
GRAPHITE: Polyhedral Analyses and Optimizations
for GCC

Sebastian Pop 1 Albert Cohen 2 Cédric Bastoul 2 Sylvain Girbal 2

Georges-André Silber 1

Nicolas Vasilache 2

1 CRI, École des mines de Paris, Fontainebleau, France
lastname@cri.ensmp.fr

2 Alchemy group, INRIA Futurs and LRI, Paris-Sud 11 University, Orsay, France
firstname.lastname@inria.fr

Abstract

We present a plan to add loop nest optimiza-
tions in GCC based on polyhedral representa-
tions of loop nests. We advocate a static anal-
ysis approach based on a hierarchy of inter-
changeable abstractions with solvers that range
from the exact solvers such as OMEGA, to
faster but less precise solvers based on more
coarse abstractions. The intermediate repre-
sentation GRAPHITE1 (GIMPLE Represented
as Polyhedra with Interchangeable Envelopes),
built on GIMPLE and the natural loops, hosts
the high level loop transformations. We base
this presentation on the WRaP-IT project de-
veloped in the Alchemy group at INRIA Futurs
and Paris-Sud University, on the PIPS compiler
developed at École des mines de Paris, and on
a joint work with several members of the static
analysis and polyhedral compilation commu-
nity in France.

The main goal of this project is to bring more
high level loop optimizations to GCC: loop fu-
sion, tiling, strip mining, etc. Thanks to the

1This work was partially supported by ACI/APRON.

WRaP-IT experience, we know that the poly-
hedral analyzes and transformations are afford-
able in a production compiler. A second goal
of this project is to experiment with compile
time reduction versus attainable precision when
replacing operations on polyhedra with faster
operations on more abstract domains. How-
ever, the use of a too coarse representation for
computing might also result in an over approx-
imated solution that cannot be used in subse-
quent computations. There exists a trade off be-
tween speed of the computation and the attain-
able precision that has not yet been analyzed
for real world programs.

1 Introduction

Static compiler optimizations can hardly cope
with the complex run-time behavior and hard-
ware components interplay of modern proces-
sor architectures. Multiple architectural phe-
nomena occur and interact simultaneously. The
optimizer needs to combine multiple program
transformations to harness the computing and
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storage resources and to fight all sources of
pipeline stalls or flushes. In addition, con-
ventional processor architectures are shifting
towards coarser grain on-chip parallelism, to
avoid diminishing returns of further extending
instruction-level parallelism. This shift rejuve-
nates the hard static analysis and optimization
problems associated with automatic paralleliza-
tion (extraction, exploitation and optimization
of parallelism).

Even provided with enough static information
or annotations (OpenMP directives, pointer
aliasing, separate compilation assumptions),
compilers have a hard time exploring the huge
and unstructured search space associated with
these application-to-architecture mapping and
optimization challenges [16, 32, 23, 53, 1]. In
a sense, the task of the compiler can hardly be
called optimization anymore, in the traditional
meaning of lowering the abstraction penalty of
a higher-level language. Together with the run-
time system (whether implemented in software
or hardware), the compiler is responsible for
most of the combinatorial code generation deci-
sions to map the simplified and idealistic oper-
ational semantics of the source program to the
highly complex and heterogeneous machine.

Unfortunately, optimizing compilers have tra-
ditionally been limited to systematic and te-
dious tasks that are either not accessible to the
programmer (e.g., instruction selection, regis-
ter allocation) or that the programmer in a high
level language does not want to deal with (e.g.,
constant propagation, partial redundancy elimi-
nation, dead-code elimination, control-flow op-
timizations). Generating efficient code for deep
parallelism and deep memory hierarchies with
complex and dynamic hardware components is
a completely different story: the compiler (and
run-time system) now has to take the burden of
much smarter tasks that only expert program-
mers would be able to carry.

Recent work showed that polyhedral compila-

tion techniques are good candidates to address
these challenges, and that new algorithms allow
them to scale to real-size optimization prob-
lems (beyond tiny loop kernels) [34, 64]. This
paper exposes our road-map towards making
GCC the first general-purpose compiler to build
on full-scale polyhedral compilation techniques
(analysis and transformations, including affine
scheduling).

