific
informations are added to the representation. Figure 1 presents the overall struc-
ture of GCC. The front-ends C, C++, Java, Fortran95 and Ada are translating
their intermediate representation to a common representation called GENERIC,
then to GIMPLE that is eventually translated to RTL. Before presenting the
loop optimizations that we will evaluate, we give an overview of the GIMPLE
intermediate representation on which the loop optimizers are acting.

A three-address representation like GIMPLE could seem not suitable to imple-
ment program transformations for high performance: control-flow is represented
by only two primitives, a conditional expression if, and a goto expression goto.
Loops have to be discovered from the control-flow graph [2]. Although the num-
ber of iterations is not captured by the GIMPLE representation, it is often dis-
covered by analyzing the scalar variables involved in the loop exit conditions;
this allows to compute precise information lost in the translation to a low-level
representation, but it may also be useful when the source level does not expose
enough syntactic information, e.g., in while loops, or loops with irregular con-
trol constructs such as break or exceptions. In GIMPLE, subscript expressions,
loop bounds and strides are spread across a number of elementary instructions
and basic blocks, possibly far away from the original location in the source code.
This is due to the translation to the low-level intermediate representation and to
optimization phases such as dead-code elimination, partial redundancy elimina-
tion, optimization of the control flow, invariant code motion, etc. However, the
SSA form provides fast practical ways to extract information concerning values
of scalar variables.

We recall some SSA terminology [8, 17] to facilitate further discussions: the
SSA graph is the graph of def-use chains in the SSA form; each assignment
targets a unique variable; φ nodes occur at merge points of the control flow
and restore the flow of values from the renamed variables. Assuming the natural
loops [2] information has been recovered, φ nodes whose arguments are defined at
different loop depths are called loop-φ nodes and they have a specific semantics
related to a potentially recursive definition. With the following notations:

– S[[e]] for the semantics of an expression e,

– loopx−φ(b, c) for an SSA φ node defined in loop x, where b is defined outside
the loop x, and c is defined in loop x,

– "x for the integer-valued indices of loop x, 0 ≤ "x < N , with N the number
of iterations in loop x,

– a("x) for the value of variable a at iteration "x,

we give the denotational semantics for a subset of the SSA expressions contained
in an innermost loop x:

S[[a = loopy − φ(b, c)]]"x =
[
a("y) =

{
b("x), if "y = 0;
c("y − 1), otherwise.

]

S[[d = e]]"x = [d("x) = e("x)]
S[[f = g + h]]"x = [f("x) = g("x) + h("x)]

We illustrate the semantics of the SSA representation with two examples:
Figure 2 illustrates the role of a φ node used for merging values assigned in
different branches of a condition expression. Figure 3 presents the syntax and
the semantics of a loop-φ node, variable b is self defined in the argument coming
from the loop body.

v = 5;
if (E) {

v = 0;
}
... = v;

SSA−−→

a = 5
if (E)

then b = 0
endif
c = φ(a, b)
... = c

Sem−−−→
a = 5

b = 0

c =

(
b if E is true,
a otherwise.

Fig. 2. Syntax and semantics of a condition-φ node.

i = 0;
s = 7;
do {

i = i + s;
} while (E);

SSA−−→

a = 0
f = 7
begin:
b = loop1-φ(a, c)
c = b + f
if (E)

then goto begin
else goto end

endif
end:

Sem−−−→

b(0) = a

b(x) = c(x − 1) for x > 0

b(x) = b(x − 1) + f(x − 1) for x > 0

. . .

b(x) = a +
x−1X

j=0
f(j) for x ≥ 0

b(x) = a + x · f for x ≥ 0

b(x) = 7x for x ≥ 0

Fig. 3. Syntax and semantics of a loop-φ node.

2 Contributions

We developed an analyzer [21] that matches common induction patterns on the
SSA graph, based on an algorithm close to linear unification [20]. We develop this
idea in Section 3 and give a practical framework for prototyping SSA analyzes

and transformations in PROLOG [1], thus paving the way for more analysis and
transformations in GCC.

