
Induction Variable Analysis

with Delayed Abstractions

Sebastian Pop Albert Cohen Georges-André Silber

CRI, Mines Paris, Fontainebleau, France

ALCHEMY, INRIA Futurs, Orsay, France

November 8, 2005
HiPEAC 2005

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



What are the problems?

Is this Loop Parallel? Can we remove the condition?

k = 4;

for (i = 7; i < 10; i++) {
if (0 < k && k < 10)

A[k++] = A[k-3] + 1;

}

Need several informations

data dependences

number of iterations

induction variables (IV)

Analysis of induction variables is central to loop optimizations

constant/range propagation (check elimination)

IV selection

strength reduction

vectorization

parallelization

loop nest transformations

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



State of the Art for IV Analysis

on Static Single Assignment (SSA) (Wolfe 1992)

interpret first iterations (Haghighat Polychronopoulos 1992)

in production compiler MIPSPro (Liu Lo Chow 1996)

monotone evolutions (Wu Cohen Padua 2001)

chains of recurrences (van Engelen 2001)

hybrid static + dynamic (Rus Rauchwerger 2002)

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Example: SSA Representation

k = 4;
for (i = 7; i < 10; i++) {
if (0 < k && k < 10)
A[k++] = A[k-3] + 1;

}

SSA representation
−−−−−−−−−−−→

a = 7
b = 4
next:
c = phi (a, g) // “i”
d = phi (b, d, f) // “k”
if (c >= 10) goto end
if (d <= 0) goto next
if (d >= 10) goto next
e = d - 3
A[d] = A[e]
f = d + 1
g = c + 1
goto next

end:

SSA (Static Single Assignment) links scalar uses to defs.

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Open Problems on IV Analysis

Induction Variable (IV) Analysis

on low level representation (for modern LNO: McCAT, LLVM)

code scrambled by previous optimizations

typed scalar variables with overflow

low complexity for production compilers

provide the right abstraction level

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Why on low level? The case of GCC

C C++ Java F95 Ada

Asm

GIMPLE

Machine Description

Induction variable analysis
Data dependence analysis
Scalar and Loop Nest Optimizations

Front−ends

Middle−end

Back−end
RTL

GIMPLE

GENERIC

GIMPLE − SSA

Normalization

Normalization

Normalization

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Our Solution for IV Analysis

Linear unification + delayed abstraction selection

on low level SSA (three address code, loops as “if + gotos”)

avoid syntactic matching (reduces complexity of matching)

pattern matching on the SSA graph

representation: extension of chains of recurrences

complexity: linear in number of SSA scalar variables

fits the needs of several optimizations in GCC

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Example: chain of recurrence

next:
c = phi (7, g)
d = phi (4, d, f)
if (c >= 10) goto end
if (d <= 0) goto next
if (d >= 10) goto next
e = d - 3
A[d] = A[e]
f = d + 1
g = c + 1
goto next

end:

c starts at 7 with step 1

iteration

value

{ 7, +, 1 }

Detection of self defined variables

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Example: evolution envelope

next:
c = phi (7, g)
d = phi (4, d, f)
if (c >= 10) goto end
if (d <= 0) goto next
if (d >= 10) goto next
e = d - 3
A[d] = A[e]
f = d + 1
g = c + 1
goto next

end:

d starts at 4 with step 0 or 1

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

{ 4, +, [0 , 1] }

iteration

value

Detection of self defined variables

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Evolution envelopes

Extension of chains of recurrences to handle

symbolic expressions: trees of recurrences TREC a = {1,+, a}

scalar envelopes (sign, intervals, polyhedra) b = {0,+, [1, 3]}

scalar types and overflow effects (unsigned char){0,+, 1}

wrap-around and periodic evolutions c = (1, 2, 3, c)

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Algorithm extracting TREC

Lazy resolution of symbols

similar to linear unification (Patterson Wegman 1976)

partially solve recurrences (self defines)

rewriting = collapsing of cycles

compute symbolic of trip counts and inner loop effects

leave as many symbols as possible (lazy = precise)

Symbolic IV Representation

SSA

CongruencesConstraintsAffineAbstractions

Range Propagation Data DependenceUser Passes

Intervals

Symbolic Solver

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Why delaying abstractions?

Complex (partially solved) recurrences can be simplified (reduced
to closed form) by characterization of other variables.

Optimizers need different abstractions

IV opts: affine evolutions (constant base constant step)

vectorizer and pointer dependence analysis:

symbolic initial values (base pointer)
affine evolutions

value range propagation: estimation of #iters, intervals

Rule: keep precise symbolic representations as long as possible.
Instantiate symbols only when impossible to do otherwise.
User passes instantiate symbols to fit their needs.

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Outline

introduction and motivation

representations and delayed instantiations

types and overflows

application to data dependence analysis

experiments

future work

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Scalar Types and Overflow Effects

Is “c” affine?

int i;

unsigned char c = 0;

for (i = 0; i < 1000; i++)

c++;

No. “c” is periodic
c = {0, 1, . . . , 255, 0, 1, . . .}

Cast to types require (estimations of) number of iterations.

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Data Dependence Analysis on Delayed Abstractions

classic data dependence analyzers

Banerjee test (dependence vectors + dependence domains)

Omega test (solve a system of constraints)

Bounding the iterations domains:

exact #iter (first iteration satisfying exit conditions)

estimations from undefined behavior

array accesses should be in statically allocated area
(on SPEC2000.swim bound on #iter from size of static data)
overflowing of signed IV

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Example

if (x) N = 0;

else N = 10;

for (i = 4; i < 8; i++) {
int k = i + N;

A[k] = A[k - 4] + 1;

}
}

instantiating k gives [4, 17]
[4, 17] ∩ [0, 13] = [4, 13]: failed to prove independence

delay instantiation to data dependence analysis time
[4 + N, 7 + N] ∩ [N, 3 + N] = ∅ proved independent

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Experiments

Base and peak compilers:

GCC version 4.1 as of 2005-Nov-04

options: “-O3 -msse2 -ftree-vectorize -ftree-loop-linear”

base: our analyzer is disabled

peak: GCC with no modifications

Benchmarks:

CPU2000 and JavaGrande on AMD64 3700 Linux 2.6.13

MiBench on ARM XScale-IXP42x 133 Linux 2.6.12

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Experiments

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Experiments

RayTracer: 3871.3 vs 6497.26 (pixels/s)

RayTracer: 3989.09 vs 5186.18 (pixels/s)

Euler: 214166.67 vs 242101.45 (gridpoints/s)

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



Experiments

Susan1: 0.110 vs 0.105 (s) Susan2: 1.313 vs 1.210 (s)

Stringsearch2: 0.067 vs 0.062 (s)

Gsm1: 0.32 vs 0.37 (s) Gsm2: 15.56 vs 18.35 (s)

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions



What’s Next?

Analyzer is fast, brings good results,
implementation is stable: 1 year in production

chains of recurrences = subset of the SSA graphs
Abstractions over SSA graphs: see our paper at CPC’06
(http://cri.ensmp.fr/people/pop/papers/cpc2006.pdf)

Future work:

improving the analyzers case by case (missed optimizations)

data dependences on abstractions

more optimizations (parallelization)

hybrid static + dynamic optimizations

Sebastian Pop, Albert Cohen, Georges-André Silber Induction Variable Analysis with Delayed Abstractions


