
Cut Elimination in the Intuitionistic
Theory of Types with Axioms and
Rewriting Cuts, Constructively
Olivier Hermant, James Lipton

1 Introduction

We will give a constructive proof for a semantic cut elimination theorem
for Intuitionistic Church’s Theory of Types (ICTT) extended with certain
axioms. The argument extends techniques of Prawitz, Takahashi and An-
drews, as well as those used in [5]. To the authors’ knowledge it is the first
constructive semantic proof of cut elimination for ICTT, and the extensions
considered.

We recall that the central problem in proving cut-elimination for cer-
tain impredicative higher-order logics is that Gentzen’s approach, based on
an induction on a measure that combines proof-depth and formula com-
plexity, does not work because the natural subformula ordering that places
instances M [t/x] below quantified formulae such as ∃x.M is not a well-
ordering. Such instances can be more complex, as can be seen by taking
M = ∃x.x and taking t = M∧A for any A, for example. This problem, orig-
inally known as the Takeuti conjecture (the claim that second-order logic
admits cut-elimination, 1953), was solved positively, and non-constructively,
independently by Tait (1966), Takahashi(1967), Prawitz and others using
semantic means, and constructively via a strong normalization proof, in
1971 by Girard[10]. In 1970 Andrews[1] gave a non constructive proof along
the lines of Takahashi’s V -complex construction for Church’s classical the-
ory of types. Dragalin [8] showed how to give a constructive semantic proof
for higher-order classical logic. The second author gave a semantic proof
for an intuitionistic formulation of Church’s type theory in [5], also non-
constructive.

The proof makes use of the following components. We define a class of
models, a type-theoretic version of Scott-Fourman Ω sets, and show com-
pleteness constructively for the cut-free fragment of a number of type theo-
ries discussed in this paper. This gives cut-admissibility of those fragments
as an immediate corollary. The impredicativity of the formal system in-

2 Olivier Hermant, James Lipton

volved makes it impossible to define a semantics along conventional lines,
in the absence, a priori, of cut, or to prove completeness. The problem is
that one cannot use induction on the subformula order to define truth, or
use transitivity of entailment. As a result, as in the semantic proofs cited,
in particular Takahashi’s and Andrews’, one must start from a tableau style
construction of a partial model, called a semivaluation, and extend to a full
model in a non-deterministic fashion, by assigning candidate truth values to
formulae, then using induction on types to make the construction work. In
[5] a series of algebraic conditions were given for partial truth assignments
which guarantee that they can be extended to models. These conditions
are applied here to a new, syntactic notion of semivaluation based on map-
ping formulae A to sets generated by contexts Γ for which cut-free proofs of
Γ ` A exist, inspired by results of Okada and the first author. This yields a
constructive proof for the theory of types. This argument is then extended
to include various types of sequent axioms which encapsulate rewriting rules
for formulae.

The idea of building rewriting into logic is inspired in a formal system
that combines sequent proofs, higher-order equational constraints and term
rewriting, called Deduction Modulo, invented by Dowek, Hardin, Kirchner
and Werner [6, 7]. The aim of such a formal system is to integrate computa-
tion directly into logic in a new way. Cut elimination for various fragments
of this system, which does not, in general, satisfy strong normalization, has
been studied by Hermant and Dowek.

1.1 Outline

In a first part, we define the semantic space we are working in, and the tools
we need to prove this theorem, along the lines of [5]. The main novelty is the
definition of the semi-valuations used, that makes the proof constructive.

In a second part, we show that the argument works for an extension of
ICTT with non-logical axioms (as for instance ` ∀P.P ∨¬P , which gives us
back the classical version of Church’s Theory of Types), under the proviso
that we allow specific new sequent rules which we will call axiomatic cuts.

We investigate this line further, and show that if we constrain the non-
logical axioms to have a specific form (they have to satisfy a so-called sign-
preserving condition) one can restrict the axiomatic cuts to take the form
of rewrite cuts, where rewriting rules are expressed as cut-style rules of
inference.

2 The Formal System: a sketch

For definitions of types, terms and reduction in the intuitionistic formulation
of Church’s Theory of types, due originally to Miller et al. [16], we refer the

Cut-elimination in Type Theory with Axioms 3

Γ ` > Γ, U ` U Γ,⊥ ` ⊥

Γ, B,C ` A

Γ, B ∧ C ` A
∧L

Γ ` B Γ ` C
Γ ` B ∧ C

∧R

Γ, B ` A Γ, C ` A

Γ, B ∨ C ` A
∨L

Γ ` Bi

Γ ` B1 ∨B2
∨R

Γ ` B Γ, C ` A

Γ, B ⊃ C ` A
⊃L

Γ, B ` C

Γ ` B ⊃ C
⊃R

Γ, P [t/x] ` A

Γ,∀x.P ` A
∀L

Γ ` P
Γ ` ∀x.P

∀R ∗

Γ, P ` A

Γ,∃x.P ` A
∃L ∗

Γ ` P [t/x]
Γ ` ∃x.P

∃R

Γ′ ` A′

Γ ` A
λ

Γ ` ⊥
Γ ` B

⊥R

Figure 1. Higher-order Sequent Rules

reader to [5], and will limit ourselves to recapitulating the rules of inference,
in Fig. 1, λ being βη and structural rules, as contraction and weakening,
being implicitly assumed. Rules do not include the cut rule:

Γ ` B Γ, B ` A

Γ ` A
Cut

When we mean a proof within the rules of Fig. 1, we use the turnstyle `∗,
and use ` when we allow the cut rule. In the rest of the paper, we will
consider a fixed language S for ictt, i.e. for each type a set of constants.