The analyzer that we presented in [21] builds a description of the scalar
variables using a practical closed form representation: the chains of recurrences
[4, 13, 22]. We presented in [21] some extensions for the chains of recurrences
for solving practical problems that we encountered during the integration of our
algorithm in GCC. Among these extensions we can cite the symbolic form of
chains of recurrences that we called trees of recurrences TREC, enabling the
expression of self-defined chains of recurrences, as for example the Fibbonacci
sequence, or more generally, exponential evolutions expressed in the program
only by additions. We have also proposed the peeled chains of recurrences, that
list the first values of a sequence. Periodic sequences can naturally be represented
using a combination of these two extensions, as a self-defined TREC listing the
elements of the period. We also presented a possible way to handle typed scalar
variables and overflow effects. We remarked that the main goal of our analyzer
is to reduce the complexity of the representation of the program, by recognizing
and removing difficult constructs, so that the optimizers can efficiently process
the resulting representation. Finally, we concluded that a new representation (the
chains of recurrences) is not needed for constructs that are already captured by
the SSA representation. We propose in Section 4 the abstract SSA representation,
that simplifies the SSA representation in the sense that a part of the information
has been compressed, filtered out, or replaced by abstract descriptions of scalar
values, and show that such a simple representation is enough to reach our goals.

Based on the information provided by our analyzer, several optimization
passes have been developed: Zdeněk Dvořák from SuSE has contributed strength
reduction, induction variable canonicalization and elimination, loop invariant
code motion and other classic scalar loop optimizations [2]. All these passes aim
to replace the old optimizers that acted at the RTL level, mainly because the
type information available at this higher level allows more optimization oppor-
tunities. In order to use the vector units of the target architecture, such as the
Altivec, SSE or MMX, the “simdization” pass [9] recognizes instruction patterns
in loop bodies that can be rewritten using SIMD instructions. This pass has been
contributed by Dorit Naishlos [18] from IBM Haifa. A linear loop transformation
framework has been integrated in GCC. Daniel Berlin from IBM Research and
Sebastian Pop have contributed the loop interchange transformation [5]. In Sec-
tion 5, we propose an evaluation of the induction variable analyzer by stressing
the main version of GCC containing all these optimization passes on standard
benchmark programs, thus showing the potentiality of our general framework.

3 Unification Techniques on SSA Problem Formulations

One of the most interesting aspects of the SSA representation comes from the
observation that data-flow problems can be described atomically, independently
of unrelated problems that would have to be solved in a classic data-flow formu-
lation. For example, in the computation of the number of iterations in a loop, we

remark that the SSA problem formulation can be described only in terms of the
variables used in the exit conditions, independently of other constructs defined
in the program. With respect to the definition of a scalar problem, the SSA rep-
resentation provides an abstract view of the program, in which only remain those
constructs relevant to the resolution of the problem. The SSA representation can
thus be viewed as an ideal representation for goal-directed solving techniques,
namely the unification algorithms.

3.1 SSA Problem Formulations in PROLOG

Let us represent an SSA graph as a set of terms built from boolean and integer
variables, well-formed boolean and integer arithmetic expressions over operators
+, −, <, ≤, ∧, ∨, and ¬, unary predicate cond, binary predicates assign,
loop, and ephi, and the ternary predicate cphi and lphi. Such terms can be
represented natively in a language such as GNU PROLOG [1]; we use its syntax
in the following, as well as its unification and Horn clause resolution semantics.

Predicates cphi, lphi and ephi capture the conditional flow of values asso-
ciated with incoming control paths as follows:

condition-φ: Term cphi(p, b, c) represents the control and data flows of a
conditional guarded by a predicate condition p, and the respective values of
the true and false branches associated, respectively, with terms b and c;

loop-φ: Term lphi(x, b, c) represents the flow of a well-structured loop with
(virtual) counter x, initial value b and iteration value c.

closed-loop-φ: Term ephi(x, b) represents the value of b after loop x.

In the following, we give the denotational semantics for the PROLOG predi-
cates that represent a subset of the SSA expressions, and we note as before:

– S[[e]] for the semantics of an expression e,
– "x for the integer-valued indices of loop x, 0 ≤ "x < N , with N the number

of iterations in loop x,
– a("x) for the value of variable a at iteration "x,
– last("x) for the last value of loop counter "x: N − 1.

