
A linear logic modulo

Olivier Hermant

PPS, Université Denis Diderot, 2 place Jussieu, 75251 Paris Cedex 05, France
hermant@pps.jussieu.fr

http://www.pps.jussieu.fr/˜hermant

Abstract. We describe the rules of linear logic modulo and we prove its sound-
ness/completeness wrt phase semantics. Then we prove cut elimination for some
conditions on rewrite rules, some of which are new (positivity/negativity). At last,
we give hints of proofs nets modulo.

1 Introduction

This could be useful for dynamic resources, that are generated along the proof, after an
instanciation for example.

2 The syntax

2.1 Language

The terms are constructed with a denumerable set of variablesV and an untyped signa-
ture Σ containing function symbols together with an arity. Well former terms are induc-
tively defined: a variable is a well formed term and an applied function symbols to arity
well formed terms is well formed. One could in the usual way extend this definition to
a typed signature.

On the same way, we form propositions with a signature Σ′ containing n-ary predi-
cate symbols, among which 1/0, 0/0,>/0,⊥/0, the Linear Logic connectors: & /2, M
/2,⊗/2,⊕/2,(/2, !/1, ?/1 and the quantifiers ∀,∃ of rank 〈V, prop, prop〉. A well-
formed formula is defined inductively: it is either an applied predicate symbol P(t1, ..., tn)
or the negation of it P(t1, ..., tn)⊥, a combination of well-formed formulas with the help
of the binary connectors or a quantification over a variable on a well-formed formula.
We allow negation only on predicates, and we work under de Morgan’s laws and clas-
sical equivalences:

This will allow us to consider sequents with only right-hand side members: left-
hand side becomes negated when passing to the right hand side, as usual.

At last, we use the standard notions for free, fresh and bound variables, atomic
formula and sequent, which is a pair of multisets of formulas (order does not matter).

2.2 Rewrite rules

As usual in deduction modulo, we use rewrite rules on terms and on atomic formulas:

>⊥ = 0 0⊥ = >
⊥⊥ = 1 1⊥ = ⊥

(A⊥)⊥ = A
A(B = A⊥ M B

(∀xA)⊥ = ∃xA⊥ (∃xA)⊥ = ∀xA⊥

(A ⊗ B)⊥ = A⊥ M B⊥ (A M B)⊥ = A⊥ ⊗ B⊥

(A ⊕ B)⊥ = A⊥ & B⊥ (A & B)⊥ = A⊥ ⊕ B⊥

(!A)⊥ =?(A⊥) (?A)⊥ =!(A⊥)

Fig. 1. connector equivalences in classical linear logic

Definition 1 (rewrite rules). a rewrite rule l → r is a pair of terms or formulas such
that:

– the variables if r are included in those of l.
– if l is a formula, it is atomic.

A formula P rewrites to a formula Q (notation P → Q) with if there exists a rewrite
rule l → r, and a substitution σ such that σl appears at an occurence o in P and
Q = P[σr]o.
→∗ is the reflexive-transitive closure of rrule and ≡ is the reflexive-symmetric-

transitive closure of→. P↓ represents the normal form of P for R, if it exists.

In the rest of this paper, one consider some set R of rewrite rule.

2.3 Deduction rules

In order to integrate rewriting into linear logic, one modify the rules as follow:

Γ, A ` B, ∆
(-r

Γ ` A(B, ∆

becomes

Γ, A ` B, ∆
(-r iff C ≡ A(B

Γ ` C, ∆

The intended meaning is that C should “simplify” in A (B (so, from a computer
point of view, one must compute the value of C). Notice also that rewriting is not trivial
in the following sense: after a ∀-g or a ∃-r rule, the formula produced can be reducible
for→ even if the previous formula is not.

The rules of linear logic we are going to enhance with rewriting are the classical
linear logic rules, that can be found, for instance in [8, 4]. The rules of linear logic
modulo are summed up in figure 2 for the one-sided sequent calculus. As usual, we can
restrict the axiom rule (init) to be atomic, i.e. ` A⊥, A is a proof if and only if A is
atomic. This is not a restriction, since any proof using init with non atomic formulas
can easily be transformed to satisfy this constraint.

Identities

init
` A⊥, A

` A, Γ ` B, ∆
cut, A ≡ B⊥

` Γ, ∆

Multiplicatives

1-r, A ≡ 1
` A

` ∆
⊥-r, A ≡ ⊥

` A, ∆

` A, Γ ` B, ∆
⊗-r, C ≡ A ⊗ B

` C, Γ, ∆
` A, B, ∆

M-r, C ≡ A M B
` C, ∆

Additives

no 0-r >-r, A ≡ >
` >, Γ

` A, ∆ ` B, ∆
& -r, C ≡ A & B

` C, ∆
` A, ∆

⊕-r1, C ≡ A ⊕ B
` C, ∆

` B, ∆
⊕-r2, C ≡ A ⊕ B

` C, ∆

Quantifiers

` A, ∆
∀-r, C ≡ ∀xA, x fresh

` C, ∆
` (t/x)A, ∆

∃-r, C ≡ ∃xA, t any term
` C, ∆

Exponentials

` A, B, ∆
contraction, A ≡ B ≡ C ≡?D

` C, ∆
` ∆, A

dereliction, B ≡?A
` ∆, B

` ∆ weakening, B ≡?A
` ∆, B

` ∆, A
promotion, B ≡!A and ∆ ≡?Γ

` ∆, B

Fig. 2. Inference rules of Linear Logic modulo

3 The semantics: phase spaces

We consider first-order phases spaces, as for instance defined in [8], to which we add
the condition that it should be a model of the rewrite rules. In the follwing definition,
we make the following abuse of notation: linear connector and constant symbols are
used also for phase space operations and sets. This abuse is obviously driven by the
soundness theorem we are going to prove in next section.

