Code optimization in GCC

Sébastian Pop

Université Louis Pasteur
Strasbourg
FRANCE

Code optimization in GCC — p.1

Introduction

GCC : GNU Compiler Collection
m C, C++, Java, Ada, Frotran, Mercury, ...

Code optimization in GCC —p.2

Introduction

GCC : GNU Compiler Collection
m C, C++, Java, Ada, Frotran, Mercury, ...

m Generates code for 43 different architectures:
1386, 1a64, m68K, sparc, ...

Introduction

GCC : GNU Compiler Collection
m C, C++, Java, Ada, Frotran, Mercury, ...

m Generates code for 43 different architectures:
1386, 1a64, m68K, sparc, ...

= Main compiler in GNU world

Introduction

GCC : GNU Compiler Collection
m C, C++, Java, Ada, Frotran, Mercury, ...

m Generates code for 43 different architectures:
1386, 1a64, m68K, sparc, ...

= Main compiler in GNU world
m Apple’s system compiler.

Introduction

GCC : GNU Compiler Collection
m C, C++, Java, Ada, Frotran, Mercury, ...

m Generates code for 43 different architectures:
1386, 1a64, m68K, sparc, ...

= Main compiler in GNU world
m Apple’s system compiler.
m [ndustrial compiller.

Front-ends /
back-end

GCC

Front-ends /
back-end

GCC

(e) (o) (w9) () | Fromeenss

Front-ends /
back-end

[ia64] [m68k] [sparc] Machine Description

Front-ends /
back-end

Front-ends /
back-end

" GCC)
[gcc] [g++] [gcj] [g77] Front—ends

[386] [ia64] [m68k] [sparc] Machine Description

RTL Back—end

GAS } Assembler

Code optimization in GCC —p.3

Exemple:
cross-compilation

m Suppose that | want to generate Sparc code:

—Larget=sparc

Exemple:
cross-compilation

m Suppose that | want to generate Sparc code:

—Larget=sparc

m | build GCC on my laptop: -build=i586

Exemple:
cross-compilation

m Suppose that | want to generate Sparc code:

—Larget=sparc
m | build GCC on my laptop: -build=i586

= and | run the compiler on my laptop:
—host=1586

Exemple:
cross-compilation

m Suppose that | want to generate Sparc code:

—Larget=sparc
m | build GCC on my laptop: -build=i586

= and | run the compiler on my laptop:
—host=1586

../gcc/configure —-target=sparc -build=i586
—host=1586

Code optimization in GCC —p.4

Exemple:
cross-compilation

GAS } Assembler

Exemple:
cross-compilation

GCC
1. Select SPARC machine
[gcc] [g++] [gcj] [g77] Front—ends description
Machine Description
/ N
SPARC specific

RTL Back—end

- J

Code optimization in GCC — p.5

Exemple:
cross-compilation

GCC
1. Select SPARC machine
[gcc] [g++] [gcj] [g77] Front—ends description
\L Machine Description 2. Compile
/ N
SPARC specific

RTL Back—end

- J

v

SPARC assembler code

Code optimization in GCC — p.5

RTL Optimizations

m An optimization pass optimizes all front-ends.

RTL Optimizations

m An optimization pass optimizes all front-ends.
= Machine dependent optimizations.

RTL Optimizations

m An optimization pass optimizes all front-ends.
= Machine dependent optimizations.

m [ypes and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

Code optimization in GCC —p.6

RTL Optimizations

m An optimization pass optimizes all front-ends.
= Machine dependent optimizations.

m [ypes and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

m |ldea: we'd like to have

Code optimization in GCC —p.6

RTL Optimizations

m An optimization pass optimizes all front-ends.
= Machine dependent optimizations.

m [ypes and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

m |[dea: we'd like to have

= architecture independent optimizations.

Code optimization in GCC —p.6

RTL Optimizations

m An optimization pass optimizes all front-ends.
= Machine dependent optimizations.

m [ypes and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>
m |[dea: we'd like to have
= architecture independent optimizations.

= on high level representations.

