
Code optimization in GCC
Sébastian Pop

Université Louis Pasteur

Strasbourg

FRANCE

Code optimization in GCC – p.1

Introduction
GCC : GNU Compiler Collection

C, C++, Java, Ada, Frotran, Mercury, . . .

Generates code for 43 different architectures:
i386, ia64, m68k, sparc, . . .

Main compiler in GNU world

Apple’s system compiler.

Industrial compiler.

Code optimization in GCC – p.2

Introduction
GCC : GNU Compiler Collection

C, C++, Java, Ada, Frotran, Mercury, . . .

Generates code for 43 different architectures:
i386, ia64, m68k, sparc, . . .

Main compiler in GNU world

Apple’s system compiler.

Industrial compiler.

Code optimization in GCC – p.2

Introduction
GCC : GNU Compiler Collection

C, C++, Java, Ada, Frotran, Mercury, . . .

Generates code for 43 different architectures:
i386, ia64, m68k, sparc, . . .

Main compiler in GNU world

Apple’s system compiler.

Industrial compiler.

Code optimization in GCC – p.2

Introduction
GCC : GNU Compiler Collection

C, C++, Java, Ada, Frotran, Mercury, . . .

Generates code for 43 different architectures:
i386, ia64, m68k, sparc, . . .

Main compiler in GNU world

Apple’s system compiler.

Industrial compiler.

Code optimization in GCC – p.2

Introduction
GCC : GNU Compiler Collection

C, C++, Java, Ada, Frotran, Mercury, . . .

Generates code for 43 different architectures:
i386, ia64, m68k, sparc, . . .

Main compiler in GNU world

Apple’s system compiler.

Industrial compiler.

Code optimization in GCC – p.2

Front-ends /
back-end

GCC

Code optimization in GCC – p.3

Front-ends /
back-end

gcc g++ gcj g77 Front−ends

GCC

Code optimization in GCC – p.3

Front-ends /
back-end

gcc g++ gcj g77 Front−ends

i386 ia64 m68k sparc Machine Description

GCC

Code optimization in GCC – p.3

Front-ends /
back-end

gcc g++ gcj g77 Front−ends

i386 ia64 m68k sparc Machine Description

RTL Back−end

GCC

Code optimization in GCC – p.3

Front-ends /
back-end

gcc g++ gcj g77 Front−ends

i386 ia64 m68k sparc Machine Description

RTL Back−end

GCC

GAS Assembler

Code optimization in GCC – p.3

Exemple:
cross-compilation

Suppose that I want to generate Sparc code:
-target=sparc

I build GCC on my laptop: -build=i586

and I run the compiler on my laptop:
-host=i586

Code optimization in GCC – p.4

Exemple:
cross-compilation

Suppose that I want to generate Sparc code:
-target=sparc

I build GCC on my laptop: -build=i586

and I run the compiler on my laptop:
-host=i586

Code optimization in GCC – p.4

Exemple:
cross-compilation

Suppose that I want to generate Sparc code:
-target=sparc

I build GCC on my laptop: -build=i586

and I run the compiler on my laptop:
-host=i586

Code optimization in GCC – p.4

Exemple:
cross-compilation

Suppose that I want to generate Sparc code:
-target=sparc

I build GCC on my laptop: -build=i586

and I run the compiler on my laptop:
-host=i586

../gcc/configure -target=sparc -build=i586

-host=i586

Code optimization in GCC – p.4

Exemple:
cross-compilation

gcc g++ gcj g77 Front−ends

i386 ia64 m68k sparc Machine Description

RTL Back−end

GCC

GAS Assembler

Code optimization in GCC – p.5

Exemple:
cross-compilation

gcc g++ gcj g77 Front−ends

RTL Back−end

GCC

sparc Machine Description

1. Select SPARC machine
description

SPARC specific

Code optimization in GCC – p.5

Exemple:
cross-compilation

gcc g++ gcj g77 Front−ends

RTL Back−end

GCC

sparc Machine Description

1. Select SPARC machine

SPARC specific

SPARC assembler code

description

2. Compile

Code optimization in GCC – p.5

RTL Optimizations
An optimization pass optimizes all front-ends.