Definition 2 (Classical phase space ([8])). Let (M, .) be a commutative monoid, 1 be
its unit and ⊥ be a fixed subset of M.

For any α ⊆ M we define the set α⊥ as {a | α.a ⊆ ⊥}. A fact is a set α ⊆ M such that
α = α⊥⊥.

Let J ⊆ M be a submonoid of M such that a ∈ J implies {a}⊥⊥ ⊆ {a.a}⊥⊥. We let,
for any α, β facts of M:

– > = M
– 1 = ⊥⊥ = {b | ∀a ∈ ⊥, a.b ∈ ⊥} = {1}⊥⊥

– 0 = >⊥ = {a | M.a ⊆ ⊥}
– α & β = α ∩ β
– α ⊕ β = (α ∪ β)⊥⊥

– α ⊗ β = (α.β)⊥⊥

– α M β = (α⊥.β⊥)⊥

– I = 1 ∩ J
– !α = (I ∩ α)⊥⊥

– ?α = (!α⊥)⊥ = (I ∩ α⊥)⊥

We note DM ⊆ P(M) the set of facts of M. A triple 〈D, I,⊥〉 is called a (classical)
phase space if ⊥ ∈ D ⊆ DM and D is closed under all the operators above. If moreover
D is closed by arbitratry intersections, the phase space is said to be complete.

Notice that all the operations defined in Def. 2transform facts into facts, as shown
in the following lemma. As an exercise, one can prove the following properties:

Lemma 1. For any α, β ⊆ M:

– α ⊆ α⊥⊥,
– (α⊥)⊥⊥ ⊆ α⊥ (α⊥ is a fact),
– (α⊥⊥)⊥⊥ ⊆ α⊥⊥,
– α ⊆ β implies β⊥ ⊆ α⊥.
– α ⊆ β implies α⊥⊥ ⊆ β⊥⊥,
– α⊥⊥.β⊥⊥ ⊆ α.β⊥⊥,
– α⊥⊥ is the smallest fact including α,
– (α ∪ β)⊥⊥ = (α⊥ ∩ β⊥)⊥,
– α ∩ β is a fact if α, β are facts.

Definition 3 (phase structure). Let L be language with function and predicate sym-
bols. A phase structure is a tuple 〈S ,D, I,⊥, ˆ〉where 〈D, I,⊥〉 is a phase space, S a base
set (the domain) and ˆ is an assignment assigning to each predicate symbol P of arity n
a function P̂ : S n → D and to each function symbol f of arity n a function f̂ : S n → S .
A phase structure is complete when the undelying phase space is complete.

A phase structure gives the interpretation of every basic objects. It gives rise to a
unique model by a straightforward extension to comound objects:

Definition 4 (Phase models). Let 〈D, I,⊥〉 be a complete phase structure, let S be a
set and φ be an assignment associating to every variable an element of the same type in
the domain. We define the interpretation of terms t∗φ and formulas A∗φ by induction over
their structures:

– x∗φ = φ(x)
– (f (t1, ..., tn))∗φ = f̂ ((t1)∗φ, ..., (tn)∗φ)

and for formulas:

– (P(t1, ..., tn))∗φ = P̂((t1)∗φ, ..., (tn)∗φ)
– (A⊥)∗φ = (A∗φ)

⊥

– (A ⊗ B)∗φ = A∗φ ⊗ B∗φ
– (A M B)∗φ = A∗φ M B∗φ
– (A & B)∗φ = A∗φ & B∗φ
– (A ⊕ B)∗φ = A∗φ ⊕ B∗φ
– (!A)∗φ =!A∗φ
– (?A)∗φ =?A∗φ
– (∀xA)∗φ =

⋂
{A∗φ+(d/x) | d ∈ S }

– (∃xA)∗φ = (∀xA⊥)∗φ
⊥
=
(⋃
{A∗φ+(d/x) | d ∈ S }

)⊥⊥
A tuple 〈S ,D, I,⊥, φ〉 is called a (first order) phase model. A formula is said valid

in this model if and only if 1 ∈ A∗φ

A phase model is a model of the rewrite system R if for any formulas such that
A ≡ B, A∗φ = B∗φ holds.

Notice that only the assignment of bound variables can change. We will forget the
underscript φ when it is not ambiguous.

4 Soundness

The confluence property is there only to ensure the following proposition:

Proposition 1. Two non atomic equivalent formulas modulo R have the same main
connector.

Proof. See for instance [6].

With respect to these settings, proving the soundness theorem is mere routine:

Theorem 1 (Soundness). Let A1, ..., An be formulas, let R be a confluent rewrite sys-
tem. If a sequent ` A1, ..., An is derivable in Linear Logic modulo then 1 ∈ (A1)∗ M ... M
(An)∗ for any phase model of R.