3 From Semi-valuations to Valuations: The
Takahashi-Schütte lemma

We borrow the name semi-valuation from Takahashi and Schütte [22, 23, 24]
also used by Andrews [1] to describe a partial interpretation of formulae in
type theory that satisfies certain consistency properties, although our adap-
tation to the case of intuitionistic type-theory and Heyting algebras requires

4 Olivier Hermant, James Lipton

a considerable reworking of the definitions. Our formulation starts from
constraints giving both positive and negative partial information: semival-
uations consist of a pair of approximations to a model, which specify lower
and upper bounds to the desired full interpretation. This is an abstraction
of the way both positive and negative information from a Hintikka set is
used to build a model for type theory in [5].

In op. cit. partial valuations are defined on the carrier of type o of an
arbitrary typed applicative structure, and are shown, in this general setting,
to extend to a full valuation without appeal to induction on subformulae
which is not possible in an impredicative theory. The admissibility of cut
then follows as an easy corollary. The cited result includes partial valuations
on term models as a special case. Since this is all we need here, we will
restate the main definitions and results for open terms only. We will also
restrict attention to global models, defined below, since they are sufficient
for the partial valuations chosen later in the paper to give a constructive
proof of cut-admissibility.

3.1 Applicative Structures and Global Models
We will make use of the notion of applicative structures, a well-known se-
mantic framework for the simply-typed lambda calculus, first introduced
systematically by H. Friedman in [9], although obviously implicit in one
form or another in [11, 15, 20]. (See also [17] for a detailed discussion.)

DEFINITION 1. A typed applicative structure 〈D,App,Const〉 consists of
an indexed family D = {Dα} of sets Dα for each type α, an indexed family
App of functions Appα,β : Dβα×Dα → Dβ for each pair (α, β) of types, and
an (indexed) interpretation function Const = {Constα} taking constants of
each type α to elements of Dα.

An assignment ϕ is a function from the free variables of the language into
D which respects types, and which allows us to give meaning to open terms.
Given a typed applicative structure D, an environmental model consists of
a total function {{ }}ϕ from the open terms of the language into D for each
assignment ϕ respecting types, for which the following equalities hold:

{{c}}ϕ = Const(c) for constants c

{{x}}ϕ = ϕ(x) for variables x

{{(MN)}}ϕ = App({{M}}ϕ, {{N}}ϕ)
App({{λxα.Mβ}}ϕ, d) = {{M}}ϕ[x:=d]

In the presence of extensionality, if an environmental model exists for
a given assignment, it is unique, as the reader can show by proving the
relevant substitution theorem.

Cut-elimination in Type Theory with Axioms 5

So far we have only supplied semantics for the underlying typed lambda-
calculus. Now we must interpret the logic as well, by adjoining a Heyting
algebra and some additional structure to handle the logical constants and
predicates.

DEFINITION 2. A Heyting applicative structure 〈D,App,Const, ω,Ω〉 for
ictt is a typed applicative structure with an associated Heyting algebra Ω
and function ω from Do to Ω such that for each f in Doα, Ω contains the
parametrized meets and joins

∧
{ω(App(f, d)) : d ∈ Dα} and

∨
{ω(App(f, d)) : d ∈ Dα},

and the following conditions are satisfied:

ω(Const(>o)) = >Ω

ω(Const(⊥o)) = ⊥Ω

ω(App(App(Const(∧ooo), d1), d2)) = ω(d1) ∧ ω(d2)
ω(App(App(Const(∨ooo), d1), d2)) = ω(d1) ∨ ω(d2)
ω(App(App(Const(⊃ooo), d1), d2)) = ω(d1) → ω(d2)

ω(App(Const(Σo(oα)), f)) =
∨
{ω(App(f, d)) : d ∈ Dα}

ω(App(Const(Πo(oα)), f)) =
∧
{ω(App(f, d)) : d ∈ Dα}

By supplying an object Ω of truth values we are able to distinguish be-
tween denotations of formulae (elements d of Do) and their truth-values
ω(d) ∈ Ω. A definition, with suitable further restrictions on Do, that iden-
tified Do with Ω (i.e., restricting ω to the identity function) might seem
more natural but would make, for example, A∧B indiscernible from B ∧A
in the structure and thereby identify the truth values of Poo(Ao ∧ Bo) and
Poo(Bo ∧ Ao). This identity holds neither in ictt as presented here nor in
the hohh sub-system used in the λProlog programming language.

DEFINITION 3. A global model for ictt is a total assignment-indexed
function D = {D()ϕ : ϕ an assignment} into a Heyting applicative structure
〈D,App,Const, ω,Ω〉 which takes (possibly open) terms of type α into Dα

and satisfies the environmental model conditions cited above, following Def.