In the first part of the paper we will present
the steps to transform the loops and GIMPLE
representations to systems of linear constraints,
or polyhedra, to transform the matrix form ob-
tained, and to eventually regenerate GIMPLE
trees. This part corresponds to an adaptation
to GCC of the WRaP-IT tool. Then, we dis-
cuss the integration of additional numerical do-
mains, to support a wider range of (interpro-
cedural) static analyses, and to improve the
compile time on polyhedral compilation passes.
This work will use the APRON library as a
starting point, to facilitate the transparent sub-
stitution of abstract numerical domains. The
APRON library is part of a joint work between
different members of the static analysis com-
munity in France, and aims at providing a com-
mon interface between numerical abstract do-
mains. Because some computations might not
be tractable, or too expensive on a too precise
representation, it is interesting to use more ab-
stract representations on which computations
have lower costs.

We will present experimental results to mo-
tivate the polyhedral program transformation
approach, and we will survey our methods to
let the code analysis and generation techniques
scale to full-scale loop nests (with aggressive
inlining). We will present the benefits of adopt-
ing this infrastructure: composition of transfor-
mations, and interchangeability of abstract do-
mains.
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2 State of the art

In compilers, polyhedral domains are used for
different purposes:

Static analysis. Polyhedra represent conserva-
tive approximations of the properties of
a program [24]. In this case, the opera-
tions on the abstract domain should pre-
serve the safety of the computed proper-
ties, and thus the results are allowed to be
over approximations.

Code transformations. Polyhedra represent
the code itself [31], through the iteration
domain, iteration and statement sched-
ules, and memory access functions. The
translation and the operations over the
polyhedral representation have to be exact
(with no loss of information), to guarantee
that the code generated from the polyhe-
dral representation after transformation
will be semantically equivalent to the
original program.

Several works addressed these applications in
different experimental frameworks, but the un-
derlying mathematical framework is the same.

In this section we provide an overview of the
techniques used in research and industrial com-
pilers based on polyhedral domains: first we
present the polyhedral representations for loop
iteration domains, then we present the array re-
gions that approximate data accesses. We end
this survey with the cost models based on the
polyhedral representations.

2.1 Translation to a Polyhedral Represen-
tation

The polyhedral representations are restricted
by their expressiveness to represent only se-
quences of loop nests with constant strides

and affine bounds. It includes non-rectangular
loops, non-perfectly nested loops, and condi-
tionals with boolean expressions of affine in-
equalities. Loop nests fulfilling these hypothe-
ses are amenable to a representation in the poly-
hedral model [54]. We call Static Control Part
(SCoP) any maximal syntactic program seg-
ment satisfying these constraints [20]. The
reader interested in techniques to extend SCoP
coverage (by preliminary transformations) or in
partial solutions on how to remove this scop-
ing limitation (procedure abstractions, irregu-
lar control structures, etc.) should refer to
[62, 37, 21, 72, 25, 12, 60, 11, 19, 22].

In the polyhedral model [57, 31], the iteration
steps of a loop nest of depth d are represented
as the integer points of a polyhedra in Zd . In
the general case, the polyhedra are bounded by
symbolic parameters: they are called paramet-
ric polyhedra, and each symbolic parameter is
represented using an extra dimension. All vari-
ables that are invariant within a SCoP are called
global parameters. For each statement within
a SCoP, the representation separates four at-
tributes, characterized by parameter matrices:
the iteration domain, the schedule, the data lay-
out and the access functions.

2.2 WRaP-IT

The WRaP-IT framework [34], developed in
the Alchemy group, improves on classical poly-
hedral representations [31, 68, 41, 46, 2, 47]
to support a large array of useful and efficient
program transformations (loop fusion, tiling,
array forward substitution, statement reorder-
ing, software pipelining, array padding, etc.), as
well as compositions of these transformations.
It is implemented within the Open64 and Path-
Scale EKOPath [17] compilers. This compiler
family provides key interprocedural analyses
and pre-optimization phases such as inlining,
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interprocedural constant propagation, loop nor-
malization, integer comparison normalization,
dead-code and goto elimination, as well as in-
duction variable substitution. Thanks to these
preliminary passes, our tool extracts large and
representative SCoP for SPEC fp benchmarks:
on average, 88% of the statements belong to a
SCoP containing at least one loop. See [34]
for detailed static and dynamic SCoP coverage.
GCC now comes close to Open64 in terms of
loop-oriented program normalizations, and the
situation improves quickly; our future research
will thus benefit from migrating the WRaP-IT
framework to GCC.