S[[assign(a, b).]]"x = [a("x) = b("x)]
S[[assign(a, b + c).]]"x = [a("x) = b("x) + c("x)]

S[[assign(a, cphi(p, b, c)).]]"x =
[
a("x) =

{
b("x), if p("x) is evaluated to true;
c("x), otherwise.

]

S[[assign(a, lphi("y, b, c)).]]"x =
[
a("y) ←

{
b("x), if "y = 0;
c("y − 1), otherwise.

]

S[[assign(a, ephi("y, b)).]]"x = [a("x) = b(last("y))]

Unstructured control flow may lead to some back edges being associated with
plain conditional terms and others recognized as loops. In general, the program
control flow can be recovered from phi predicates. Notice the above definition
is not aimed at representing all imperative programs in SSA form: it does not
provide terms for function calls, array subscripts, etc.

a = 2
begin1:
b = loop1-φ(a, c)
if (b>=17) goto end1
c = b + 1
begin2:

d = loop2-φ(b, e)
if (d>=42) goto end2
e = d + b;

end2:
end1:
f = closed-φ(c);

Fig. 4. Running example in SSA.

assign(a, 2).
assign(b, lphi(l1, a, c)).
assign(c, b + 1).
assign(d, lphi(l2, b, e)).
assign(e, d + b).
assign(f, ephi(l1, c)).

Fig. 5. SSA graph.

a = 2
b = 2, 3, 4, . . . , 16 = "1 + 2
c = 3, 4, 5, . . . , 16 = "1 + 3
d = 2, 4, 6, . . . , 42, 3, 6, 9, . . . , 42, . . . , 16, 32

= ("1 + 2)("2 + 1)
e = 4, 6, 8, . . . , 42, 6, 9, 12, . . . , 42, . . . , 32

= ("1 + 2)("2 + 2)
f = 17

with "1 ∈ {0, . . . , 14}
"2 ∈ {0, . . . , $42/("1 + 2)% − 1}

Fig. 6. Sequences and closed forms.

assign(a, 2).
assign(b, lphi(l1, 2, b + 1)).
assign(c, b + 1).
assign(d, lphi(l2, b, d + b)).
assign(e, d + b).
assign(f, 17).

Fig. 7. Normalized SSA graph.

Consider the example in Figure 4. The SSA graph of this running example
is shown in Figure 5. Each one of its six scalar variables is associated with a
function from loop iteration vectors ("1, "2) to integers; as shown in Figure 6,
these functions can be represented as closed polynomial forms. Variables b and
c are univariate: they only depend on one loop counter ("1); whereas d and e are
multivariate. The purpose of induction variable recognition [10] is to statically
compute such closed form representations. To compute the evolution of f, one
must know the trip count of the outer loop, i.e., the exact exit value of "1. To
statically evaluate this value, one must already understand the evolutions of b
and c. As we have seen in this example, the SSA graph has partitioned the
problem such that the resolution only depends on the variables used to define
the exit condition, independently of the existence of the inner loop, or any other
constructs.

3.2 Normalizing Semantic Equivalent Constructs

For reducing the size of the code and for preparing the representation for pa-
tern matching, it is possible to use a normalization predicate trNorm defined in

Figure 8. The result of this normalization on the running example is illustrated
in Figure 7. As shown in Figure 8, trNorm unifies simple definition circuits
with self-definition loops. It succeeds on all circuits, but fails on more general
strongly-connected components. Predicate trNorm uses hasAself for determin-
ing whether the BackEdge has a self reference to X. In this case, BackEdge is
replaced by an equivalent expression X + Step where X appears in front of the
expression, such that it can be simpler matched later. The expression contained
in Step is the result of the fold functor that reduces the size of arithmetic
expressions by performing basic arithmetic operations on scalar constants.