6 Olivier Hermant, James Lipton

1, as well as βη-conversion, that is to say:

D(c)ϕ = Const(c) for constants c

D(x)ϕ = ϕ(x) for variables x

D((MN))ϕ = App(D(M)ϕ,D(N)ϕ)
App(D(λxα.Mβ)ϕ, d) = D(M)ϕ[x:=d]

D(M)ϕ = D(N)ϕ M βη-equivalent to N

The reader will note that we have added the requirement of βη sound-
ness to our definition of environmental models above. In the presence of
functional extensionality (which we do not require) this is unnecessary, as
our environmental models satisfy the substitution lemma, and are easily
shown sound for beta and eta equivalence and uniquely determined by the
assignment ϕ and the function Const.

Given a model D and an assignment ϕ, we say that ϕ satisfies B in D if
ω(D(Bo)ϕ) = >Ω; we abbreviate this assertion to D |=ϕ Bo. We say Bo is
valid in D (equivalently, D |= Bo) if D |=ϕ Bo for every assignment ϕ. We
abbreviate the truth-value ω(D(Bo)ϕ) to (Bo)∗ϕ. We also omit the subscript
ϕ when our intentions are clear. We often use the word model just to refer
to the mapping ()∗ from logical formulae to truth values in Ω.

Soundness of ICTT for Global Models
In the following we extend interpretations to sequents in a natural way.

DEFINITION 4. We define the meaning of a sequent in a model to be the
truth-value in Ω given by:

(Γ ` ∆)∗ := (
∧

Γ ⊃ ∆)∗

where
∧

Γ signifies the conjunction of the elements of Γ and where we recall
that, in an intuitionistic calculus, the consequent ∆ is restricted to a single
formula.

Note that (
∧

Γ ⊃ ∆)∗ = > if and only if > ≤ (
∧

Γ ⊃ ∆)∗, which is to
say > ≤ (

∧
Γ)∗ → (∆)∗, which by the condition on → is equivalent to

> ∧ (
∧

Γ)∗ ≤ (∆)∗, which in turn is equivalent to (
∧

Γ)∗ ≤ (∆)∗. We will
abbreviate (

∧
Γ)∗ to (Γ)∗ and express the validity of the indicated sequent

by (Γ)∗ ≤ (∆)∗ or, when referring to the environment, by (Γ)∗ϕ ≤ (∆)∗ϕ
henceforth.

THEOREM 5 (Soundness). If Γ ` A is provable in ictt then (Γ)∗ ≤ (A)∗

in every global model E of ictt.

A proof can be found in [5]. Remind that ` allows the cut rule.

Cut-elimination in Type Theory with Axioms 7

A straightforward proof of completeness of ICTT for global models can be
given under the assumption that cut is admissible for ICTT along the lines
of [25, 5], i.e. by choosing Ω to be the Lindenbaum algebra of equivalence
classes of formulae and then interpreting each formula as its own equivalence
class. Just to show Ω is partially ordered, we need cut.

Since we are not assuming cut holds in ICTT we must proceed differently.
We will choose the complete Heyting algebra Ωcfk generated by “cut-free
contexts”, that is to say, contexts from which formulae can be proved with-
out using cut. A partial valuation will be defined for this cHa, yielding an
interpretation that establishes completeness and the admissibility of cut.

3.2 Semantic preliminaries

DEFINITION 6. Let Ω be a Heyting algebra. A global Ω semivalua-
tion V = 〈D,App,Const, π, ν,Ω〉 consists of a typed applicative structure
〈D,App,Const〉 together with a pair of maps π : Do −→ Ω and ν : Do −→ Ω,
called the lower and upper constraints of V, or the positive and negative
constraints, satisfying the following:

1. For any d ∈ Do

π(d) ≤ ν(d)

2.

π(>o) = >Ω

π(⊥o) = ⊥Ω

π(Const(∧) ·A ·B) ≤ π(A) ∧Ω π(B)
π(Const(∨) ·A ·B) ≤ π(A) ∨Ω π(B)
π(Const(⊃) ·A ·B) ≤ π(A) →Ω π(B)

π(Const(Σo(oα)) · f) ≤
∨
{π(f · d) : d ∈ Dα}

π(Const(Πo(oα)) · f(oα)) ≤
∧
{π(f · d) : d ∈ Dα}

8 Olivier Hermant, James Lipton

and

ν(>o) = >Ω

ν(⊥o) = ⊥Ω

ν(Const(∧) ·A ·B) ≥ ν(A) ∧Ω ν(B)
ν(Const(∨) ·A ·B) ≥ ν(A) ∨Ω ν(B)
ν(Const(⊃) ·A ·B) ≥ ν(A) →Ω ν(B)

ν(Const(Σo(oα)) · f) ≥
∨
{ν(f · d) : d ∈ Dα}

ν(Const(Πo(oα)) · f(oα)) ≥
∧
{ν(f · d) : d ∈ Dα}

3. and the consistency or separation conditions

π(Const(⊃) ·B · C) ∧ ν(B) ≤ π(C) (1)
π(B) →Ω ν(C) ≤ ν(Const(⊃) ·B · C). (2)

REMARK 7. In this definition, the application operator App is denoted
by the infix operator · for readability. The reader should note that some
of these requirements are superfluous, i.e. follow from the others. The
separation conditions and the first condition imply the ⊃ requirements for
both π and ν, as well as > requirement for π (resp. bot for ν) implies their
counterpart for ν (resp. π).

