
Code optimization in GCC
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Introduction
GCC : GNU Compiler Collection

C, C++, Java, Ada, Frotran, Mercury, . . .

Generates code for 43 different architectures:
i386, ia64, m68k, sparc, . . .

Main compiler in GNU world

Apple’s system compiler.

Industrial compiler.
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Exemple:
cross-compilation

Suppose that I want to generate Sparc code:
-target=sparc

I build GCC on my laptop: -build=i586

and I run the compiler on my laptop:
-host=i586
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Exemple:
cross-compilation

Suppose that I want to generate Sparc code:
-target=sparc

I build GCC on my laptop: -build=i586

and I run the compiler on my laptop:
-host=i586

../gcc/configure -target=sparc -build=i586

-host=i586
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Exemple:
cross-compilation

gcc g++ gcj g77 Front−ends

RTL Back−end

GCC

sparc Machine Description

1. Select SPARC machine 

SPARC specific

SPARC assembler code

description

2. Compile
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RTL Optimizations
An optimization pass optimizes all front-ends.

Machine dependent optimizations.

Types and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

Idea: we’d like to have
architecture independent optimizations.
on high level representations.
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Intermediate
Representations

GCC
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gcc g++ gcj g77

Machine description
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Intermediate
Representations

GCC

Mid−RTL

RTL

gcc g++ gcj g77

Simple

Machine description

Simplify

Translation

Progressive transition from AST to RTL 
Architecture independent IR

Imperative Normal Form

Language independent representation
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Abstract Syntax
Trees

Simple linked list for statement nodes.

Manipulation of nodes through a macro
interface: TREE_CHAIN, TREE_OPERAND,

TREE_CODE, ...

Data structures hidden.

AST nodes are typed:
allows tree-checking during development.
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AST: example

a = (−−b) * 7;
x = y+z;
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AST: example

EXPR_STMT EXPR_STMT
TREE_CHAIN (S)a = (−−b) * 7;

x = y+z; a = (−−b) * 7; x = y+z;
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AST: example

EXPR_STMT

MODIFY_EXPR

EXPR_STMTa = (−−b) * 7;
x = y+z;

EXPR_STMT_EXPR (S)
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AST: example

EXPR_STMT

MULT_EXPR

MODIFY_EXPR

EXPR_STMT

VAR_DECL

TREE_OPERAND (M, 1)

a = (−−b) * 7;
x = y+z;

TREE_OPERAND (M, 0)
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AST: example

EXPR_STMT

PREDECREMENT_EXPR

MULT_EXPR

IDENTIFIER_NODE
a

INTEGER_CST
7

MODIFY_EXPR

EXPR_STMT

VAR_DECL

a = (−−b) * 7;
x = y+z;

DECL_NAME (V)
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EXPR_STMT

PREDECREMENT_EXPR

MULT_EXPR

IDENTIFIER_NODE
a

INTEGER_CST
7

MODIFY_EXPR

EXPR_STMT

IDENTIFIER_NODE
b

INTEGER_CST
1

VAR_DECL

VAR_DECL

a = (−−b) * 7;
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Simple: overview
SIMPLE’s grammar defines an imperative
normal form:

Reduced number of expressions.
Reduced number of control structures.

SIMPLE AST has a regular structure.

Systematic AST analysis is possible.

Common intermediate representation for all
front ends.
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a = −−b*7;
a=b*7;
b=b−1;
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Simple: exemple

a = −−b*7;
a=b*7;
b=b−1;

if (i++ && −−k)
{

}
j=f(i+3*k);
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Simple: exemple

a = −−b*7;
a=b*7;
b=b−1;

if (i++ && −−k)
{

}
j=f(i+3*k);

if (i)
{
k=k−1;
if(k)

else

i=i+1;

{
i=i+1;
T1=3*k;
T2=i+T1;
j=f(T2);

}

i=i+1;
}
else
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Simple: exemple

{

}
A[i]=A[i+3*k];

while(i++ && −−k)
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Simple: exemple
if(i)
{
k=k−1;
if (k)
while(1)
{
i=i+1;
T1=3*k;
T2=i+T1;
A[i]=A[T2];
if(i)
{
k=k−1;
if(k)
i=i+1;
else
break;

}
else
break;

}
}

i=i+1;

{

}
A[i]=A[i+3*k];

while(i++ && −−k)
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An optimizing
compiler

Front−end

Source code

Analyses Optimizations
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An optimizing
compiler

Front−end

Inlining
Analyses

Source code

Call graph
Recursivity suppression

Optimizations
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Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14



Call Graph
(node, edge) => (declaration, call)

Graph representation:

pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14



Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.

in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14



Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14



Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14



Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14



Call Graph : solution
Perform call graph optimizations outside
GCC.

Problems :
Extract information, decide, then apply
optimizations: 3 passes.
Knowledge base’s size.
What informations to be stored in KB?
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compiler

Front−end

Inlining
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CFG Normalization
Suppress irregularities from control flow:
goto, break, continue.

CFG normalization is based on Simple.

Why normalizing CFG?
It is difficult to optimize programs
containing gotos.
Break and continue translation to RTL
generates gotos.
Simplification generates irregular code.
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Flow Out

Condition

Loop’s body

Loop:
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Flow Out

if (c)
break;

Condition Normal exit

Irregular exit

Loop:

Loop’s body
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Flow Out

else {

}
...

if (c) {b_c = true;}

Loop’s body

Loop:

b_c & Condition Normal exit
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Break Elimination

while (a)

stmt1;
{

if (b)
break;

stmt2;
}
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Break Elimination

int c_b = 0;

stmt1;
{

if (b)
{c_b = 1;}
else

}

{

}
stmt2;

while (c_b == 0 && a)
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Goto Elimination

goto

label
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An optimizing
compiler

Front−end
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Loop unrolling / blocking / fusion ...
CFG normalization

Spatial / temporal  locality
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Array access functions

Dependence analysis 
Pointers and alias analysis
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Loop Optimizations
Loops are normalized after detection of
induction variables.

Geometric representation of array accesses
can be then constructed.

Dependence analysis is necessary for
validating loop transformations.

These points are still under development.
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An optimizing
compiler

Front−end

SSA

Inlining

Loop unrolling / blocking / fusion ...

Recursivity suppression
CFG normalization

Spatial / temporal  locality

Call graph
Control flow graph

Induction variables
Array access functions
Pointers and alias analysis
Dependence analysis 

Source code

OptimizationsAnalyses

Unparser

Optimized code
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