Proof. By induction on the structure of the derivation, considering every inference rule.

5 Completeness and cut elimination

At this point, we should try to prove the completeness theorem:

Theorem 2 (Completeness). Let R be a rewrite system. If a formula is valid in any
phase model, then it is derivable in Linear Logic modulo R.

Instead of proving this (mainly: contructing some variant of a Lindenbaum’s alge-
bra) we will follow another way, trying to prove strong completeness, following the
method of [8]. The benefit will be immediate: a cut elimination theorem for linear logic
modulo. But here we will need some conditions on the rewrite system R, since it is
well-know ([3, 5]) that in deduction modulo some rewrite systems, the cut rule is not
eliminable (nor normalizable). So, under some proviso on the rewrite system R consid-
ered, we will prove the:

Theorem 3 (Strong completeness theorem). Let R a rewrite system, let A be a for-
mula. If 1 ∈ A∗ in any phase model, then ` A is provable.

For this purpose, we construct a canonical phase space based on contexts and cut
free provability. Let a signature Σ, we let M be the set of all contexts, i.e. the set of finite
sets of formulas, where multiple occurence of a formula of the type ?A is counted only
once, so that {?A, ?A} = {?A}. The . operation is concatenation and its unit 1 = ∅. J is
?M that is the set of contexts of the form {?A1, ..., ?An}.

Definition 5 (Outer value ([8])). Let A be a formula. We define its outer value ~A� =
{∆ | `∗ A, ∆}, i.e. the set of contexts proving A without cut.

Remark 1. Obviously, if A ≡ B, ~A� = ~B�.

We now define ⊥ as ~⊥� = {∆ | ` ∆ is provable }, and prove that outer values are
facts:

Lemma 2. (i) {A}⊥ = ~A�
(ii) A ∈ ~A�⊥.

(iii) ~A�⊥⊥ = ~A� (~A� is a fact).

Proof. (i) The definition of {A}⊥ is {Γ | ` Γ, ∆ for any ∆ ∈ {A}}. But {A} contains only
A.

(ii) {A} ⊆ {A}⊥⊥ = ~A�⊥ by Lem. 1 and (i).
(iii) from Lem. 1, {A}⊥ is a fact. We conclude by (i).

We let D be the set of all facts. It is closed by arbitrary intersections, as proved by
Girard [4]: ⋂

i∈I

αi =
⋂
i∈I

αi
⊥⊥ =

⋃
i∈I

αi
⊥

⊥
D is closed by intersection and the other operators, hence 〈D, I,⊥〉 is a phase space.
Note that we only defined a phase space, not a phase model, and we have a good

reason for that. A degree of freedom is left: how to interpret function and proposition
symbols ? (And what domain can we choose ?) This is all the trick of deduction modulo.
We will answer this question in different ways, depending on the rewrite system we
consider.

5.1 An order condition

Besides the confluence of the rewrite systemt R, we suppose, as in [7, 6] that we have a
well-founded order � such that:

– if B is a proper subformula of A then A � B,
– if A→∗ B then A � B.

We define the phase model by induction over �:

Definition 6. We let the set S be the set of all ground terms of the language. Let φ be
an assignment in S for variables. For any function symbol we let:

f̂ : (t1, ..., tn) ∈ S n 7→ f (t1, ..., tn)

And we define by mutual induction φ on predicates and the interpretation of formulas
A 7→ A∗φ:

P̂ : (t1, ..., tn) ∈ S n 7→

{
~P(t1, ..., tn)� if P(t1, ..., tn) is in normal form
(P(t1, ..., tn)↓)∗φ = (P(t1, ..., tn)↓)∗ otherwise

The interpretation of formulas is defined as in Def. 4.

Remark 2. Thanks to �, Def. 6 is well founded. Moreover, we really define a model
interpretation, giving explicit interpretation only for predicates. In the second part of
the definition of φ(P) notice also that since P(t1, ..., tn)↓ is a ground formula, we do not
need φ in (P(t1, ..., tn)↓)∗φ. At last, normal forms exist since � is well-founded.

Things work nice also because of the following lemmas.

Lemma 3. Let t be a term. Defining σ as the subsitution associating φ(x) to x, in the
phase model of Def. 6 t∗φ = σt.

Proof. The first statement is proved by a straightforward induction on the term struc-
ture. The second statement is a direct consequence of the first.

We check that this model is a model of R. this should be rather intuitive, from Def.
6.

Lemma 4. For any formula A, any assignment φ, A∗φ = ((σA) ↓)∗φ, where σ is the
substitution associated to φ.