The separation conditions abstract the properties of the weak and strong
support sets1 HT

A and H¬F
A associated with a Hintikka set H in [5].

The definition of environment, and global structure remain the same for
semivaluations. As with Heyting applicative structures, in the presence of
an environment ϕ, a semivaluation V induces an interpretation Vϕ from
open terms A to the carriers D as follows:

V(c)ϕ = Const(c) for constants c
V(x)ϕ = ϕ(x) for variables x
V(M)ϕ = V(N)ϕ M eta-equivalent to N
V((MN))ϕ = App(V(M)ϕ,V(N)ϕ)
App(V(λxα.Mβ)ϕ, d) = V(M)ϕ[x:=d]

This assignment induces a pair of partial, or semi-truth-value assignments
[[]]πϕ and [[]]νϕ to terms Ao of type o given by

V[[A]]πϕ = π(V(A)ϕ)
V[[A]]νϕ = ν(V(A)ϕ)

1whose formulation is due to Chad Brown.

Cut-elimination in Type Theory with Axioms 9

THEOREM 8. Given an Ω, S-semivaluation V = 〈D, ·,Const, π, ν,Ω〉, there
is a model D = 〈D̂,�, Ĉ, ω,Ω〉 extending V in the following sense: for all
closed terms Ao

V[[A]]π ≤ ω(D(A)) ≤ V[[A]]ν .

Furthermore, there is a surjective indexed map δ : D̂ −→ D such that for
any d̂ ∈ D̂o

π(δ(d̂)) ≤ ω(d̂) ≤ ν(δ(d̂))

Proof. We recall from the constructions in [24, 1, 5] that a V -complex of
a given type γ is an ordered pair 〈Aγ , u〉 where Aγ is a term (of type γ) in
normal form, and u is a truth value, in our case a member of a cHa, which we
can think of as a candidate truth value for the desired valuation (i.e. model)
D. As in the cited works, the carriers D̂ of this model 〈D̂, Ĉ,�, ω,Ω〉 will
be sets of such V -complexes, defined by induction on the type structure,
as follows:

• D̂o = {〈d, u〉 : d ∈ Do and π(d) ≤ u ≤ ν(d)}

• D̂ι = {〈m, ι〉 : m ∈ Dι}

• D̂βα = {〈m,µ〉 : m ∈ Dβα, µ : Dα −→ Dβ , and for each 〈A, a〉 ∈
Dα, µ〈A, a〉 = 〈m ·A, r〉 for some r}.

• Application is given by 〈M,m〉 � 〈A, a〉 = m〈A, a〉.

• Define ω : D̂o −→ Ω by projection on the second coordinate.

Projections on the first and second coordinates are noted d1 and d2,
respectively. As in [5], we can define a selector function ρ : D −→ D̂2 by
induction on types, to show that for every type α and every M ∈ Dα there
is a ρ(M) such that 〈M,ρ(M)〉 ∈ D̂α.

Notice that in the Do base case, we have a degree of freedom: we can
choose ρ(M) = π(M) as well ρ(M) = ν(M). This choice can be uniform
(and arbitrary) or depend on M , as we shall see later.

Now we show how to define the assignment of denotations to logical and
non-logical constants.

Ĉ(>o) = 〈Const(>o),>Ω〉
Ĉ(⊥o) = 〈Const(⊥o),⊥Ω〉
Ĉ(cα) = 〈Const(cα), ρ(Const(cα))〉 for non-logical constants cα.

Ĉ(∧) = 〈Const(∧), λλ〈B, b〉.〈Const(∧) ·B, λλ〈D, d〉.〈Const(∧) ·B ·D, b ∧Ω d〉〉〉
Ĉ(⊃) = 〈Const(⊃), λλ〈B, b〉.〈Const(⊃) ·B, λλ〈D, d〉.〈Const(⊃) ·B ·D, b →Ω d〉〉〉
Ĉ(Σ) = 〈Const(Σ), λλ〈M, m〉.〈Const(Σ) ·M,

W
d̂∈D̂α

(md̂)2〉〉.

10 Olivier Hermant, James Lipton

where Σ abbreviates Σo(oα). The ∨ and Π cases are similar, and left to the
reader.

We now need to show that Ĉ is well-defined. This is where the separation
conditions play a key role. We will work a few cases.

Ĉ(∧) What we must show here is that if 〈B, b〉 and 〈D, d〉 are in D̂o then
so is 〈Const(∧) ·B ·D, b ∧Ω d〉. That is to say, if we are given that
π(B) ≤ b ≤ ν(B) and π(D) ≤ d ≤ ν(D) then b ∧Ω d lies between
π(Const(∧) · B · D) and ν(Const(∧) · B · D). Since ∧ is monotone in
both arguments this follows immediately from the defining properties
of upper and lower constraints.