Machine dependent optimizations.

Types and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

Idea: we’d like to have
architecture independent optimizations.
on high level representations.

Code optimization in GCC – p.6

RTL Optimizations
An optimization pass optimizes all front-ends.

Machine dependent optimizations.

Types and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

Idea: we’d like to have
architecture independent optimizations.
on high level representations.

Code optimization in GCC – p.6

RTL Optimizations
An optimization pass optimizes all front-ends.

Machine dependent optimizations.

Types and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

Idea: we’d like to have
architecture independent optimizations.
on high level representations.

Code optimization in GCC – p.6

RTL Optimizations
An optimization pass optimizes all front-ends.

Machine dependent optimizations.

Types and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

Idea: we’d like to have

architecture independent optimizations.
on high level representations.

Code optimization in GCC – p.6

RTL Optimizations
An optimization pass optimizes all front-ends.

Machine dependent optimizations.

Types and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

Idea: we’d like to have
architecture independent optimizations.

on high level representations.

Code optimization in GCC – p.6

RTL Optimizations
An optimization pass optimizes all front-ends.

Machine dependent optimizations.

Types and memory structures after lowering
to RTL contain less information.
Memory accesses are under their canonical form:
<start adress + offset>

Idea: we’d like to have
architecture independent optimizations.
on high level representations.

Code optimization in GCC – p.6

Intermediate
Representations

GCC

RTL

gcc g++ gcj g77

Machine description
Translation follows machines specificities

Code optimization in GCC – p.7

Intermediate
Representations

GCC

Mid−RTL

RTL

gcc g++ gcj g77

Machine description

Translation

Progressive transition from AST to RTL
Architecture independent IR

Code optimization in GCC – p.7

Intermediate
Representations

GCC

Mid−RTL

RTL

gcc g++ gcj g77

Simple

Machine description

Simplify

Translation

Progressive transition from AST to RTL
Architecture independent IR

Imperative Normal Form

Language independent representation

Code optimization in GCC – p.7

Abstract Syntax
Trees

Simple linked list for statement nodes.

Manipulation of nodes through a macro
interface: TREE_CHAIN, TREE_OPERAND,

TREE_CODE, ...

Data structures hidden.

AST nodes are typed:
allows tree-checking during development.

Code optimization in GCC – p.8

Abstract Syntax
Trees

Simple linked list for statement nodes.

Manipulation of nodes through a macro
interface: TREE_CHAIN, TREE_OPERAND,

TREE_CODE, ...

Data structures hidden.

AST nodes are typed:
allows tree-checking during development.

Code optimization in GCC – p.8

Abstract Syntax
Trees

Simple linked list for statement nodes.

Manipulation of nodes through a macro
interface: TREE_CHAIN, TREE_OPERAND,

TREE_CODE, ...

Data structures hidden.

AST nodes are typed:
allows tree-checking during development.

Code optimization in GCC – p.8

Abstract Syntax
Trees

Simple linked list for statement nodes.

Manipulation of nodes through a macro
interface: TREE_CHAIN, TREE_OPERAND,

TREE_CODE, ...

Data structures hidden.

AST nodes are typed:
allows tree-checking during development.

Code optimization in GCC – p.8

AST: example

a = (−−b) * 7;
x = y+z;

Code optimization in GCC – p.9

AST: example

EXPR_STMTa = (−−b) * 7;
x = y+z; a = (−−b) * 7;

Code optimization in GCC – p.9

AST: example

EXPR_STMT EXPR_STMT
TREE_CHAIN (S)a = (−−b) * 7;

x = y+z; a = (−−b) * 7; x = y+z;

Code optimization in GCC – p.9

AST: example

EXPR_STMT

MODIFY_EXPR

EXPR_STMTa = (−−b) * 7;
x = y+z;

EXPR_STMT_EXPR (S)

Code optimization in GCC – p.9

AST: example

EXPR_STMT

MULT_EXPR

MODIFY_EXPR

EXPR_STMT

VAR_DECL

TREE_OPERAND (M, 1)

a = (−−b) * 7;
x = y+z;

TREE_OPERAND (M, 0)