Proof. By induction over the w.f.o. �. Let see some key cases:

– σA = σP(t1, ..., tn) is a normal atom for R. Then we have, from Lem. 3 and Def. 6:

A∗φ = P̂((t1)∗φ, ..., (tn)∗φ) = P̂(σt1, ..., σtn) = ~σA� = (σA)∗

– σA = σP(t1, ..., tn) is an atom that is not normal for R. Then, using Def. 6 and Lem.
3 we can derive the following equalities. Each of them is trivial, but needs to be
carefully checked:

(A)∗φ = P̂((t1)∗φ, ..., (tn)∗φ) = P̂(σt1, ..., σtn) = (P(σt1, ..., σtn)↓)∗ = ((σA)↓)∗

– σA is σ∀xB = ∀x(σB), supposing without loss of generality that σ(x) = x. Then
we have the following equalities:

A∗φ = (∀xB)∗φ =
⋂
t∈S

(B)∗φ+(t/x) =
⋂
t∈S

((σ′B)↓)∗

last equality by induction hypothesis, since ∀xσB � σ′B with σ′ = σ + (t/x) for
any t ∈ S . One can continue:⋂

t∈S

((σ′B)↓)∗ =
⋂
t∈S

(((t/x)((σB)↓))↓)∗ =
⋂
t∈S

((t/x)((σB)↓)))∗

since σ is a ground substitution. The last equality is obtained by induction hypoth-
esis, since ∀x(σB) � (t/x)(σB) � (t/x)((σB)↓). Hence, we get:

(∀xB)∗φ =
⋂
t∈S

((t/x) ((σB)↓)))∗ = (∀x(σB)↓)∗φ = ((σ∀xB)↓)∗

that is what we wanted to show.
– the existential case follows exactly the same pattern. The connector and constant

cases are much more simpler, since rewriting interacts only with instantiation.

As a consequence we get the corollary:

Lemma 5. The model of Def. 6 is a model of R.

Proof. Let A ≡ B two propositions. By Lem. 4, for any assignment φ we have:

A∗φ = ((σA)↓)∗φ = ((σB)↓)∗φ = B∗φ

since the normal form of A and B exists (the order � is well-founded) and the rewrite
system is confluent.

Then we can prove the main lemma:

Lemma 6 (Main lemma). Let A be a formula, φ an assignment and σ the substitution
associated to it. Then:

σA⊥ ∈ A∗φ ⊆ ~σA�

Proof. By induction on the w.f.o. �, making cases on σA. The normal atomic case is
an equality indeed. If we encounter a non normal atomic formula, we normalize it and
this makes the order � decrease. The connector cases is exactly the same induction as
[8]. TODO HERE !!! DETAILS !!!

5.2 A positivity condition

We suppose that the rewrite system is positive:

Definition 7 (Positivity condition). A rewrite system R is said to be positive if there
exists a partition of the predicate symbols into positive and negative, such that for any
propositional rewrite rule

P(t1, ..., tn)→ A ∈ R

– if P is positive, so is A.
– if P is negative, so is A.

Where positivity and negativity is defined as follows:

Definition 8 (Positivity of occurences). Given a partition of the predicate symbols into
positives and negatives one, one say that an occurence of an atomic formula P is said
to be positive (resp. negative) in a formula A if:

– A is P and P is positive (resp. negative).
– A = B⊥ and the occurence of P is negative (resp. positive) in B.
– A = B ⊗C and the occurence of P is positive (resp. negative) in B or in C.
– and so on for the other connectors.

A formula A is said positive (resp. negative) if atoms occur only positively (resp. nega-
tively) in A.

Of course, on could invert negatives and positives. The point is to find a partition
and we will consider such a partition in the remaining of this paper. We hence consider
in this section a rewrite system R that is confluent and positive. Then we define the
following model:

Definition 9. We let the set S be the set of all ground terms of the language. We set:

f̂ : (t1, ..., tn) ∈ S n 7→ f (t1, ..., tn)

And we define φ(P) for a predicate symbol P:

P̂ : (t1, ..., tn) 7→
{
~P(t1, ..., tn)� if P is positive
{P(t1, ..., tn)⊥}⊥⊥ if P is negative

At last we define the interpretation function as in Def. 4.

Notice. Notice that ~P� = {P}⊥ ⊇ {P⊥}⊥⊥ is provable, but the converse is not (unless
we allow the use of the cut rule).

Notice that we defined the interpretation of atomic predicates without the help of
the rewrite system.

Def. 9 surely defines a phase model, but is this a phase model of the rewrite system
R ? The answer is yes, due to the positivity condition. What we are going to prove is
that every rewrite rule is valid in the sense that if P→ A is a rewrite rule, then A∗φ = P∗φ.
This is a consequence of the following lemma:

Lemma 7. Let A be a formula with free variable, and φ an assignment of ground terms
to variables (also considered as a ground substitution, by abuse of language).

If A is positive (resp. negative), then A∗φ = ~φA� (resp. A∗φ = {(φA)⊥}⊥⊥).

Proof. By induction over the proposition structure. We forget the subscript φ when it is
not important (ie everywhere but in the quantifier cases).

Let’s note P+ a positive predicate (or formula) and P− a negative predicate (or
formula). Moreover, t denotes a vector of terms, and P(t) should be understood as
P(t1, ..., tn).

– if A is an atomic predicate P(t), then it is by definition.
– if A = B⊥ then the result follows from (i) of Lem. 2. If A is positive, then by

induction hypothesis, we have (B−)∗ = {B⊥}⊥⊥. Hence (A+)∗ = {B⊥}⊥ = A⊥ = ~A�.
Conversely, if A is negative then by induction hypothesis we have: (B−)∗ = ~B� =
{B}⊥. Hence A∗ = {B}⊥⊥ = {A⊥}⊥⊥.