The argument for ∨ is similar.

Ĉ(⊃) We must show that the second component Ĉ(⊃)2, namely the term
λλ〈B, b〉.〈Const(⊃) ·B, λλ〈D, d〉.〈Const(⊃) ·B ·D, b →Ω d〉〉maps a pair
of members of D̂o to D̂o. If we are given two members 〈B, b〉 and
〈D, d〉 of D̂o, then we know π(B) ≤ b ≤ ν(B) and similarly π(D) ≤
d ≤ ν(D). But then, abbreviating Const(⊃) ·B ·D to B ⊃ D, we have
π(B ⊃ D) ∧ b ≤ π(B ⊃ D) ∧ ν(B). By the first separation axiom,
π(B ⊃ D) ∧ b ≤ π(D) ≤ d. But then π(B ⊃ D) ≤ b → d.

Furthermore b → d ≤ π(B) → ν(D) since Heyting implication is anti-
tone (contravariant) in its first argument and monotone in its second.
By the second separation axiom (2) b → d ≤ ν(B ⊃ D),as we wanted
to show.

The Π and Σ cases are both monotone in the relevant arguments, and are
easy. The surjective map δ in the conclusion of the theorem is just projection
of V -complexes onto their first component.

The rest of the proof that D is a model follows just like the proof for the
model constructed in [5]. �

4 Completeness and cut elimination - the ictt case

From Thm. 8, deriving a (cut-free) completeness theorem for ictt requires
a complete Heyting algebra Ω and an Ω, S semivaluation. We first give the
definition of Ωcfk, the Heyting algebra of cut-free contexts, which is very
different from the one given in [5].

4.1 The cut-free contexts Heyting algebra

We first define what is a cut-free context, in the same way as Okada [19,
18].

Cut-elimination in Type Theory with Axioms 11

DEFINITION 9 (outer value). Let A be a closed formula. We let the outer
value of A be:

JAK = {Γ | Γ `∗ A}

So, an outer value JAK is the set of contexts proving A without cut (cut-
free contexts). With this, we build Ωcfk.

DEFINITION 10 (Ωcfk). We let |Ω| to be the least set of sets of (finite)
contexts generated by JAK for any formula A, and closed under arbitrary
intersection. It is ordered by inclusion. Then define meets and joins on |Ω|
as follows

•
∧

= arbitrary intersection, just set-theoretic intersections.

•
∨

= arbitrary pseudo-union, that is to say∨
S =

⋂
{c ∈ |Ω| : c ≥ S}

where c ≥ S means ∀s ∈ S c ≥ s

REMARK 11. If we expand this definition a little bit, we have:

• >Ω is the set of all finite contexts. It is as well J>oK since any context
proves >o without using cut.

• ⊥Ω is the intersection of all outer values. Equivalently, it is J⊥oK since
if Γ `∗ ⊥o we can prove Γ `∗ A for any A. In particular, ⊥Ω is not
empty.

Notice that an element c ∈ Ω (by which we mean c ∈ |Ω|) can always be
written as an element of the form

⋂
JAi | i ∈ ΛK. So we can simplify a little

bit the definition of union:

LEMMA 12 (Simplification of the definition). We may express suprema
directly in terms of generating sets:

•
∨
{ai, i ∈ I} =

⋂
{JAK |

⋃
{ai, i ∈ I} ⊆ JAK}

• a ∨Ω b =
⋂
{JAK | a ∪ b ⊆ JAK}

Proof. Each one of the c mentioned before is of the form
⋂
{ci, i ∈ J}. �

Taking a→b =
∨
{x : x ∧ a ≤ b}, the resulting structure Ω = 〈|Ω|,

∨
,
∧

,→〉
(also written Ωcfk, when ambiguity may arise) is a complete Heyting algebra.
One must show that the ∧

∨
distributivity law holds [25].

12 Olivier Hermant, James Lipton

First we show that for each member a =
⋂

i JAiK of Ω

a ∩
∨

S ≤
∨

a ∩ S

where a∩S means {a∩s : s ∈ S}. Unfolding the definitions and using Lem.
12 above, the desired conclusion is equivalent to

a ∩
⋂
{JBK : JBK ≥ S} ⊆

⋂
{JDK : JDK ≥ a ∩ S} (3)

where x ≥ S abbreviates ∀s ∈ S(s ⊆ x). Suppose the context Γ is a member
of the left hand side, i.e. for each i we have Γ `∗ Ai and Γ `∗ B for every
B such that JBK ≥ S.

Let D be a formula such that JDK ≥ a ∩ S. We must show Γ `∗ D to
conclude.

Let ∆ ba a context such that ∆ ∈ s for some s ∈ S. By weakening
∆,Γ `∗ Ai for each i, i.e. ∆,Γ ∈ a and by the same reasoning ∆,Γ ∈ s.
By definition of D, we have ∆,Γ `∗ D. Hence ∆ `∗

∧
Γ ⊃ D. Since this is

valid for any s, we have shown JΓ ⊃ DK ≥ S.
But then, Γ `∗ Γ ⊃ D by assumption on Γ. By Kleene’s Lem. 33 below

and contraction on the formulae in Γ we have Γ `∗ D, which shows Γ is a
member of the right-hand-side of 3, which proves the claim.