Code optimization in GCC —p.6

Intermediate
Representations

GCC

EREN TR

~

Translation follows machines specificities

Machine description

Code

optim

ization in GCC —p.7

Intermediate
Representations

~

GCC

oo) (o) (o) (Lem)

Translation

y y y Y
Mid-RTL

Progressive transition from AST to RTL

Architecture independent IR

$ Machine description

RTL

Code optimization in GCC —p.7

Intermediate
Representations

GCC

oo) (o) (o) (Lem)

Simplify
Simple
l Translation
[Mid-RTL }

$ Machine description

[RTL

Imperative Normal Form

Language independent representation

Progressive transition from AST to RTL

Architecture independent IR

Code optimization in GCC —p.7

Abstract Syntax
Trees

m Simple linked list for statement nodes.

Abstract Syntax
Trees

m Simple linked list for statement nodes.

= Manipulation of nodes through a macro
Interface: TREE_CHAIN, TREE_OPERAND,
TREE_CODE,

Code optim

ization in GCC — p.8

Abstract Syntax
Trees

m Simple linked list for statement nodes.

= Manipulation of nodes through a macro
Interface: TREE_CHAIN, TREE_OPERAND,
TREE_CODE,

m Data structures hidden.

Code optim

ization in GCC — p.8

Abstract Syntax
Trees

m Simple linked list for statement nodes.

= Manipulation of nodes through a macro
Interface: TREE_CHAIN, TREE_OPERAND,
TREE_CODE,

m Data structures hidden.
m AST nodes are typed:

allows tree-checking during development.

Code optim

ization in GCC — p.8

a=(—b)*7;
X = y+7;

AST: example

Code optimization in GCC —p.9

a=(—b)*7;
X = y+7;

AST: example

(EXPR_STMT)
a=(——b)*7;

Code optimization in GCC —p.9

a=(—b)*7;
X = y+7;

AST: example

~ TREE_CHAIN (S)
(EXPR_STMT)

a=(-—b) *7;

> (EXPR_STMT)

X = y+Z;

Code optimization in GCC —p.9

a=(—b)*7;
X = y+7;

AST: example

(EXPR_STMT)

EXPR_STMT_EXPR (S)

(MODIFY_EXPR)

> (EXPR_STMT)

Code optimization in GCC —p.9

AST: example

a=(—-b) *7; (EXPR_STMT) = (EXPR_STMT)
X = y+Z;

(MODIFY_EXPR)

TREE_OPERAND (M, 0) TREE_OPERAND (M, 1)

(VAR_DECL) (MULT_EXPR)

Code optimization in GCC —p.9

AST: example

a=(—-b) *7; (EXPR_STMT) = (EXPR_STMT)
X = y+Z;

(MODIFY_EXPR)

(VAR_DECL) (MULT_E?(PR)
DECL_NAME (V)
a 7
(IDENTIFIER_NODE) (PREDECREMENT_EXPR) (INTEGER_CST)

Code optimization in GCC —p.9

AST: example

a=(—-b) *7; (EXPR_STMT) = (EXPR_STMT)
X = y+Z;

(MODIFY_EXPR)

(VAR_DECL) (MULT_E?(PR)
a 7
(IDENTIFIER_NODE) (PREDECREMENT_EXPR) (INTEGER_CST)

(VAR_DECL)

b 1
(DENTIFIER_NODE) (INTEGER_CST

Code optimization in GCC —p.9

Simple: overview

m SIMPLE’s grammar defines an imperative
normal form:

Simple: overview

m SIMPLE’s grammar defines an imperative
normal form:

= Reduced number of expressions.

Simple: overview

m SIMPLE’s grammar defines an imperative
normal form:

= Reduced number of expressions.
= Reduced number of control structures.

Simple: overview

m SIMPLE’s grammar defines an imperative
normal form:

= Reduced number of expressions.
= Reduced number of control structures.

m SIMPLE AST has a regular structure.

Simple: overview

m SIMPLE’s grammar defines an imperative
normal form:

= Reduced number of expressions.
= Reduced number of control structures.

m SIMPLE AST has a regular structure.
m Systematic AST analysis is possible.

Simple: overview

m SIMPLE’s grammar defines an imperative
normal form:

= Reduced number of expressions.
= Reduced number of control structures.

m SIMPLE AST has a regular structure.
m Systematic AST analysis is possible.

= Common intermediate representation for all
front ends.