Code optimization in GCC – p.9

AST: example

EXPR_STMT

PREDECREMENT_EXPR

MULT_EXPR

IDENTIFIER_NODE
a

INTEGER_CST
7

MODIFY_EXPR

EXPR_STMT

VAR_DECL

a = (−−b) * 7;
x = y+z;

DECL_NAME (V)

Code optimization in GCC – p.9

AST: example

EXPR_STMT

PREDECREMENT_EXPR

MULT_EXPR

IDENTIFIER_NODE
a

INTEGER_CST
7

MODIFY_EXPR

EXPR_STMT

IDENTIFIER_NODE
b

INTEGER_CST
1

VAR_DECL

VAR_DECL

a = (−−b) * 7;
x = y+z;

Code optimization in GCC – p.9

Simple: overview
SIMPLE’s grammar defines an imperative
normal form:

Reduced number of expressions.
Reduced number of control structures.

SIMPLE AST has a regular structure.

Systematic AST analysis is possible.

Common intermediate representation for all
front ends.

Code optimization in GCC – p.10

Simple: overview
SIMPLE’s grammar defines an imperative
normal form:

Reduced number of expressions.

Reduced number of control structures.

SIMPLE AST has a regular structure.

Systematic AST analysis is possible.

Common intermediate representation for all
front ends.

Code optimization in GCC – p.10

Simple: overview
SIMPLE’s grammar defines an imperative
normal form:

Reduced number of expressions.
Reduced number of control structures.

SIMPLE AST has a regular structure.

Systematic AST analysis is possible.

Common intermediate representation for all
front ends.

Code optimization in GCC – p.10

Simple: overview
SIMPLE’s grammar defines an imperative
normal form:

Reduced number of expressions.
Reduced number of control structures.

SIMPLE AST has a regular structure.

Systematic AST analysis is possible.

Common intermediate representation for all
front ends.

Code optimization in GCC – p.10

Simple: overview
SIMPLE’s grammar defines an imperative
normal form:

Reduced number of expressions.
Reduced number of control structures.

SIMPLE AST has a regular structure.

Systematic AST analysis is possible.

Common intermediate representation for all
front ends.

Code optimization in GCC – p.10

Simple: overview
SIMPLE’s grammar defines an imperative
normal form:

Reduced number of expressions.
Reduced number of control structures.

SIMPLE AST has a regular structure.

Systematic AST analysis is possible.

Common intermediate representation for all
front ends.

Code optimization in GCC – p.10

Simple: exemple

a = −−b*7;

Code optimization in GCC – p.11

Simple: exemple

a = −−b*7;
a=b*7;
b=b−1;

Code optimization in GCC – p.11

Simple: exemple

a = −−b*7;
a=b*7;
b=b−1;

if (i++ && −−k)
{

}
j=f(i+3*k);

Code optimization in GCC – p.11

Simple: exemple

a = −−b*7;
a=b*7;
b=b−1;

if (i++ && −−k)
{

}
j=f(i+3*k);

if (i)
{
k=k−1;
if(k)

else

i=i+1;

{
i=i+1;
T1=3*k;
T2=i+T1;
j=f(T2);

}

i=i+1;
}
else

Code optimization in GCC – p.11

Simple: exemple

{

}
A[i]=A[i+3*k];

while(i++ && −−k)

Code optimization in GCC – p.12

Simple: exemple
if(i)
{
k=k−1;
if (k)
while(1)
{
i=i+1;
T1=3*k;
T2=i+T1;
A[i]=A[T2];
if(i)
{
k=k−1;
if(k)
i=i+1;
else
break;

}
else
break;

}
}

i=i+1;

{

}
A[i]=A[i+3*k];

while(i++ && −−k)

Code optimization in GCC – p.12

An optimizing
compiler

Front−end

Source code

Analyses Optimizations

Code optimization in GCC – p.13

An optimizing
compiler

Front−end

Inlining
Analyses

Source code

Call graph
Recursivity suppression

Optimizations

Code optimization in GCC – p.13

Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14

Call Graph
(node, edge) => (declaration, call)

Graph representation:

pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14

Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.

in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14

Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14

Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14

Call Graph
(node, edge) => (declaration, call)

Graph representation:
pointers: P-Space.
in a file under parenthesized form:
EXP-Space.

