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GCC : GNU Compiler Collection
m C, C++, Java, Ada, Frotran, Mercury, ...

m Generates code for 43 different architectures:
1386, 1a64, m68K, sparc, ...

= Main compiler in GNU world
m Apple’s system compiler.
m [ndustrial compiller.
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Exemple:
cross-compilation

m Suppose that | want to generate Sparc code:

—Larget=sparc
m | build GCC on my laptop: -build=i586

= and | run the compiler on my laptop:
—host=1586

../gcc/configure —-target=sparc -build=i586
—host=1586
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Exemple:
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GCC
1. Select SPARC machine
[gcc ] [g++ ] [ gcj ] [ g77] Front—ends description
Machine Description
/ N
SPARC specific

RTL Back—end

- J
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Exemple:
cross-compilation

GCC
1. Select SPARC machine
[ gcc ] [ g++ ] [ gcj ] [ g77] Front—ends description
\L Machine Description 2. Compile
/ N
SPARC specific

RTL Back—end

- J

v

SPARC assembler code
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RTL Optimizations

m An optimization pass optimizes all front-ends.
= Machine dependent optimizations.

m [ypes and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>
m |[dea: we'd like to have
= architecture independent optimizations.

= on high level representations.
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Abstract Syntax
Trees

m Simple linked list for statement nodes.

= Manipulation of nodes through a macro
Interface: TREE_CHAIN, TREE_OPERAND,
TREE_CODE,

m Data structures hidden.
m AST nodes are typed:

allows tree-checking during development.
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a=(—b)*7;
X = y+7;

AST: example

~ TREE_CHAIN (S)
(EXPR_STMT )

a=(-—b) *7;

> (EXPR_STMT)

X = y+Z;
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a=(—b)*7;
X = y+7;

AST: example

(EXPR_STMT)

EXPR_STMT_EXPR (S)

(MODIFY_EXPR)

> (EXPR_STMT)
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AST: example

a=(—-b) *7; (EXPR_STMT) = (EXPR_STMT)
X = y+Z;

(MODIFY_EXPR)

TREE_OPERAND (M, 0) TREE_OPERAND (M, 1)

( VAR_DECL ) (MULT_EXPR)

Code optimization in GCC —p.9



AST: example

a=(—-b) *7; (EXPR_STMT) = (EXPR_STMT)
X = y+Z;

(MODIFY_EXPR)

( VAR_DECL ) (MULT_E?(PR)
DECL_NAME (V)
a 7
(IDENTIFIER_NODE ) (PREDECREMENT_EXPR ) (INTEGER_CST)
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AST: example

a=(—-b) *7; (EXPR_STMT) = (EXPR_STMT)
X = y+Z;

(MODIFY_EXPR)

( VAR_DECL ) (MULT_E?(PR)
a 7
(IDENTIFIER_NODE ) (PREDECREMENT_EXPR ) (INTEGER_CST)

( VAR_DECL )

b 1
(DENTIFIER_NODE ) (INTEGER_CST
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Simple: overview

m SIMPLE’s grammar defines an imperative
normal form:

= Reduced number of expressions.
= Reduced number of control structures.

m SIMPLE AST has a regular structure.
m Systematic AST analysis is possible.

= Common intermediate representation for all
front ends.
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a = —-b*7;

b=b-1;
a=b*’7;
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Simple: exemple

a

__b*7;

b=b-1;
a=b*’7;

1f
{

}

J

(1++ && ——-k)

=f (1+3*k) ;
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Simple: exemple

__b*7;

1f

(1++ && ——-k)

I=f (1+3*k) ;
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Simple: exemple

while (i++ && ——k)
{
A[i1]=A[1+3*k];
}
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Simple: exemple

while (i++ && ——k)
{
A[i1]=A[1+3*k];
}

if (i)
{
k=k-1;
if (k)
while (1)

{
i=1+1;
T1=3*k;
T2=1+T1;
A[1]=A[T2];
if (1)

{
k=k-1;
1f(k
i
else

break;

k-1
(k)
=i+

H- Hhol

1;

else
break;

i=i+1;
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(Front—end )

[ Analyses ) [ Optimizations

Call graph Inlining
Recursivity suppression
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Call Graph

m (node, edge) => (declaration, call)
m Graph representation:
= pointers: P-Space.

= in a file under parenthesized form:
EXP-Space.

m Use metrics for controlling inlining.

m GCC’s analysis is limited to a single
translation unit.
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Call Graph : solution

m Perform call graph optimizations outside
GCC.
= Problems :

= Extract information, decide, then apply
optimizations: 3 passes.

= Knowledge base’s size.
= What informations to be stored in KB?
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Analyses Optimizations
Call graph Inlining
Control flow graph Recursivity suppression
<=

CFG normalization
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CFG Normalization

m Suppress irregularities from control flow:
goto, break, continue.

m CFG normalization is based on Simple.

= Why normalizing CFG?

= It is difficult to optimize programs
containing gotos.

m Break and continue translation to RTL
generates gotos.

= Simplification generates irregular code.



Flow Out

Loop:

Condition

Loop’s body




Flow Out

Loop:

Condition =—> Normal exit

Loop’s body

if (¢)
break; ——>> Irregular exit
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Flow Out

Loop:

b_c¢ & Condition —=> Normal exit

Loop’s body

if (¢) {b_c = true;}
else {

=
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Break Elimination

while (a)
{

stmtl;
if (b)
break;

stmt?2;
}




Break Elimination

mtc b=0;
while (c_b==0 && a)
{

stmtl;
if (b)
{c_b=1;}

else

{
stmt?2;

J
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Goto Elimination

goto

=
= —

=
|
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Loop Optimizations

m Loops are normalized after detection of
induction variables.

m Geometric representation of array accesses
can be then constructed.

m Dependence analysis is necessary for
validating loop transformations.

m [hese points are still under development.
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