The main technical idea behind polyhedral pro-
gram representations is to clearly separate the
four different types of actions performed by
loop-centric transformations: modification of
the iteration domain (loop bounds and strides),
modification of the schedule of each individ-
ual statement, modification of the access func-
tions (array subscripts), and modification of the
data layout (array declarations). This separa-
tion makes it possible to provide a matrix rep-
resentation for each kind of action, enabling
the easy and independent composition of the
different representation operations associated
with each program transformation, and as a re-
sult, enabling the composition of transforma-
tions themselves. Current representations do
not clearly separate these four types of actions;
as a result, the implementation of certain com-
positions of program transformations can be
complicated or even impossible. For instance,
current implementations of loop fusion must in-
clude loop bounds and array subscript modifi-
cations even though they are only byproducts
of a schedule-oriented program transformation;
after applying loop fusion, target loops are of-
ten peeled, increasing code size and making
further optimizations more complex. Within
our representation, loop fusion is only ex-
pressed as a schedule transformation, and the
modifications of the iteration domain and ac-

cess functions are implicitly handled, so that
the code complexity is exactly the same before
and after fusion. Similarly, an iteration domain-
oriented transformation like unrolling should
have no impact on the schedule or data layout
representations; or a data layout-oriented trans-
formation like padding should have no impact
on the schedule or iteration domain representa-
tions.

3 Loop Transformations in the
Polyhedral Model

This section is a quick overview of the polyhe-
dral framework and shows the expressiveness
benefits on a practical example. A more for-
mal presentation of the model may be found in
[57, 31].

3.1 Quick Overview of the Framework

Polyhedral compilation usually distinguishes
three steps: one first has to represent an in-
put program in the formalism, then apply a
transformation to this representation, and fi-
nally generate the target (syntactic) code.

Consider the polynomial multiplication kernel
in Figure 1(a). It only deals with control as-
pects of the program, and we refer to the two
computational statements (array assignments)
through their names, S1 and S2. To bypass
the limitations of syntactic representations, the
polyhedral model is closer to the execution it-
self by considering statement instances. For
each statement we consider the iteration do-
main, where every statement instance belongs.
The domains are described using affine con-
straints that can be extracted from the program
control. For example, the iteration domain of
statement S1, called DS1 , is the set of values (i)
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for (i=2; i<=2*n; i++)
S1 Z[i] = 0;

for (i=1; i<=n; i++)
for (j=1; j<=n; j++)

S2 Z[i+j] += X[i] * Y[j]; 1
2

n
j

1 2 i

i>=1
i>=2

i<=n
j<=n

j>=1 i<=2n

S2
S1

S2
S2

S2 S1

n

instance of S1

2n

instance of S2

(a) Syntactic form (b) Polyhedral domains (n ≥ 2)

Figure 1: A polynomial multiplication kernel and its polyhedral domains
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(a) Transformation template formula (b) Transformed polyhedra

Figure 2: Transformation template and its application

such that 2 ≤ i ≤ n as shown in Figure 1(b); a
matrix representation is used to represent such
constraints: in our example, DS1 is character-
ized by

[
1 0 −2

−1 2 0

]


i
n
1



≥ 0.

In this framework, a transformation of the exe-
cution order is characterized by affine schedul-
ing functions ΘS, for all statements S in the
SCoP. Each statement has its own schedul-
ing function which maps each run-time state-
ment instance to a logical execution date. In
our polynomial multiplication example, an op-
timizer may notice a locality problem and dis-
cover a good data reuse potential over array Z,
then suggest ΘS1(i) = (i) and ΘS2

(
i
j

)
= (i +

j + 1) to achieve better locality (see e.g., [14]
for a method to compute such functions). The

intuition behind such transformation is to ex-
ecute consecutively the instances of S2 having
the same i+ j value (thus accessing the same ar-
ray element of Z) and to ensure that the initial-
ization of each element is executed by S1 just
before the first instance of S2 referring this el-
ement. In the polyhedral model, a transforma-
tion is applied following the template formula
in Figure 2(a) [13], where i is the iteration vec-
tor, g is the vector of constant parameters, and t
is the time-vector, i.e. the vector of the schedul-
ing dimensions. The nature of these vectors and
the structure of the Θ and Λ matrices is detailed
in [34]. Notice that in this formula, equality
constraints capture schedule modifications, and
inequality constraints capture iteration domain
modifications. The resulting polyhedra for our
example are shown in Figure 2(b), with the ad-
ditional dimension t.