The other direction follows, by elementary lattice theory: for any s ∈ S
it is the case that a∩

∨
S ≥ a∩ s. Now take the supremum of a∩ s over all

s ∈ S.

4.2 A semivaluation π and ν

Now, we need to give a definition of an Ω semivaluation to have the right
to apply Thm. 8. For this, we need the following definition:

DEFINITION 13 (closure). Let S be a set of contexts, we define its closure
by:

cl(S) =
⋂
{JAK | S ⊆ JAK}

It is the least element of Ω containing S. We also write, for a single context
Γ, cl(Γ) to mean cl({Γ}).
REMARK 14. Notice that cl(A) ⊆ d is equivalent to A ∈ d. Indeed,
A ∈ cl(A) and cl(A) is the l.u.b. of A. The closure operator can also be
understood as the set of contexts admitting cut with all the elements of S
as shown in the following lemma.

LEMMA 15. Let A be a formula. Then the four following formulations are
equivalent:

(i) cl(A) =
⋂
{JBK | A ∈ JBK}

Cut-elimination in Type Theory with Axioms 13

(ii) cl(A) = {Γ | Γ `∗ B whenever A `∗ B}. Equivalently, Γ ∈ cl(A) iff
Γ `∗ A and given any proof A `∗ B, a proof of Γ `∗ B is derivable.

(iii) cl(A) = {Γ | Γ `∗ B whenever Γ, A `∗ B}. Equivalently, Γ ∈ cl(A) iff
Γ `∗ A and given any proof Γ, A `∗ B a proof of Γ `∗ B is derivable.

(iv) cl(A) = {Γ | ∆,Γ `∗ B whenever ∆, A `∗ B}. Equivalently, Γ ∈ cl(A)
iff Γ `∗ A and given any proof ∆, A `∗ B a proof of ∆,Γ `∗ B is
derivable.

Cases (ii) – (iv) can be summarized as follows: Γ admits cuts with A, hence
the terminology “Γ is A-cuttable”.

Proof. Denoting cl(A) as defined at point (x) as (x) itself, we have:

• (i) = (ii) is just an unfolding of JBK. Moreover A ∈ JAK, thus Γ `∗ A
has to hold.

• (ii) ⊆ (iii). Let Γ ∈ (ii), and B such that Γ, A `∗ B. Show that
Γ `∗ B. By ∧L rules and a ⊃R rule, we have a proof of the sequent
A `∗ (

∧
Γ) ⊃ B. Therefore, by hypothesis, Γ `∗ (

∧
Γ) ⊃ B. Using

Kleene’s inversion lemma Lem. 33 below, we get a proof of the sequent
Γ,Γ `∗ B that we contract.

• (iii) ⊆ (iv). Let Γ ∈ (iii) and B such that ∆, A `∗ B. By weakening,
∧L and ⊃R rules, this yields a proof of the sequent Γ, A `∗

∧
∆ ⊃ B.

Γ `∗
∧

∆ ⊃ B then holds by hypothesis, and we conclude by applying
Kleene’s inversion lemma Lem. 33.

• (iv) ⊆ (ii). Let Γ ∈ (iv) and B such that A `∗ B. Taking ∅ for ∆ in
(iv) shows Γ `∗ B.

�

We will not pay much attention to the Γ `∗ A statement. It is an immediate
consequence of the A-cuttability statement, since A `∗ A trivially. We shall
use any of those formulations, depending on our need. Now we are ready
to give the semivaluation we work with:

DEFINITION 16 (the semivaluation). Let the typed applicative structure
〈D,App,Const〉 be the open term model: we take carriers Dα to be open
terms in normal form of the appropriate type, application A · B = [AB],
and we interpret constants as themselves. For any formula A, we define:

π(A) = cl(A)
ν(A) = JAK

14 Olivier Hermant, James Lipton

LEMMA 17. 〈D,App,Const, π, ν,Ωcfk〉 is a semivaluation in the sense of
Def. 6.

Proof. We have to check every statement of Def. 6, with respect to the
open term model.

• cl(A) ⊆ JAK. By Rem. 14, this amounts to showing A ∈ JAK. This
holds since A `∗ A.

• cl(>o) = >Ω. The direct inclusion is immediate since >Ω is the great-
est element. For the converse, we have to show that any context is
>o-cuttable. So consider a proof of >o `∗ A for some A. The only
possible rules we can use on >o besides contraction, weakening and
conversion is the axiom. We can always replace it by:

>-right` >o

Hence, `∗ A, and, by weakening, Γ `∗ A for any context Γ.

• cl(⊥o) = ⊥Ω, since ⊥Ω ⊆ cl(⊥) ⊆ J⊥K = ⊥Ω: ⊥Ω is the least element,
from a previous point and from Rem. 11.