Note that Step can contain self definitions to X as the third rule of hasAself
does not check for self definitions in B and directly builds the result StepA +
B. Thus the expression obtained in Step can be quite difficult to handle in
general, and this is why some optimizers can decide to ask for a more abstract
information.

trNorm(assign(X, lphi(LoopId, Init, BackEdge)),
assign(X, lphi(LoopId, Init, X + Step))) :-

hasAself(X, BackEdge, Step), !.
trNorm(Default, Default).

hasAself(X, X, 0).
hasAself(X, Name, Step) :-

assign(Name, Expr), hasAself(X, Expr, Step).
hasAself(X, A + B, Step) :-

(hasAself(X, A, StepA), fold(StepA + B, Step), !);
(hasAself(X, B, StepB), fold(A + StepB, Step), !).

fold(_ + unknown, unknown).
fold(unknown + _, unknown).
fold(L + R, Res) :-

integer(L), fold(R, ResR), integer(ResR), Res is L + ResR, !;
integer(R), fold(L, ResL), integer(ResL), Res is ResL + R, !.

fold(L + R, ResL + ResR) :- fold(L, ResL), fold(R, ResR), !.
fold(Default, Default).

Fig. 8. A normalization equivalence.

4 Abstract SSA

The proper abstraction level depends on the requirements of the intended com-
putation: the value range propagation is able to infer useful information from
integer intervals, whereas such information would probably be useless in the
computation of the exact loop trip count, that would require a more precise in-
formation under the form of a symbolic expression. For this reason, it is possible
to either provide the previous normalized, compressed form, or to further pro-
cess this information, removing difficult constructs, replacing some symbols with
abstract elements, leading to an SSA graph with abstract elements: the abstract
SSA.

4.1 Abstractions as Herbrand Universes

The theory of abstraction has independently evolved in the abstract interpre-
tation and artificial intelligence domains as practical methods for dealing with
either large amounts of data, or for representing uncertainty. In practice, abstrac-
tions are defined by a mapping between two sets that preserves some properties
and that reduces the complexity. A logic framework for abstractions can be de-
scribed in terms of Herbrand universes: the starting set can be defined as the
set of all ground terms constructed from functors and constants; the abstraction
mapping can be defined as a functor transforming every ground term from the
starting set to other ground terms composed of constants and functors in the
abstract set.

Definition 1 (Abstraction). An abstraction is a triplet (Σ1, Σ2, α), with Σ1

and Σ2 two sets, potentially Σ2 ⊆ Σ1, and a total function α : Σ1 → Σ2 called
the abstraction function, that maps the elements of Σ1 onto that of Σ2.

The usefulness of abstractions arises from the fact that it is sometimes simpler
to work on a set that contains fewer elements, or on which some properties are
decidable, and then to infer the result on the starting set using a concretization
function.

Definition 2 (Concretization function). Let (Σ1, Σ2, α) be an abstraction.
A function γ : Σ2 → P(Σ1) is called a concretization function. It maps elements
from Σ2 to sets of elements of Σ1.

The main idea behind the automatic definition of static analyzers in abstract
interpretation [6, 7] is that the safety of computations on an approximation is
guaranteed by some order relation that has to be preserved during the transla-
tions between the concrete and abstract sets. However, it is sometimes the case
that the operations on the abstract domain are exact, i.e. computing on the
abstract set produces exactly the same result, without loss of precision, as in
the concrete set. In this case the order is trivially preserved, as the abstraction
and concretization functions are bijections on some subsets of the abstract and
concrete sets.

4.2 Masking Abstractions

Masks or filters are the most intuitive forms of abstractions, as they are defined
by abstraction functions that preserve some constructs of the starting set, while
the remaining elements are mapped to an “unknown” element in the target rep-
resentation. Using this technique, it is possible to define several mask functions
for obtaining the right level of detail that abstracts away all constructs that are
irrelevant for a computation.

We illustrate the definition of a mask in Figure 9: a map of exponential
evolutions (e.g., x = x + x) matched by the first rule to an “unknown” element.
The last rule identically translates all the remaining constructs not matched by
the first rule.

removeMixers(assign(X, lphi(_, _, X + Step)), assign(X, unknown)) :-
hasAself(X, Step, _).

removeMixers(Ibidem, Ibidem).

Fig. 9. Definition of a mask that maps some exponentials to an “unknown” element.