Once transformations have been applied in the
polyhedral model, one needs to (re)generate the
target code. The best syntax tree construction
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scheme consists in a recursive application of
domain projections and separations [59, 13].
The final code is deduced from the set of con-
straints describing the polyhedra attached to
each node in the tree. In our example, the first
step is a projection onto the first dimension t,
followed by a separation into disjoint polyhe-
dra, as shown on the top of Figure 3(a). This
builds the outer loops of the target code (the
loops with iterator t in Figure 3(b)). The same
process is applied onto the first two dimensions
(bottom of Figure 3(a)) to build the second loop
level and so on. The final code is shown in Fig-
ure 3(b) (the reader may care to verify that this
solution maximally exploits temporal reuse of
array Z). Note that the separation step for two
polyhedra needs three operations: DS1 −DS2 ,
DS2 −DS1 and DS2 ∩DS1 , thus for n statements
the worst-case complexity is 3n.

It is interesting to note that the target code, al-
though obtained after only one transformation
step, is quite different from the original loop
nest. Indeed, multiple classical loop transfor-
mations are necessary to simulate this one-step
optimization (among them, software pipelining
and skewing). The intuition is that arbitrarily
complex compositions of classical transforma-
tions can be captured in one single transforma-
tion step of the polyhedral model. This was
best illustrated by affine scheduling [31, 41]
and partitioning [46] algorithms. Yet, be-
cause black-box, model-based optimizers fail
on modern processors, we propose to step back
a little bit and consider again the benefits of
composing classical loop transformations, but
using a polyhedral representation. Indeed, be-
fore our recent work, polyhedral optimization
frameworks have only considered the isolated
application of one arbitrarily complex affine
transformation. The main originality of our
work is to address the composition of program
transformations on the polyhedral representa-
tion itself, which vastly facilitates the coordi-
nation of polyhedral transformations with clas-
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t=2; // Such equality is a loop running once
i=2;

S1 Z[i] = 0;
for (t=3; t<=2*n; t++)

for (i=max(1,t-n-1); i<=min(t-2,n); i++)
j = t-i-1;

S2 Z[i+j] += X[i] * Y[j]
i=t;

S1 Z[i] = 0;
t=2*n+1;

i=n;
j=n;

S2 Z[i+j] += X[i] * Y[j];

(b) Target code

Figure 3: Target code generation

sical heuristics and cost models, enabling their
integration into production compilers.

3.2 Code Generation from the Polyhedral
Model

Regenerating syntax trees from affine sched-
ules is one of the most time-consuming parts of
the polyhedral compilation flow. The history of
code generation in the polyhedral model shows
a constant growth in transformation complex-
ity, from basic schedules for a single statement
to general affine transformations for wide code
regions. In their seminal work, Ancourt and
Irigoin limited transformations to unimodular
functions (determinant 1 or −1) and the code
generation process was applicable for only one
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domain at once [5]. Several works succeeded
in relaxing the unimodularity constraint to in-
vertibility (the T matrix has to be invertible),
enlarging the set of possible transformations
[27, 45]. A further step has been achieved by
Kelly et al. by considering more than one do-
main and multiple scheduling functions at the
same time [42]. All these methods relied on
the Fourier-Motzkin elimination method [61] to
build the target code.

Quilleré et al. showed how to use polyhedral
operations based on the Chernikova Algorithm
[66] instead, to benefit from its practical ef-
ficiency to handle bigger problems [59]. Re-
cently, a new transformation policy has been
proposed to allow general non-invertible, non-
uniform, non-integral affine transformations
[13, 64]. Such freedom allowed to apply poly-
hedral techniques to much larger programs with
very sophisticated transformations, and led to
novel complexity, scalability and code quality
challenges we discuss in this paper. In the con-
text of GCC, it would be very interesting to try
to preserve the robustness of the Quilleré algo-
rithm, but further improve the complexity of
the method, using depth-sensitive relaxations
(approximations) and Fourier-Motzkin elimi-
nations.

3.3 Optimization Experiment

We applied the WRaP-IT tool to the swim
SPEC CPU2000 fp benchmark, extracting sev-
eral SCoP: aggressive inlining yields one SCoP
of 421 lines of code—112 instructions in the
polyhedral representation—in consecutive loop
nests within the main function. We applied
more than 30 transformations to this SCoP,
including multi-level loop fusion, loop shift-
ing (pipelining), loop tiling, loop peeling, loop
unrolling, loop interchange, and strip-mining
[71, 4]. All these transformations are general-

ized to non-perfectly nested codes, and embed-
ded in our compositional framework [34].