• cl(A ∧B) ≤ cl(A) ∩ cl(B). This amounts to showing A ∧B ∈ cl(A) ∩
cl(B). We prove that A∧B is A-cuttable. Consider a proof of A `∗ C.
We construct the following proof:

A `∗ C weak
A,B `∗ C ∧L

A ∧B `∗ C

Hence, A∧B ∈ cl(A). On the same way, A∧B ∈ cl(B) and the claim
is proved.

• cl(A∨B) ⊆ cl(A)∨Ω cl(B). It suffices to show A∨B ∈ cl(A)∨Ω cl(B).
Let C be such that cl(A)∪ cl(B) ⊆ JCK. Then A ∈ JCK and B ∈ JCK.
Therefore, the proof

A `∗ C B `∗ C ∨L
A ∨B `∗ C

shows that A ∨ B ∈ JCK. This holds for any such C, hence A ∨ B ∈
cl(A) ∨Ω cl(B).

• cl(A ⊃ B) ⊆ cl(A) → cl(B) is a consequence of cl(A ⊃ B) ∧ JAK ⊆
cl(B) (proved later) as said in Rem. 7.

Cut-elimination in Type Theory with Axioms 15

• cl(Σ.f) ⊆
∨
{cl(ft) | t ∈ Tα} (where α is the suitable type). Equiv-

alently, Σ.f ∈
∨
{cl((ft)) | t ∈ Tα}. Let t be a variable y of type α

that is fresh for f . We prove that Σ.f is fy-cuttable. Assume to have
a proof fy `∗ C. The proof:

fy `∗ C
∃LΣ.f `∗ C

justifies the fy-cuttability. Hence Σ.f ∈ cl(fy), and it is in the supre-
mum.

• Π.f ∈
∧
{cl(ft), t ∈ Tα}. Let t be a term of type α. The proof:

ft `∗ C
∀LΠ.f `∗ C

shows that Π.f is ft-cuttable for any t.

• J>oK = >Ω and J⊥oK = ⊥Ω hold both by definition, from Rem. 11.

• JA ∧BK ⊇ JAK ∧Ω JBK. Let Γ such that Γ `∗ A and Γ `∗ B. The
proof:

Γ `∗ A Γ `∗ B ∧RΓ `∗ A ∧B

shows the claim.

• JA ∨BK ⊇ JAK ∨Ω JBK. We show JA ∨BK ⊇ JAK. Let Γ ∈ JAK. The
proof:

Γ `∗ A ∨RΓ `∗ A ∨B

shows that Γ ∈ JA ∨BK. Hence JA ∨BK is an upper bound for JAK
and JBK, and the claim is proved.

• JA ⊃ BK ⊇ JAK →Ω JBK is a consequence of cl(A) → JBK ⊆ JA ⊃ BK
(proved later) as said in Rem. 7.

• JΣ.fK ⊇
∨
{JftK, t ∈ Tα}. Let t be any term of type α. Let Γ ∈ JftK.

The proof:

Γ `∗ ft
∃RΓ `∗ Σ.f

16 Olivier Hermant, James Lipton

shows that JΣ.fK is an upper bound for any JftK, hence for their
supremum as well.

• JΠ.fK ⊇
∧
{JftK, t ∈ Tα}. Let Γ ∈

∧
{JftK, t ∈ Tα}. Let y be a fresh

variable with respect to Γ and f . In particular, Γ ∈ JfyK. The proof

Γ `∗ fy
∀RΓ `∗ Π.f

shows that Γ ∈ JΠ.fK.

• cl(B ⊃ C) ∧Ω JBK ⊆ cl(C). Let Γ ∈ cl(B ⊃ C) ∩ JBK. We must show
the C-cuttability of Γ. Consider a proof of C `∗ D. Since Γ `∗ B:

Γ `∗ B Γ, C `∗ D ⊃LΓ, B ⊃ C `∗ D

By B ⊃ C-cuttability of Γ we get Γ `∗ D.

• cl(B) →Ω JCK ⊆ JB ⊃ CK. Let Γ ∈ cl(B) → JCK and show Γ `∗ B ⊃
C. Indeed, since Γ ∈ cl(B) → JCK, we have: cl(Γ) ∩ cl(B) ⊆ JCK.
Furthermore from Rem. 14, Γ ∈ cl(Γ) and B ∈ cl(B). It follows by
weakenings that Γ, B belongs to both. Hence Γ, B ∈ JCK, and we can
derive the desired proof:

Γ, B `∗ C ⊃RΓ `∗ B ⊃ C

�

4.3 Completeness and cut elimination of ictt

We now have all the results needed to establish completeness.

THEOREM 18 (cut-free completeness of ictt). Let Γ be a context and A
be a formula. Assume that for any global model we have Γ∗ ≤ A∗. Then we
have a cut-free proof of Γ ` A.

Proof. We apply Thm. 8 with Heyting algebra Ωcfk given in Def. 10 and
the semivaluation π, ν of Def. 16. We get, from Rem. 14, by Thm. 8 and
by hypothesis that:

Γ ∈ cl(Γ) ⊆ Γ∗ ⊆ A∗ ⊆ JAK

Hence, the sequent Γ ` A has a cut-free proof. �

Cut-elimination in Type Theory with Axioms 17

As an immediate corollary, we have:

COROLLARY 19 (constructive cut elimination for ictt). Let Γ be a context
and A be a formula. If Γ ` A has a proof in ictt, then it has a proof without
cut.