Another example of masking abstraction is given by the translation of a
subset of the SSA graphs to polynomial expressions whose representation can
be given either in terms of multivariate chains of recurrences represented by
a predicate mcr, as illustrated in Figure 10, or more generally, (Figure 11) to
lambda expressions represented by predicate lambda in which we use binomial
expressions represented by the predicate binom, and the predicate sumNFirst
that computes the symbolic sum of the first iterations of a loop by using rewrit-
ing rules such as

∑x−1
j=0

(
j
k

)
=

(
x

k+1

)
. It is then possible to define some rewrit-

ing rules on MCR as described in [22] for obtaining a MCR normal form, or
define the arithmetic operations on polynomials or lambda expressions for nor-
malizing this other equivalent representation. As illustrated by the definition of
fromSSAtoMCR, the chains of recurrences are obtained by an exact rewrite of an
SSA graph. That justifies our earlier remark: there is no need to use the chains
of recurrences representation, as the chains of recurrences are nothing else than
a subset of the SSA graphs.

fromSSAtoMCR(assign(X, lphi(_, _, X + Step)),
assign(X, unknown)) :-

hasAself(X, Step, _).
fromSSAtoMCR(assign(X, lphi(LoopId, Init, X + Step)),

assign(X, mcr(LoopId, Init, Step))).
fromSSAtoMCR(Ibidem, Ibidem).

% Some possible Prolog queries and their answers ‘‘Q = some chain of recurrence’’:
% | ?- fromSSAtoMCR(assign(a, lphi(l1, 2, a + 2)), Q).
% Q = assign(a,mcr(l1,2,2))
% | ?- fromSSAtoMCR(assign(a, lphi(l1, 3, a + mcr(l1, 4, 5))), Q).
% Q = assign(a,mcr(l1,3,mcr(l1,4,5)))

Fig. 10. From a subset of the SSA graphs to chains of recurrences.

4.3 Replacing Symbols with Abstract Elements

A commonly used technique consists in replacing symbols with a safe description
of the values that they represent during the execution of the program. In this
case, the safety of the abstract representation and of the abstract operations
should be given by some order relation. We illustrate this with the translation

fromSSAtoLambda(assign(X, lphi(_, _, X + Step)),
assign(X, unknown)) :-

hasAself(X, Step, _).
fromSSAtoLambda(assign(X, lphi(LoopId, Init, X + Step)),

Init + Result) :-
sumNFirst(LoopId, LoopId, Step, Result).

fromSSAtoLambda(Ibidem, Ibidem).

% compute the symbolic sum of the first N iterations of LoopId: from 0 to N - 1
sumNFirst(_, N, Constant, Constant * lambda(N, binom(N, 1))) :-

integer(Constant).
sumNFirst(LoopId, N, Constant * lambda(LoopId, binom(LoopId, K)),

Constant * lambda(N, binom(N, ResK))) :-
integer(Constant), fold(K + 1, ResK).

sumNFirst(LoopId, N, A + B, ResA + ResB) :-
sumNFirst(LoopId, N, A, ResA), sumNFirst(LoopId, N, B, ResB).

sumNFirst(LoopId, N, lambda(LoopId, A + B), lambda(LoopId, ResA + ResB)) :-
sumNFirst(LoopId, N, A, ResA), sumNFirst(LoopId, N, B, ResB).

% Some possible Prolog queries and their answers ‘‘Q = some lambda expression’’:
% | ?- fromSSAtoLambda(assign(a, lphi(l1, 2, a + 2)), Q).
% Q = 2+2*lambda(l1,binom(l1,1))
% | ?- fromSSAtoLambda(assign(a, lphi(l1, 3, a + (4 + 5*lambda(l1,binom(l1,1))))), Q).
% Q = 3+(4*lambda(l1,binom(l1,1))+5*lambda(l1,binom(l1,2)))

Fig. 11. From a subset of the SSA graphs to lambda expressions.

of the representation of the meet over all paths in terms of an abstract value in
Figure 12. We see that the predicate of the condition-φ disappears in the target
representation and that the condition-φ is replaced by a predicate meet. The
meet operation can be defined using classic abstractions, such as for example
integer intervals, or the set of values. The meet operation is usually defined
based on the needs of the computation that uses the abstraction.

meetOverAllPaths(assign(X, cphi(_, A, B)), assign (X, meet(A, B))).
meetOverAllPaths(Ibidem, Ibidem).