The resulting code is significantly larger—
2267 lines—roughly one third of them be-
ing naive scalar copies to map schedule itera-
tors to domain ones, fully eliminated by copy-
propagation in the subsequent run of EKOPath
or Open64. This is not surprising since most
transformations in the script require domain de-
composition, either explicitly (peeling) or im-
plicitly (shifting prolog/epilog, at code genera-
tion). It takes 39s to apply the whole transfor-
mation sequence up to native code generation
on a 2.08GHz AthlonXP. Transformation time
is dominated by back-end compilation (22s).
Polyhedral code generation takes only 4s. Ex-
act polyhedral dependence analysis (computa-
tion and checking) is acceptable (12s). Apply-
ing the transformation sequence itself is neg-
ligible. These execution times are very en-
couraging, given the complex overlap of peeled
polyhedra in the code generation phase, and
since the full dependence graph captures the
exact dependence information for the 215 ar-
ray references in the SCoP at every loop depth
(maximum 5 after tiling), yielding a total of 441
dependence matrices.

Compared to the peak performance attain-
able by the best available compiler, Path-
Scale EKOPath (V2.1) with the peak-SPEC
optimization flags, our tool achieves 32%
speedup on Athlon XP and 38% speedup
on Athlon 64. Compared to the base-
SPEC performance numbers, our optimization
achieves 51% speedup on Athlon XP and
92% speedup on Athlon 64. We are not aware
of any other optimization effort—manual or
automatic—that brought swim to this level of
performance on x86 processors.2

2Notice we consider the SPEC CPU2000 version of
swim, much harder to optimize through loop fusion than
the SPEC 95 version.
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4 Static Analysis with Polyhedra

Let us now discuss some of the static analysis
opportunities and challenges offered by poly-
hedral methods.

4.1 Instancewise Polyhedral Dependence
Analysis

Many tests have been designed for dependence
checking between different statements or be-
tween different executions of the same state-
ment. It has been shown that this problem
is equivalent to detecting whether a system of
equations has an integer solution inside a re-
gion of Zn [9].

Most of the dependence tests try to find effi-
ciently a reliable, approximative but conserva-
tive (they overestimate data dependences) solu-
tions. The GCD-test [8] has been the very first
practical solution, it is still present in many im-
plementations as a first check with low com-
putational cost. This test assumes that if the
greatest common divisor of the coefficients of
an equation divides the constant term, then a so-
lution exists. A generalized GCD-test has been
proposed to handle multi-dimensional array
references [9]. The Banerjee test uses the in-
termediate value theorem to disprove a depen-
dence: it computes the upper and lower bounds
of an equation and checks if the constant part
lies in that range [69]. The λ-test is an exten-
sion to this test that handles multi-dimensional
array references [43]. Some other important so-
lutions are a combination of GCD and Banerjee
tests called I-test [43], the ∆-test [35] that gives
an exact solution when there is at most one vari-
able in the subscript functions, and the Power-
test which uses the Fourier-Motzkin variable
elimination method [61] to prove or disprove
dependences [70]. Beside their approxima-
tive nature, these dependence tests suffer from

many other major limitations. The most strin-
gent one is their inability to precisely handle
if conditionals, loops with parametric bounds,
triangular loops (a loop bound depends on an
outer loop counter), coupled subscripts (two
different array subscripts refer the same loop
counter), or parametric subscripts.

On the opposite, a few methods allow to find an
exact solution to the dependence problem, but
at a higher computational cost. The OMEGA-
test is an extension to the Fourier-Motzkin vari-
able elimination method to find integral solu-
tions [55]. On one hand, once a variable is
eliminated, the original system has an integer
solution only if the new system has an integer
solution (if this is not the case there is no solu-
tion). On the other hand, if an integer point ex-
ists in a space computed from the new system,
then there exists an integer point in the original
system (if this is the case, there is a solution).
The PIP-test uses a parametric version of the
dual-simplex method with Gomory cuts to find
an integral solution [30]. These two tests not
only give an exact answer, they are also able to
deal with complex loop structures and (affine)
array subscripts. The PIP-test is more precise
than the OMEGA-test when dealing with para-
metric codes (when one or more integer sym-
bolic constant are present), for instance, in the
following pseudo-code:

for(i=0; i<=N; i++) {
A[i] = ...;
... = ... A[i+100] ...;

}

the OMEGA-test will state that there is a de-
pendence between the two statements while the
PIP-test will precise that the dependence only
exists if N is greater or equal to 100. Both tests
have worst-case exponential complexities but
work quite well in practice as shown by Pugh
for the OMEGA-test [55]. Other costly exact
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tests exist in the literature [49, 28] but are often
not able to handle complex control in spite of
their cost.