Use metrics for controlling inlining.

GCC’s analysis is limited to a single
translation unit.

Code optimization in GCC – p.14

Call Graph : solution
Perform call graph optimizations outside
GCC.

Problems :
Extract information, decide, then apply
optimizations: 3 passes.
Knowledge base’s size.
What informations to be stored in KB?

Code optimization in GCC – p.15

Call Graph : solution
Perform call graph optimizations outside
GCC.

Problems :

Extract information, decide, then apply
optimizations: 3 passes.
Knowledge base’s size.
What informations to be stored in KB?

Code optimization in GCC – p.15

Call Graph : solution
Perform call graph optimizations outside
GCC.

Problems :
Extract information, decide, then apply
optimizations: 3 passes.

Knowledge base’s size.
What informations to be stored in KB?

Code optimization in GCC – p.15

Call Graph : solution
Perform call graph optimizations outside
GCC.

Problems :
Extract information, decide, then apply
optimizations: 3 passes.
Knowledge base’s size.

What informations to be stored in KB?

Code optimization in GCC – p.15

Call Graph : solution
Perform call graph optimizations outside
GCC.

Problems :
Extract information, decide, then apply
optimizations: 3 passes.
Knowledge base’s size.
What informations to be stored in KB?

Code optimization in GCC – p.15

An optimizing
compiler

Front−end

Inlining
Analyses

Source code

Call graph
Recursivity suppression

Optimizations

Code optimization in GCC – p.16

An optimizing
compiler

Front−end

Inlining
Recursivity suppression

Call graph
Control flow graph

CFG normalization

Analyses Optimizations

Source code

Code optimization in GCC – p.16

CFG Normalization
Suppress irregularities from control flow:
goto, break, continue.

CFG normalization is based on Simple.

Why normalizing CFG?
It is difficult to optimize programs
containing gotos.
Break and continue translation to RTL
generates gotos.
Simplification generates irregular code.

Code optimization in GCC – p.17

CFG Normalization
Suppress irregularities from control flow:
goto, break, continue.

CFG normalization is based on Simple.

Why normalizing CFG?
It is difficult to optimize programs
containing gotos.
Break and continue translation to RTL
generates gotos.
Simplification generates irregular code.

Code optimization in GCC – p.17

CFG Normalization
Suppress irregularities from control flow:
goto, break, continue.

CFG normalization is based on Simple.

Why normalizing CFG?

It is difficult to optimize programs
containing gotos.
Break and continue translation to RTL
generates gotos.
Simplification generates irregular code.

Code optimization in GCC – p.17

CFG Normalization
Suppress irregularities from control flow:
goto, break, continue.

CFG normalization is based on Simple.

Why normalizing CFG?
It is difficult to optimize programs
containing gotos.

Break and continue translation to RTL
generates gotos.
Simplification generates irregular code.

Code optimization in GCC – p.17

CFG Normalization
Suppress irregularities from control flow:
goto, break, continue.

CFG normalization is based on Simple.

Why normalizing CFG?
It is difficult to optimize programs
containing gotos.
Break and continue translation to RTL
generates gotos.

Simplification generates irregular code.

Code optimization in GCC – p.17

CFG Normalization
Suppress irregularities from control flow:
goto, break, continue.

CFG normalization is based on Simple.

Why normalizing CFG?
It is difficult to optimize programs
containing gotos.
Break and continue translation to RTL
generates gotos.
Simplification generates irregular code.