Fig. 12. Definition of a meet over all paths abstraction.

4.4 PROLOG as Prototyping Language

As we have seen in this section, the tools provided by PROLOG suit the needs of
prototyping SSA graph transformations. PROLOG’s unification engine provides
a natural way to describe complex algorithms that transform SSA graphs. The
complex description of the algorithms that we have described in [21] is mainly
due to the description of the unification algorithm itself [20].

After this very high level description of our induction variable detection al-
gorithm, we have to warn the reader that the implementation of this same algo-
rithm, which has been integrated in GCC, is written in the C language. This has
its drawbacks, as illustrated by the size of the resulting implementation, some
3000 lines of C code, but it also is more efficient in terms of execution time than
an equivalent program written in PROLOG. Yet, the most important point is
that the C language is more portable, a strategic point for GCC. In the next
section we describe some experiments that show the central role of our analyzer
on optimizations in GCC, and that show the effectiveness of our implementation.

5 Evaluation of Existing Optimizations

For evaluating the importance of our induction variable analysis on existing
optimizations in GCC, we used two compilers based on gcc version 4.1.0 20051104
(experimental) with the following options “-O3 -msse2 -ftree-vectorize -ftree-
loop-linear”: the peak compiler is the compiler without any modifications; in
the base compiler we disabled the analysis of induction variables. Figure 13
presents the percent improvement for execution time for the SPEC CPU2000
and JavaGrande benchmarks for an AMD Athlon(tm) 64 Processor 3700+ with
128 Kb of L1 cache, 1024 Kb of L2, and 1 GB of RAM, on SuSE with a Linux
kernel 2.6.13. Finally, Figure 13 presents the percent improvement of execution
time for a part of the MiBench on an ARM XScale-IXP42x processor at 133 MHz
with 32 Mb of RAM on Debian with Linux kernel 2.6.12. It is possible to remark
that knowing more information about the compiled program can produce worse
code, as some of the transformations are applied based on a machine model that
is not enough accurate. It is also possible to remark that overall, the use of this
information is crucial for aggressive optimizations.

Looking at compilation time issues, a possible technique for stressing our in-
duction variable analyzer is to look at the compilation time of an optimizer that
uses our analyzer: the vectorizer is based on a pattern matching of the instruc-
tions contained in loops, and on the data dependence information. The design
of the data dependence analysis is based on a compromise between precision
and compilation-time effectiveness. The results of the data dependence tests are
obtained on demand for a loop nest; thus the analysis can be restricted to the
loop to be optimized. Furthermore, the dependence tests are ordered such that
the fastest tests are executed first, then more expensive analyzes are triggered if
the previous ones fail. In order to show the effectiveness of the analysis frame-
work, we have measured the compilation time of the vectorization pass. For the
SPEC CPU2000 benchmarks, the vectorization pass does not exceed 1 second
per compiled file, or 5 percent of the compilation time per file, showing that
the dependence analyzer is fast in practice. This experiment was performed on
a Pentium4 2.40 GHz.

These experiments show that our analysis framework is robust for a large
set of benchmarks written in several programming languages (C, C++, Java,
Fortran) and has a low overhead compilation time.

6 Conclusion and Perspectives

In this paper, we have used PROLOG as a practical tool for prototyping SSA
transformations. We have proposed the abstract SSA representation, and we
have shown by construction that the chains of recurrences are nothing else than
a subset of the SSA graph. We gave a more high level description of the induction
variables algorithm that we have integrated to GCC. We evaluated the imple-
mentation of our algorithm in the current sources of GCC, and shown that the
compiler is robust for a large set of benchmarks written in several programming
languages (C, C++, Java, Fortran) and has a low overhead compilation time.

The infrastructure of GCC for loop nest optimizations is quite new, and more
work is needed to enhance these preliminary results. However, it constitutes
a starting basis for a complete infrastructure for advanced loop restructuring.
We are still working on refining the data dependence tests, as optimizations
need more precision for enabling more transformations. More precisely, we are
working on better data dependence analysis, handling of symbolic dependence
tests, and the embedding of polyhedral techniques [15, 24] to refine dependence
information.