We do not advocate for the use of any of
these tests, but rather for the computation of
instancewise dependence information as pre-
cisely as possible, i.e., for intensionally de-
scribing the statically unbounded set of all pairs
of dependent statement iterations, called in-
stances. Dependence tests are statementwise
decision problems associated with the exis-
tence of a pair of dependent instances, while
instancewise dependence analysis provides ad-
ditional information that can enable finer pro-
gram transformations, like affine scheduling
[44, 31, 46, 36]. The intensional characteriza-
tion of instancewise dependences can take the
form of multiple dependence abstractions, de-
pending on the precision of the analysis and
on the requirements of the user. The simplest
and least precise one is called dependence lev-
els, it specifies for a given loop nest which loop
carry the dependence. It has been introduced
in the Allen and Kennedy parallelization algo-
rithm [3]. The direction vectors is a more pre-
cise abstraction where the i-th element approx-
imates the value of all the i-th elements of the
distance vectors (which shows the difference of
the loop counters of two dependent instances).
It has been introduced by Lamport [44] and
formalized by Wolfe [71] and is clearly the
most widely used representation. A more pre-
cise abstraction is the dependence polyhedron
[40] which is able to determine exactly the set
of statement instances in dependence relation.
The choice of a given dependence abstraction
is crucial for further study: choosing an impre-
cise one can result in blacking out interesting
transformations. For instance, let us consider
the following example:

for(i=0; i<=N; i++)
for(i=0; i<=N; i++)

S A[i][j] = A[j][i] + A[i][j-1];

there are three dependences in this loop nest
(a read-after-write dependence from 〈S, i, j〉
to 〈S, i, j + 1〉, another read-after-write depen-
dence from 〈S, i, j〉 to 〈S, j, i〉 and a write-after-
read from 〈S, j, i〉 to 〈S, i, j〉). Dependence lev-
els are 2, 1 and 1: each loop carries at least one
dependence and no parallelism can be found.
Direction vectors are (0,1), (+,−), (+,−): the
second coefficients 1 and − hamper any par-
allelism detection. Using dependence polyhe-
dra, parallelism may be found: the Feautrier al-
gorithm suggests the affine schedule θ(i, j) =
2i+ j−3 (all instances with the same schedule
may be run in parallel), see [67]. We propose to
compute one of the most precise representation
of dependences: the dependence polyhedra.

We exercise this implementation on 6 full
SPEC CPU2000 fp benchmarks. In the most
challenging examples, the biggest SCoP almost
contains the whole program after inlining. On a
2.4GHz Pentium 4, the full instancewise depen-
dence analysis takes up to 37.512 seconds, for
the largest SCoP in applu. This is an extreme
case with huge iteration spaces (more than 13
dimensions on average, and up to 19 dimen-
sions). This may sound quite costly, but it still
shows that the analysis is compatible with the
typical execution time of aggressive optimizers
(typically more than ten seconds for Open64
with interprocedural optimization and aggres-
sive inlining and loop-nest optimizations). In
all other cases, it takes less than 5 seconds,
despite thousands of operations on polyhedra
with close to 10 dimensions on average. These
are very compelling results since we compute
very large dependence graphs, taking all pairs
of references into account, without k-limiting
heuristic on their syntactic or nesting distance



188 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

as it is the case in classical optimization frame-
works. Also, a typical loop optimizer will per-
form on-demand computations on part of the
dependence graph only.

4.2 Array Regions

In the context of interprocedural analysis of
data dependences, array regions techniques
have been proposed to extend the data depen-
dence analysis. This representation is able to
accurately describe sets of reads or writes that
occur during the execution of a procedure. Ap-
proximations of accessed regions is not useful
in general, as the precision degradation harm
to the extraction of precise use-def chains, or
dependence tests. As a practical implementa-
tion, the PIPS compiler [39, 38] uses the no-
tion of transformers, or transfer functions for
defining polyhedral relations between memory
stores. Transformers are computed interproce-
durally bottom-up accumulating the effects of
procedures on memory accesses [26, 25], while
preconditions are computed top-down accumu-
lating a safe description of the state of the pro-
gram when entering a procedure. Once this in-
formation has been gathered, the dependence
test can be refined using the interprocedural in-
formation. A more advanced dependence test
can be implemented by gathering more precise
information: the in and out regions. The re-
gions that contain both reads and writes po-
tentially prevent the parallelization of a loop.
When the data is written once and then read,
the region can be selected to be privatized [63].
Because the duplication of runtime data can be
harmful to the execution speed, the decision to
privatize the data is deferred to an analyzer that
can determine the benefit of the transformation.