Code optimization in GCC – p.17

Flow Out

Condition

Loop’s body

Loop:

Code optimization in GCC – p.18

Flow Out

if (c)
break;

Condition Normal exit

Irregular exit

Loop:

Loop’s body

Code optimization in GCC – p.18

Flow Out

else {

}
...

if (c) {b_c = true;}

Loop’s body

Loop:

b_c & Condition Normal exit

Code optimization in GCC – p.18

Break Elimination

while (a)

stmt1;
{

if (b)
break;

stmt2;
}

Code optimization in GCC – p.19

Break Elimination

int c_b = 0;

stmt1;
{

if (b)
{c_b = 1;}
else

}

{

}
stmt2;

while (c_b == 0 && a)

Code optimization in GCC – p.19

Goto Elimination

goto

label

Code optimization in GCC – p.20

Goto Elimination

goto

label

Code optimization in GCC – p.20

Goto Elimination

goto

label

Code optimization in GCC – p.20

Goto Elimination

goto

label

Code optimization in GCC – p.20

Goto Elimination

goto

label

Code optimization in GCC – p.20

An optimizing
compiler

Front−end

Inlining
Recursivity suppression

Call graph
Control flow graph

CFG normalization

Analyses Optimizations

Source code

Code optimization in GCC – p.21

An optimizing
compiler

Front−end

Inlining

Loop unrolling / blocking / fusion ...

Recursivity suppression
CFG normalization

Call graph
Control flow graph

OptimizationsAnalyses

Source code

Spatial / temporal locality

Code optimization in GCC – p.21

An optimizing
compiler

Front−end

SSA

Inlining

Loop unrolling / blocking / fusion ...
CFG normalization

Spatial / temporal locality
Induction variables
Array access functions

Dependence analysis
Pointers and alias analysis

OptimizationsAnalyses

Source code

Call graph
Control flow graph Recursivity suppression

Code optimization in GCC – p.21

Loop Optimizations
Loops are normalized after detection of
induction variables.

Geometric representation of array accesses
can be then constructed.

Dependence analysis is necessary for
validating loop transformations.

These points are still under development.

Code optimization in GCC – p.22

Loop Optimizations
Loops are normalized after detection of
induction variables.

Geometric representation of array accesses
can be then constructed.

Dependence analysis is necessary for
validating loop transformations.

These points are still under development.

Code optimization in GCC – p.22

Loop Optimizations
Loops are normalized after detection of
induction variables.

Geometric representation of array accesses
can be then constructed.

Dependence analysis is necessary for
validating loop transformations.

These points are still under development.

Code optimization in GCC – p.22

Loop Optimizations
Loops are normalized after detection of
induction variables.

Geometric representation of array accesses
can be then constructed.

Dependence analysis is necessary for
validating loop transformations.

These points are still under development.

Code optimization in GCC – p.22

An optimizing
compiler

Front−end

SSA

Inlining

Loop unrolling / blocking / fusion ...
CFG normalization

Spatial / temporal locality
Induction variables
Array access functions

Dependence analysis
Pointers and alias analysis

OptimizationsAnalyses

Source code

Call graph
Control flow graph Recursivity suppression

Code optimization in GCC – p.23

An optimizing
compiler

Front−end

SSA

Inlining

Loop unrolling / blocking / fusion ...

Recursivity suppression
CFG normalization

Spatial / temporal locality

Call graph
Control flow graph

Induction variables
Array access functions
Pointers and alias analysis
Dependence analysis

Source code

OptimizationsAnalyses

Unparser

Optimized code

Code optimization in GCC – p.23

Remerciements
Merci à tous ceux qui ont contribué à la réussite
de ce projet :

Code optimization in GCC – p.24

Remerciements
Merci à tous ceux qui ont contribué à la réussite
de ce projet :

l’équipe ICPS pour l’excellente ambiance,

Philippe Clauss, Vincent Loechner et Benoît
Meister pour leur travail de recherche,

Catherine Mongenet pour le cours de compil,

Frédéric Wagner et Diego Novillo pour
m’avoir accompagné dans ce projet,

the FSF for GCC, Debian, Linux and Prosper

et ma famille.
Code optimization in GCC – p.24

	Introduction
	Front-ends / back-end
	Exemple: cross-compilation
	Exemple: cross-compilation
	RTL Optimizations
	Intermediate Representations
	Abstract Syntax Trees
	AST: example
	Simple: overview
	Simple: exemple
	Simple: exemple
	An optimizing compiler
	Call Graph
	Call Graph : solution
	An optimizing compiler
	CFG Normalization
	Flow Out
	Break Elimination
	Goto Elimination
	An optimizing compiler
	Loop Optimizations
	An optimizing compiler
	Remerciements