Simple: exemple

a

__b*7;

Simple: exemple

a = —-b*7;

b=b-1;
a=b*’7;

Code optimization in GCC —p.11

Simple: exemple

a

__b*7;

b=b-1;
a=b*’7;

1f
{

}

J

(1++ && ——-k)

=f (1+3*k) ;

Code optimization in GCC —p.11

Simple: exemple

__b*7;

1f

(1++ && ——-k)

I=f (1+3*k) ;

Code optimization in GCC —p.11

Simple: exemple

while (i++ && ——k)
{
A[i1]=A[1+3*k];
}

Code optimization in GCC —p.12

Simple: exemple

while (i++ && ——k)
{
A[i1]=A[1+3*k];
}

if (i)
{
k=k-1;
if (k)
while (1)

{
i=1+1;
T1=3*k;
T2=1+T1;
A[1]=A[T2];
if (1)

{
k=k-1;
1f(k
i
else

break;

k-1
(k)
=i+

H- Hhol

1;

else
break;

i=i+1;

Code optimization in GCC —p.12

An optimizing
compiler

Source code

(Front—end)

Analyses

Optimizations

Code optimization in GCC — p.13

An optimizing
compiler

Source code

(Front—end)

[Analyses) [Optimizations

Call graph Inlining
Recursivity suppression

Code optimization in GCC — p.13

Call Graph

= (node, edge) => (declaration, call)

Call Graph

m (node, edge) => (declaration, call)
m Graph representation:

Call Graph

= (node, edge) => (declaration, call)

m Graph representation:
= pointers: P-Space.

Call Graph

= (node, edge) => (declaration, call)

m Graph representation:
= pointers: P-Space.

= in a file under parenthesized form:
EXP-Space.

Call Graph

m (node, edge) => (declaration, call)
m Graph representation:
= pointers: P-Space.

= in a file under parenthesized form:
EXP-Space.

m Use metrics for controlling inlining.

Call Graph

m (node, edge) => (declaration, call)
m Graph representation:
= pointers: P-Space.

= in a file under parenthesized form:
EXP-Space.

m Use metrics for controlling inlining.

m GCC’s analysis is limited to a single
translation unit.

Call Graph : solution

m Perform call graph optimizations outside
GCC.

Call Graph : solution

m Perform call graph optimizations outside
GCC.

m Problems :

Call Graph : solution

m Perform call graph optimizations outside
GCC.
= Problems :

= Extract information, decide, then apply
optimizations: 3 passes.

Call Graph : solution

m Perform call graph optimizations outside
GCC.
= Problems :

= Extract information, decide, then apply
optimizations: 3 passes.

= Knowledge base’s size.

Call Graph : solution

m Perform call graph optimizations outside
GCC.
= Problems :

= Extract information, decide, then apply
optimizations: 3 passes.

= Knowledge base’s size.
= What informations to be stored in KB?

An optimizing
compiler

Source code

(Front—end)

[Analyses) [Optimizations

Call graph Inlining
Recursivity suppression

Code optimization in GCC — p.16

An optimizing
compiler

Source code

(Front—end)

Analyses Optimizations
Call graph Inlining
Control flow graph Recursivity suppression
<=

CFG normalization

Code optimization in GCC — p.16

CFG Normalization

m Suppress irregularities from control flow:
goto, break, continue.

CFG Normalization

m Suppress irregularities from control flow:
goto, break, continue.

m CFG normalization is based on Simple.

CFG Normalization

m Suppress irregularities from control flow:
goto, break, continue.

m CFG normalization is based on Simple.
= Why normalizing CFG?

CFG Normalization

m Suppress irregularities from control flow:
goto, break, continue.

m CFG normalization is based on Simple.

= Why normalizing CFG?

= It is difficult to optimize programs
containing gotos.

CFG Normalization

m Suppress irregularities from control flow:
goto, break, continue.

m CFG normalization is based on Simple.

= Why normalizing CFG?

= It is difficult to optimize programs
containing gotos.

m Break and continue translation to RTL
generates gotos.

CFG Normalization

m Suppress irregularities from control flow:
goto, break, continue.

m CFG normalization is based on Simple.

= Why normalizing CFG?

= It is difficult to optimize programs
containing gotos.

m Break and continue translation to RTL
generates gotos.

= Simplification generates irregular code.