4.3 Cost Models

Most of the loop nest transformations require
a profitability analysis: often, several trans-

formation schemes are available and following
the specificities of the target architecture some
strategies are preferable. The metrics devel-
oped for the polyhedral model are generally
based on counting the number of integer points
in polyhedra [58, 18, 65]. As polyhedra repre-
sent iteration spaces or data accesses, the eval-
uation of the number of integer points corre-
sponds to the evaluation of the number of iter-
ations of a loop nest, or the size or frequency
of the accessed data. From this measure it is
possible to infer other useful informations such
as the memory bandwidth, cache reuse for the
execution of a loop [48], cache misses [33],
etc. Most of these methods are exponential,
but some recent works [65] implemented and
experimented with promising polynomial time
algorithms for counting integer points in poly-
hedra.

5 Road Map

We describe the components that compose
GRAPHITE, the priorities and dependences be-
tween the modules, and discuss the proposed
plan for the integration into GCC. An overview
of the modules is depicted in Figure 4: the de-
velopment of the modules contains five stages.
First the translation from GIMPLE to the poly-
hedral representation, then the translation back
to GIMPLE, the development of cost models
and the selection of the transform schedule.
The interprocedural refinement of the data de-
pendence information based on the array re-
gions is optional, but it is necessary for gather-
ing more precise informations that potentially
could enable more transformations, or more
precise transform decisions. Finally, the least
critical component is the integration of the nu-
merical domains common interface, based on
which it will be possible to change the com-
plexity of the algorithms used in the polyhedral
analyses.
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Figure 4: Overview of the modules composing GRAPHITE. The numbers indicate the order in
which each module will be integrated.

5.1 Polyhedral Data Dependences

The code for statementwise dependence testing
has been integrated in GCC and directly uses
the OMEGA data structures for representing
polyhedra.

Instancewise dependence analysis will be im-
ported from the WRaP-IT framework, and
extended to non-affine constructs and while
loops [72, 10].

The main challenge here is memory usage, and
the associated adaptation of dependence ab-
straction accuracy depending on some form of
distance in the SCoP.

5.2 Translation to and from GRAPHITE

The next step for the integration of the
GRAPHITE project is the translation of the
code to the polyhedral representation and back
to GIMPLE. This translation will be developed
as an extension of the existing LAMBDA ker-
nel [45, 15]. The main limitation of LAMBDA
is that it works only on a single loop nest

and on distance vectors, whereas more ex-
act dependence informations like the polyhe-
dral representation of the dependences among
several sibling loop nests will be needed for
GRAPHITE.

To support the code generation engine of
GRAPHITE, we will only need a reduced set of
operations on polyhedra [13, 64]—projection,
difference, and intersection—but these opera-
tions are very expensive when naively imple-
mented on top of OMEGA. For this reason we
will use a more efficient algorithm that is part
of the PIP library [29].

After this basic infrastructure has been imple-
mented, it is possible to transform the code by
selecting the transformations either by hand, or
let an expert system select the transformation
sequence based on some metric.

5.3 Optimization Heuristics

Cost models and optimization selection could
be implemented using different techniques.
Purely static methods are based on the evalu-
ation of statically computable properties, and
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are frequent in the classic heuristics for loop
transformations. New heuristic techniques in-
clude cost models based on performance mea-
surements either on abstract interpreters, sim-
ulators, or real hardware. The integration of
this information in the compiler can be based
on machine-learning techniques [1] operating
directly on the polyhedral representation. Hy-
brid techniques include a part of static analy-
sis in the classification or compression of the
data gathered by the dynamic measurement for
enabling the generalization of the decisions for
patterns contained in programs that were not
part of the training benchmark suite.

The analyzers for the profitability of a transfor-
mation sequence are critical to GRAPHITE and
have to be implemented just after the translators
in and out of the polyhedral form.

5.4 Integration of Array Regions

The computation of transformers and pre-
conditions as in PIPS, will be based on the
generic propagation engine [52], that has to be
extended to the interprocedural mode. In in-
traprocedural mode, the array regions informa-
tions is not very useful, because the data de-
pendence analysis is able to produce the same
accurate results.