– if A = B & C. Consider the positive case. B and C are positive. Hence B∗ = ~B�
and C∗ = ~C�, and A∗ = ~B� ∩ ~C�. Let Γ ∈ A∗, then the derivation:

` Γ, B ` Γ,C
` Γ, B & C

justifies the fact that Γ ∈ ~A�. Conversely, let Γ ∈ ~A�. Then we have a cut free
proof of π of ` Γ, A. Then, we replace in π this particular occurence of A by B,
and this gives us almost a proof of ` Γ, B, since the init rule is restricted to hold
between axioms: we just need to erase all the occurence in π of the & -r rule on A,
keeping only the proof of the left premise, which is a proof of ` Γ, B. In the same
way, we have also a cut free proof of ` Γ,C. Hence Γ ∈ ~B� ∩ ~C�. To sum up,
A∗~B� ∩ ~C� = ~A�.

If A is negative, by induction hypothesis we have {B}⊥⊥ ∩ {C}⊥⊥ = B∗ ∩ C∗ = A∗

and we mut show that this is equal to {A}⊥⊥. Let us first show that {A}⊥⊥ ⊆ {B}⊥⊥ ∩
{C}⊥⊥. For this, we first show {A}⊥⊥ ⊆ {B}⊥⊥ or equivalently: {B⊥}⊥ ⊆ {A⊥}⊥. So,
let Γ ∈ {B⊥}⊥. We have a cut free proof of ` Γ, B⊥. And the inference rule:

` Γ, B⊥

` Γ, B⊥ ⊕C⊥

Shows that we also have a cut free proof of ` Γ, A⊥. Hence Γ ∈ {A⊥}⊥, and therefore
{B⊥}⊥ ⊆ {A⊥}⊥. We prove exactly in the same way that {C⊥}⊥ ⊆ {A⊥}⊥. Thus the
first inclusion is proved.

Conversely, we show {B}⊥⊥ ∩ {C}⊥⊥ ⊆ {A}⊥⊥. For this, let Γ ∈ {B}⊥⊥ ∩ {A}⊥⊥. This
means that for any ∆′ such that ` ∆′, B or ` ∆′,C have a cut free proof, we have a
cut free proof of ` Γ, ∆′. We have to show that Γ ∈ {A}⊥⊥, i.e. for any ∆ ∈ {A⊥}⊥ (∆
is such that ` ∆, A⊥ has a cut free proof) ` Γ, ∆ has a ccut free proof.
So, let ∆ such that ` ∆, A⊥ has a cut free proof. We prove that ` ∆, B⊥ and ` ∆,C⊥

both have a cut free proof, and that allows us to conclude since Γ ∈ {B}⊥⊥ ∩ {C}⊥⊥.
Let π be thee proof of ` ∆, A⊥ which is also a proof of ` ∆, B⊥ ⊕C⊥. We construct a
proof π′ of ` Γ, ∆ by replacing every occurence of B⊥ ⊕ C⊥ by Γ and, when a ⊕-r1
rule (resp. a ⊕-r2 rule) on B⊥ ⊕ C⊥ is met – which must be the case since the init
rule is on atomic predicates only – we use the fact that Γ ∈ {B}⊥⊥ (resp. Γ ∈ {C}⊥⊥),
ie since we have a cut free proof of some ` ∆′, B, we have a direct proof of ` Γ, ∆′.
Hence Γ ∈ {A}⊥⊥, and we can conclude that {B}⊥⊥ ∩ {C}⊥⊥ ⊆ {A}⊥⊥.

– if A = B ⊗ C. Consider the positive case. Unsing induction hypothesis on B∗ and
C∗ one can restrict the equality to prove to (~B�.~C�)⊥⊥ = ~A�.
For the direct inclusion, we show ~B�.~C� ⊆ ~A� and conclude by applying biorthog-
onal, with the help of Lem. 1 and 2. Let Γ and ∆ such that we have cut free proofs
of ` Γ, B and ` ∆,C. the following inference:

` Γ, B ` ∆,C
Γ, ∆, B ⊗C

shows that Γ, ∆ ∈ ~A�.
For the reverse inclusion, let Γ ∈ ~A�. Then we have a cut free proof of ` Γ, B ⊗C.
We want to show Γ ∈ (~B�.~C�)⊥⊥. Let ∆ ∈ (~B�.~C�)⊥, ie such that ` ∆, ΓB, ΓC

has a cut free proof for any ΓB ∈ ~B� and ΓC ∈ ~C�. One must show that ` Γ, ∆ has
a cut free proof. We construct this proof by induction on the proof of ` Γ, B ⊗ C.
We as usual replace B ⊗ C by ∆ and applying (inductively) exactly the same rules,
until we meet (and we must meet by the atomicity of init) the ⊗-r rule on B ⊗ C.
We have a cut free proof of the two premises ` ΓB, B and ` ΓC ,C, with Γ = ΓB, ΓC ,
then we know by hypothesis on ∆ that we have a cut free proof of ` Γ, ∆.