GCC is much appreciated for its excellent production quality, standards com-
pliance and speed. We believe we have shown that GCC has all the merits for
academic research and for target-specific research and development in industry.
We hope that the high performance and compilation communities are going to
use GCC as their main research and implementation platform in the future.

References

1. Gnu prolog. http://pauillac.inria.fr/~diaz/gnu-prolog/.
2. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.

Addison-Wesley, 1986.
3. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan

and Kaufman, 2002.
4. O. Bachmann, P. S. Wang, and E. V. Zima. Chains of recurrences a method to

expedite the evaluation of closed-form functions. In Proceedings of the international
symposium on Symbolic and algebraic computation, pages 242–249. ACM Press,
1994.

5. D. Berlin, D. Edelsohn, and S. Pop. High-level loop optimizations for GCC. In
Proceedings of the 2004 GCC Developers Summit, pages 37–54, 2004. http://www.
gccsummit.org/2004.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In 4thACM
Symp. on Principles of Programming Languages, pages 238–252, Los Angeles, Cal-
ifornia, Jan. 1977.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 269–282, San Antonio, Texas, 1979.
ACM Press, New York, NY.

8. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. on Programming Languages and Systems, 13(4):451–490, Oct. 1991.

9. A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for simd architectures
with alignment constraints. In PLDI ’04: Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and implementation, pages 82–
93. ACM Press, 2004.

10. M. P. Gerlek, E. Stoltz, and M. J. Wolfe. Beyond induction variables: detect-
ing and classifying sequences using a demand-driven ssa form. ACM Trans. on
Programming Languages and Systems, 17(1):85–122, Jan. 1995.

11. L. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, and B. Sridharan. De-
signing the McCAT compiler based on a family of structured intermediate repre-
sentations. In Proceedings of the 5th International Workshop on Languages and
Compilers for Parallel Computing, number 757 in LNCS, pages 406–420. Springer-
Verlag, 1993.

12. KAP C/OpenMP for Tru64 UNIX and KAP DEC Fortran for Digital UNIX.
http://www.hp.com/techsevers/software/kap.html.

13. V. Kislenkov, V. Mitrofanov, and E. Zima. Multidimensional chains of recurrences.
In Proceedings of the 1998 international symposium on symbolic and algebraic com-
putation, pages 199–206. ACM Press, 1998.

14. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In ACM Symp. on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar. 2004.

15. V. Loechner and D. Wilde. Parameterized polyhedra and their vertices. Int. J. of
Parallel Programming, 25(6), Dec. 1997. http://icps.u-strasbg.fr/PolyLib.

16. J. Merill. GENERIC and GIMPLE: a new tree representation for entire functions.
In Proceedings of the 2003 GCC Developers Summit, pages 171–180, 2003. http:
//www.gccsummit.org/2003.

17. S. S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann,
1997.

18. D. Naishlos. Autovectorization in GCC. In Proceedings of the 2004 GCC Developers
Summit, pages 105–118, 2004. http://www.gccsummit.org/2004.

19. D. Novillo. Tree SSA - a new optimization infrastructure for GCC. In Proceedings of
the 2003 GCC Developers Summit, pages 181–193, 2003. http://www.gccsummit.
org/2003.

20. M. S. Paterson and M. Wegman. Linear unification. Journal of Computer and
System Sciences, 16:158–167, 1978.

21. S. Pop, A. Cohen, and G.-A. Silber. Induction variable analysis with delayed
abstractions. In 2005 International Conference on High Performance Embedded
Architectures and Compilers, 2005. Barcelona, Spain.

22. R. A. van Engelen. Efficient symbolic analysis for optimizing compilers. In Proceed-
ings of the International Conference on Compiler Construction (ETAPS CC’01),
pages 118–132, 2001.

23. M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley, 1996.

24. D. Wonnacott and W. Pugh. Nonlinear array dependence analysis. In Proc. Third
Workshop on Languages, Compilers and Run-Time Systems for Scalable Comput-
ers, 1995. Troy, New York.

Fig. 13. Percent improvement at run time for SPEC CPU2000, JavaGrandeon AMD64,
and for MiBench on ARM.