Flow Out

Loop:

Condition

Loop’s body

Flow Out

Loop:

Condition =—> Normal exit

Loop’s body

if (¢)
break; ——>> Irregular exit

Code optimization in GCC — p.18

Flow Out

Loop:

b_c¢ & Condition —=> Normal exit

Loop’s body

if (¢) {b_c = true;}
else {

=

Code optimization in GCC — p.18

Break Elimination

while (a)
{

stmtl;
if (b)
break;

stmt?2;
}

Break Elimination

mtc b=0;
while (c_b==0 && a)
{

stmtl;
if (b)
{c_b=1;}

else

{
stmt?2;

J

Goto Elimination

label <

Goto Elimination

label

Goto Elimination

label

Goto Elimination

label

Goto Elimination

goto

=
= —

=
|

1abel<

An optimizing
compiler

Source code

(Front—end)

Analyses Optimizations
Call graph Inlining
Control flow graph Recursivity suppression
<=

CFG normalization

Code optimization in GCC — p.21

An optimizing
compiler

Source code

(Front—end)

[Analyses) [Optimizations)
Call graph Inlining
Control flow graph Recursivity suppression
<=

CFG normalization
Loop unrolling / blocking / fusion ...
Spatial / temporal locality

Code optimization in GCC — p.21

An optimizing
compiler

Source code

(Front—end)

Analyses

Optimizations

Call graph

Control flow graph

SSA

Induction variables

Array access functions
Pointers and alias analysis

Dependence analysis

Inlining

Recursivity suppression

CFG normalization

Loop unrolling / blocking / fusion ...
Spatial / temporal locality

Code optimization in GCC — p.21

Loop Optimizations

m Loops are normalized after detection of
induction variables.

Loop Optimizations

m Loops are normalized after detection of
induction variables.

m Geometric representation of array accesses
can be then constructed.

Code optimization in GCC — p.22

Loop Optimizations

m Loops are normalized after detection of
induction variables.

m Geometric representation of array accesses
can be then constructed.

m Dependence analysis is necessary for
validating loop transformations.

Code optim

ization in GCC —p.22

Loop Optimizations

m Loops are normalized after detection of
induction variables.

m Geometric representation of array accesses
can be then constructed.

m Dependence analysis is necessary for
validating loop transformations.

m [hese points are still under development.

Code optim

ization in GCC —p.22

An optimizing
compiler

Source code

(Front—end)

Analyses

Optimizations

Call graph

Control flow graph

SSA

Induction variables

Array access functions
Pointers and alias analysis

Dependence analysis

Inlining

Recursivity suppression

CFG normalization

Loop unrolling / blocking / fusion ...
Spatial / temporal locality

Code optimization in GCC — p.23

An optimizing
compiler

Source code

(Front—end)

Optimized code

(Unparser)

Analyses

Optimizations

Call graph

Control flow graph

SSA

Induction variables

Array access functions
Pointers and alias analysis

Dependence analysis

Inlining

Recursivity suppression

CFG normalization

Loop unrolling / blocking / fusion ...
Spatial / temporal locality

Code optimization in GCC — p.23

Remerciements

Merci a tous ceux qui ont contribué a la réussite
de ce projet :

Code optimization in GCC — p.24

Remerciements

Merci a tous ceux qui ont contribué a la réussite
de ce projet :

m I'équipe ICPS pour I'excellente ambiance,

= Philippe Clauss, Vincent Loechner et Benoit
Meister pour leur travail de recherche,

m Catherine Mongenet pour le cours de compill,

m Fréderic Wagner et Diego Novillo pour
m’avoir accompagné dans ce projet,

m the FSF for GCC, Debian, Linux and Prosper
m et ma famille.

Code optimization in GCC — p.24

	Introduction
	Front-ends / back-end
	Exemple: cross-compilation
	Exemple: cross-compilation
	RTL Optimizations
	Intermediate Representations
	Abstract Syntax Trees
	AST: example
	Simple: overview
	Simple: exemple
	Simple: exemple
	An optimizing compiler
	Call Graph
	Call Graph : solution
	An optimizing compiler
	CFG Normalization
	Flow Out
	Break Elimination
	Goto Elimination
	An optimizing compiler
	Loop Optimizations
	An optimizing compiler
	Remerciements