Consider now the negative case. We must show: {(B ⊗C)}⊥⊥ =
(
{B}⊥⊥.{C}⊥⊥

)⊥⊥
or, equivalently: (

{B}⊥⊥.{C}⊥⊥
)⊥
= {B⊥ MC⊥}⊥

For the direct inclusion, let Γ ∈
(
{B}⊥⊥.{C}⊥⊥

)⊥
. Since B⊥ ∈ {B}⊥⊥ and C⊥ ∈ {C}⊥⊥,

we have a cut free proof of ` Γ, B⊥,C⊥. Hence, the following inference:

` Γ, B⊥,C⊥

` Γ, B⊥ MC⊥

shows that Γ ∈ {B⊥ MC⊥}⊥.
Conversely, let Γ ∈ {B⊥ MC⊥}⊥. Let also ∆B ∈ {B}⊥⊥ and ∆C ∈ {C}⊥⊥. We have
to show that we have a cut free proof of ` Γ, ∆B, ∆C . We construct this proof by
induction on the proof π of ` Γ, B⊥ M C⊥, applying inductively the same rules,
until we meet the M-r rule. Then we have a proof of the premise ` Γ′, B⊥,C⊥. This
means that Γ′ ∪ {B⊥} ∈ {C⊥}⊥. Therefore, we have by hypothesis on ∆C a cut free
proof of ` Γ′, B⊥, ∆C . This shows that Γ′∪∆C ∈ {B⊥}

⊥. Hence, by hypothesis again,
we have a proof of the sequent ` Γ′, ∆B, ∆C .

– if A = ∀xB(x). Suppose A is positive. Using induction hypothesis, it is sufficient to
show:

⋂
{~(φ + (t/x))B(x)�, t ground } = ~φ∀xB�, and let’s abbreviate φ + (t/x) by

φ′. We also assume that x is not substituted by φ.
For the direct inclusion, suppose that ` Γ, φ′B(x) for any ground t. This is in partic-
ular valid for a fresh constant c, so we have a (cut free) proof of ` Γ, φB(c) (where
φ′ has been replaced by φ since x is no more free in B. Replacing c by a fresh
variable x does not changes anything to the proof. We can then apply the ∀-r rule:

` Γ, φB(x)
` Γφ∀xB(x)

this proof justifies the fact that Γ ∈ ~φ∀xB(x)�.
Conversely, let Γ such that ` Γ, φ∀xB(x) has a proof π. Let t be any ground term.
We show that ` Γ, φ′B(x) has a proof, and that allows us to conclude. We construct
as usual this proof by induction on π. When we reach the ∀-r rule on it, we have
a proof π′ of ` Γ, φB(x). We can replace everywhere x by t in this proof, hence π′

also yields a proof of ` Γ, φB(t), that is what we wanted.

Now, suppose A is negative. We must show
⋂

tground
{{φB(t)}⊥⊥} = {φ∀xB(x)}⊥⊥ =

{∃xB(x)⊥}⊥⊥.
For the direct inclusion, asusme that Γ ∈ {φB(t)}⊥⊥ for any t. Thus, given a ∆
such that ` ∆, φB(t)⊥ has a proof, we know that ` ∆, Γ has a proof. Now, let
Σ ∈ {∃xB(x)⊥}⊥, i.e. such that ` ∃xB(x)⊥, Σ has a proof π. We must show that
the sequent ` Γ, Σ has a proof to conclude. We construct this proof by induction on
the structure of π, copying every rule unless we have the premise ` B(t)⊥, Σ, where
we use the hypothesis on Γ to exhibit a proof of ` Γ, Σ. This allows us to conclude.
Conversely, let Γ ∈ {∃xB(x)⊥}⊥⊥, i.e. such for any ∆ such that sequent ` ∃xB(x)⊥, ∆
has a proof, the sequent ` Γ, ∆ has also a proof. Now, let t be a ground term and
Σ ∈ {B(t)⊥}⊥. The following inference step is valid:

` B(t)⊥, Σ
∃-r

` ∃xB(x)⊥, Σ

Hence, by hypothesis on Γ we have a proof of ` Γ, Σ. The conclusion follows
directly.

– if A =!B. Suppose A is positive. We must show ~A� =!~B� = (1 ∩ J ∩ ~B�)⊥⊥. For
the direct inclusion, let Γ such that ` Γ, !B has a proof π. Let ∆ ∈ 1 ∩ J ∩ ~B�⊥. We
construct a proof of ` Γ, ∆ by induction on π; copying every rule unless the last rule
applied is promotion (this is the only rule applicable on !B). The we have a proof
of the premise ` Γ, B and we know that Γ ≡?Γ′. This shows that: Γ ∈ ~B�, Γ ∈ J
and Γ ∈ 11. By hypothesis on ∆ we have a proof of ` Γ, ∆.
Conversely, let Γ ∈ (1 ∩ J ∩ ~B�)⊥⊥. We must find a proof of ` Γ, !B. This follows
directly from the fact that !B ∈ (1 ∩ J ∩ ~B�)⊥. Indeed, given a ∆ such that ` ∆, B
has a proof, ∆ ≡?∆′ and ∆ ∈ 1, the following rule can be applied:

` ∆, B promotion
` ∆, !B

Suppose now that A is negative. We must show {?B⊥}⊥⊥ = (1 ∩ J ∩ {B}⊥⊥)⊥⊥ to
be able to conclude, or equivalently (1 ∩ J ∩ {B}⊥⊥)⊥ = {?B⊥}⊥. For the direct
inclusion, Let Γ ∈ (1 ∩ J ∩ {B}⊥⊥)⊥. We must find a prof of `?B⊥, Γ. It is sufficient
to show that ?B⊥ ∈ 1 ∩ J ∩ {B}⊥⊥. The only non trivial part is ?B⊥ ∈ {B}⊥⊥. Let
∆ ∈ {B⊥}⊥. The following inference:

` ∆, B⊥
dereliction

` ∆, ?B⊥

shows that this is really the case.
Conversely, consider a context Γ such that ` Γ, ?B⊥ has a proof π. Let ∆ ∈ 1 ∩ J ∩
{B}⊥⊥. Before initiating an induction on π we need to strengthen the hypothesis,

1 if ` Σ then ` Σ, Γ by weakening so Γ ∈ ⊥⊥

and suppose that π is a proof of ` Γ, ?B⊥n for some n, where ?B⊥n is an abbreviation
for ?B⊥n repeated n times. This is indeed the case (with n = 1) by hypothesis.
We construct by induction on π a proof of ` Γ, ∆n, copying every rule unless it is a
rule on ?B⊥ It could be:
• a dereliction. Then we have a proof of ` Γ, B⊥, ?B⊥n−1. Hence Γ ∈ {B⊥}⊥. By

induction hypothesis, we have a proof of ` Γ, B⊥, ∆n−1, and since ∆ ∈ {B}⊥⊥, it
means that it can be turned into a proof of ` Γ, ∆, ∆n−1.
• a weakening. We have a proof of ` Γ, ?B⊥n−1 as premise. We apply induction

hypothesis, and obtain a proof of ` Γ, ∆n−1. We conclude using the fact that
∆ ∈ 1. Notice that this case also work if n − 1 = 0.
• a contraction. We have a proof of ` Γ, ?B⊥n+1. We apply induction hypothesis

and obtain a proof of ` Γ, ∆n+1. Since ∆ ∈ J we can contract ∆ to obtain a proof
of `, ∆n.

Applying this result to the proof of ` Γ, ?B⊥, we obtain a proof of ` Γ, ∆. This
concludes the proof.

– the other cases are the dual of the precedent ones. For instance, the positive case
for A = B M C uses exactly the same arguments that the negative case of the ⊗
connector. After using induction hypothesis on B and C, we must show:

(~B�⊥.~C�⊥)⊥ = ~B MC�

For the direct inclusion, let Γ ∈ (~B�⊥.~C�⊥)⊥. Since B ∈ ~B�⊥ and C ∈ ~C�⊥, we
have a proof of ` Γ, B,C. We conclude by applying M-r to this sequent, exactly as
in the negative ⊗ case.
For the reverse inclusion, let Γ such that ` Γ, B MC. Let ∆B ∈ ~B�⊥ and ∆C ∈ ~C�⊥.
We must find a proof of the sequent ` Γ, ∆B, ∆C . We construct it by induction on
the proof of ` Γ, B M C. For the case of a M-r rule on B M C, we have a proof
of a premise ` Γ, B,C. This shows that Γ ∪ {B} ∈ ~C� hence we have a proof of
` Γ, B, ∆C . And so on, as in the negative ⊗ case.

Lemma 8. Let A ≡ B two formulas. Then for any assignement φ we have A∗φ = B∗φ.

Proof. We first focus on a single rewrite (propositional) rule: if P → A, then, P and A
are both positive or negative formulas. We conclude using Lem. 7.

We then focus on a single rewrite step. Consider two propositions A →1 B. We
prove that A∗φ = B∗φ by a straightorward induction over the proposition structure. The
base case is the previous point.

Then, we extend it trivially to the reflexive-symmetric-transitive closure of the rewrit-
ing relation.

This lemma shows that the phase model we constructed is a model of R. Hence
positive rewrite systems admit cut elimination.

Conjecture 1. Wonder: can we generalize and classify two different ground instances
of P one as positive and the other as negative ? Check that more carefully, possibly with
the help of Richard.

We can now prove the main lemma in this case:

Lemma 9. Let A be any proposition, and φ be an assignment. Let σ be the substitution
associated to φ. Then:

σA⊥ ∈ A∗φ ⊆ ~σA�

Proof. The proof of this lemma is completely independent from the proofs of Lem. 7
and 8. Its proof is standard, by induction over the formula structure, see for instance [8].
TODO HERE !!!

5.3 Mixing both conditions

We now consider a confluent and terminating rewrite system R = R� ∪R+ such that the
subsystem R� verifies the order condition of Sec. 5.1 and the subsystem R+ verifies the
positivity condition of Sec. 5.2. Moreover, R+ should be right normal for R:

Definition 10 (Right normality). Consider two rewrite systems R1 and R2.
R1 is said right normal for R2 if, for any propositional rewrite rule P→ A ∈ R1, any

instance of any atomic formulas occuring in A by a R2-normal substitution (associating
normal terms for R2 to variables) is in normal form with respect to R2.

We construct the model as follows:

Definition 11. We let S be the set of all ground terms of the language. Let f be a
function symbol and P be a predicate symbol. We let:

f̂ : (t1, ..., tn) 7→ f (t1, ..., tn)

and

P̂ : (t1, ..., tn) 7→

{P(t1, ..., tn)}⊥⊥ if P(t1, ..., tn) is in R� normal form and negative
~P(t1, ..., tn)� if P(t1, ..., tn) is in R� normal form and positive
(P(t1, ..., tn)↓R�)

∗
∅

otherwise, where ∅ is the empty assignement.