The extraction of more precise memory ac-
cesses in interprocedural mode can be deferred
to a later stage of improvements. More im-
provements in the precision of the data depen-
dence analysis can be done in parallel with
the implementation of GRAPHITE as they will
also benefit to other optimization passes.

5.5 Numerical Domains Common Inter-
face

Up to now, we considered parameterized poly-
hedra (with integral points) as the foundation

for program abstractions, representations and
optimizations. In the search for faster compila-
tion techniques or more flexible representations
(beyond static control nests), we are interested
in several related numerical domains.

A common interface for numerical domains
computations has been designed in the APRON
project [6] that gathers several members of the
static analysis community in France: École
des mines de Paris, École normale supérieure,
École polytechnique, Vérimag, and IRISA. The
goal of this interface is to ease the use of differ-
ent numerical domains libraries with minimal
code changes. Several existing libraries that
implement intervals, octagons, polyhedra, lin-
ear and polynomial equalities, polynomial in-
equalities, etc., have been considered during the
design, and a reduced number of common op-
erations have been retained for the common in-
terface: these operations are those that occur
among all the domains, i.e. construction, meet,
join, projection, etc., for which every numerical
domain library is providing an implementation.

One of the main goals to the integration of this
common interface in GCC is to ease the in-
tegration of new developments from the static
analysis community. This interface is just a
contract between the user and the implementors
of the numerical domains, as the interface does
not include the code of the underlying libraries:
it is just a guarantee that a new numerical do-
main library will provide the basic operations.
For this reason we will have to either consider
the inclusion of the numerical domains libraries
in the core of GCC, or add a new dependence
on some library developed aside. In both cases
there is an overhead to the inclusion. We con-
sider the integration of the APRON common
interface only as a long term project, as we can
use the OMEGA library for precise operations,
and implement on the side the missing special-
ized algorithms provided by other libraries.

In the following, we separately describe some
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of the libraries that contain the main function-
alities needed for the GRAPHITE project.

5.5.1 OMEGA Library

The OMEGA Library [56] has been developed
for solving and reducing Presburger arithmetic
formulas. OMEGA is known to be expressive,
but it is doubly exponential in the worst case
(and often exponential in practice). This li-
brary has been already integrated to GCC, and
will also be part of the APRON common inter-
face, but it cannot (alone) face the complexity
of polyhedral code generation and dependence
analysis. Some specialized algorithms that are
faster in practice are used: as for example the
algorithm from the PIP library.

5.5.2 PIP Library

The PIP library [29] contains a specialized al-
gorithm to compute affine objective function or
lexicographical minima (or maxima) in convex
polyhedra. The main algorithms of this library
can be contributed to GCC as a refinement for
the operations that use OMEGA.

5.5.3 Octagons

A library that provides a domain for octagons
has been implemented by Antoine Miné [50,
51]. Its use in GRAPHITE would be just exper-
imental, yet has the potential to be a local multi-
criteria optimum in terms of accuracy, expres-
siveness (as a program representation vehicle)
and compilation speed. We wish to conduct ac-
tive research in this area, yet it is not on the
critical path.

5.5.4 Specific Algorithms for Polyhedra

There are some libraries that implement spe-
cialized algorithms that we will consider for the
reduced computation cost: we will consider the
integration of the Barvinok library [65] to count
in polynomial time the number of points in in-
teger polyhedra, but also some missing parts of
the PolyLib.

5.6 Maintenance of Components

The objective is to minimize the effort needed
to implement and to maintain the code: small-
est number of lines of code, fast algorithms
specialized to compilation, rewrite some ex-
isting code, clean up, etc, as for the integra-
tion of OMEGA. It will also be interesting to
benefit from the existence of active communi-
ties that develop some of the abstract numeri-
cal domains, and create dependences on outer
libraries when their license is compatible.

More concretely, all existing code for the
WRaP-IT project is licensed under the (L)GPL.
The code is mostly implemented in C, ex-
cept for parts of WRaP-IT (C++ and domain-
specific transformation language). As all this
code is specific to the internal representations
of the compiler, it will be integrated to GCC.
This will be the most costly part, in number of
lines of code, to be integrated in GCC.

The analysis of the profitability will be based
on libraries developed aside, and will contain
fewer lines of code. The APRON library will be
licensed under LGPL, and the libraries that will
work within this framework are either in the
public domain, as the OMEGA library, or under
GPL, as the Parma PolyLib [7], the PolyLib,
and Polka. We propose to keep all these li-
braries out of the core of GCC, for taking profit
of their active communities. When one of the
libraries is not maintained anymore, as in the