The interpretation of compound formulas is defined at the same time, as in Def. 4.

This definition is well founded, since we do it by induction over �. As usual, we
should now prove that this is a model of the rewrite system.

Lemma 10. Let A be a formula, φ be an assignement. Let σ be the substitution associ-
ated to this assignement.

1. A∗φ = (σA↓R�)
∗
φ.

2. the model is a model of R�.
3. σA⊥ ∈ A∗φ ⊆ ~σA�
4. suppose that A is positive (resp. negative) and that any instance of any atomic

formula occuring in A by R�-normal substitutions are normal for R�.
Then A∗φ = ~σA� (resp. A∗φ = {σA}⊥⊥.

5. the model is a model of R.

Proof. 1. exactly the same proof as the proof of Lem. 4.
2. same proof as Lem. 5.

3. exactly the same proof as the proof of the main lemma Lem. 6. It uses the previous
point.
These first three points handles the R� part of R. It is then similar to the order
section 5.1.

4. by induction on the formula structure as in Lem. 7. This holds since we can never
apply a R� rule (by the R�-right normality condition) on A, so this proof is inde-
pendent.

5. the model is already a model of R�. Now, it is a consequence of the previous point
that it is a model of R+. The proof is exactly the same as the proof of Lem. 8, in
three points: atomic positive rewrite step, positive rewrite step and extension to the
equivalence ≡ modulo R.

6 Proof Nets Modulo

They are basically the same as ordinary proof nets. However, the type of a node may
change, since rewriting is allowed. Hence, more proof nets (and also, as we shall see,
non normalizing ones) can be typed.

For an instance of that (and for those that already know what is a proof net), consider
the rewrite system formed by the only rewrite rule:

A→?A⊥ M A

(which is to be understood as (!A)(A), then we can type the following proof structure:

!A ⊗ A⊥ ?A⊥ M A

cut

A⊥ !A A ?A⊥

A

?A⊥ ?A⊥

A⊥

!A ⊗ A⊥

A⊥ !A

A

?A⊥ M A

same as rhs

In this proof structure, apart from the usual links (see [4, 1] for instance), we have
the rewrite link:

A

B
rewrite, if A ≡ B

The introduction of this new link is not essential. We present things this way just
to explicit the rewrite steps. This link could be forgotten in the sense that in a proof
structure, we could collapse any rewrite link just replacing by its upper premise (the
rewritted proposition) or by the lower premise (the proposition being rewritted), the
former correponding to the usual presentation of deduction rules modulo ([2, 3]) as
well as to the presentation done here, where the rewrite steps are done silently inside
the rules.

The proof structure above does not normalizes. Indeed it reduces, after some few
steps, to itself. On the other side, in our frame it is a valid proof net, and corresponds to
the following proof:

...
as r.h.s.
`?A⊥ M Aexplicit rewrite
` Apromo.
`!A A, A⊥

⊗-r
A, !A ⊗ A⊥

`!A, ?A⊥ ` A, A⊥
⊗-r

` A, !A ⊗ A⊥, ?A⊥ explicit rewrite
` A, A⊥, ?A⊥

dereliction
` A, ?A⊥, ?A⊥

contr.
` A, ?A⊥

M-r
`?A⊥ M A

cut
` A

Indeed, the sequentialization and correctness criterion are the same, save for the
addition rewrite link, which has to be erased before sequentialization.

7 A proof term assignment system

See what is done in University Paris XIII for instance.

8 Focusing

9 Examples

10 Conclusion

We believe this work can be shifted in higher-order logic as well as in intuitionistic
linear logic. In the first case, we will have to stregthen some lemma, because we will
encounter free proposition variables, hence lemmas as Lem. 4 should be formulated
in an other manner. In the later case, we should use the weakened version of phase
semantics of [9].

We would like to replace the connector ! by !A→!A ⊗ A and !A→ 1

References

1. V. Danos and L. Regnier. The structure of multiplicatives. Archive for Mathematical Logic,
28:181–203, 1989.

2. G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Journal of Automated
Reasoning, 31:33–72, 2003.

3. G. Dowek and B. Werner. Proof normalization modulo. The Journal of Symbolic Logic, 68
(4):1289–1316, December 2003.

4. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
5. O. Hermant. A model-based cut elimination proof. 2nd St-Petersburg Days of Logic and

Computability, 2003.
6. O. Hermant. Méthodes Sémantiques en Déduction Modulo. PhD thesis, Université Paris 7 –

Denis Diderot, 2005.
7. O. Hermant. Semantic cut elimination in the intuitionistic sequent calculus. In P. Urzy-

czyn, editor, Typed Lambda-Calculi and Applications, volume 3461 of LNCS, pages 221–233.
Springer, Nara, Japan, 2005.

8. M. Okada. Phase semantic cut-elimination and normalization proofs of first- and higher-order
linear logic. Theoretical Computer Science, 227:333–396, 1999.

9. M. Okada. A uniform semantic proof for cut-elimination and completeness of various first
and higher order logics. Theoretical Computer Science, 281:471–498, 2002.