Proof. By soundness and cut-free completeness, both of which were proved
constructively. �

5 Adding non-logical axioms

Now, we allow a more liberal notion of proof, with non-logical axioms.

DEFINITION 20. A non-logical axiom is a sequent A ` B. A proof with
non-logical axioms is a proof whose leaves are either a proper axiom rule,
or a non-logical axiom and allowing the use of axiomatic cuts.

Assuming that A ` B is a non-logical axiom, an axiomatic cut is the
following implicit cut rule

Γ ` A Γ, B ` C

Γ ` C

In the sequel, we will work with a given set (potentially infinite) of non-
logical axioms, and the proof system will be a proof ictt with non-logical
axioms. This syntactical proof system will be called Lnla.

The non-logical axiom and the axiomatic cut rules overlap a little bit:

LEMMA 21. In ictt with non-logical axioms, when the cut rule is allowed,
one can simulate axiomatic cuts. Conversely, with axiomatic cuts one can
simulate the non-logical axioms, with or without the cut rule.

Proof. For the first statement, replace any axiomatic cut by:

Γ ` A
non-logical axiom

A ` Bcut Γ ` B Γ, B ` C
cutΓ ` C

For the second statement, replace a non-logical axiom Γ, A ` B by:

Γ, A ` A Γ, B ` B
axiomatic cutΓ, A ` B

�

18 Olivier Hermant, James Lipton

We show in this section that we still have, by the same means, cut elimi-
nation in ictt with non-logical axioms, but that we can not, in the general
setting, eliminate axiomatic cuts. First, we need another, unsurprising,
notion of model:

DEFINITION 22 (models for non-logical axioms). A global model for ictt
(Def. 3) is a model of the non-logical axioms if and only if (A)∗ ≤ (B)∗ for
any non-logical axiom A ` B.

In the sequel, we will only be interested in such models.

THEOREM 23 (Soundness of ictt with non-logical axioms). If Γ ` A in
ictt with non-logical axioms, then Γ∗ ≤ A∗ in any global model of the
non-logical axioms.

Proof. We assume not to have axiomatic cuts by Lem. 21: we replace
them by usual cuts. The proof is by the very same induction as the one of
Thm. 5. The only additional case is the case of a non-logical axiom A ` B,
trivial, since we assumed the model to be a model of the non-logical axioms.

�

Now we work towards a proof of a cut-free completeness theorem for ictt
with non-logical axioms. Cut-free means free of cuts, but not of axiomatic
cuts, that we will not be able to remove.

5.1 Completeness and cut elimination in presence of axioms
As well as we defined, in ictt, the complete Heyting algebra of cut-free
contexts Ωcfk (Def. 10), we can define Ωcfk with respect to provability in
Lnla, i.e. ictt with non-logical axioms. Def. 10 does not depend on the
syntactic system we work with. Of course the contexts in JCK depend on
the logic we are in: ictt or ictt with non-logical axioms (Lnla). So both
algebras are different, but generated exactly the same way. To distinguish
between both algebras, we will speak about Ω(L) and Ω(Lnla).

We can build a semivaluation, with respect to provability in Lnla, exactly
in the same way as in Def. 16: we can check that the proof of Lem. 17 does
not depend on the presence or absence of non-logical axioms and axiomatic
cuts. As well, the A-cuttability notion (Lem. 15) used there does not
depend on ictt. It appeals to Kleene’s Lem. 33 below, that remains valid.

Since the Takahashi-Schütte lemma (Thm. 8) does not at all depend
on the syntactic system (it requires only a semivaluation), we can build an
interpretation, generating V-complexes [1, 24, 21] as well.

So we get a model Dnla over the cHa Ω(Lnla) exactly in the same way as
in Sec. 4. The only thing to check is:

LEMMA 24. The global model Dnla is a model of the non-logical axioms.

Cut-elimination in Type Theory with Axioms 19

Proof. Let A ` B be a non-logical axiom. Let’s show that A∗ ⊆ B∗.
We know that A∗ ⊆ JAK and that cl(B) ⊆ B∗ from the Takahashi-Schütte
Thm. 8. So it is sufficient to show JAK ⊆ cl(B). Let Γ such that Γ `∗ A.
We show that Γ is B-cuttable. So, assume given a formula C and a proof
of Γ, B `∗ C. We can build the following proof of Γ `∗ C:

Γ `∗ A Γ, B `∗ C
axiomatic cutΓ `∗ C

which yields the desired conclusion. �

Therefore, we have the following proof of completeness:

THEOREM 25 (cut-free completeness of ictt with nla). Consider any set
of non-logical axioms. Let Γ be a context and A be a formula. Assume that
for any global model of the non-logical axioms, we have Γ∗ ≤ A∗. Then we
have a cut-free proof of Γ ` A.

Proof. As Thm. 18. Ω(Lnla) is a global model of the non-logical axioms.
�

As well, we have the cut elimination theorem as a corollary:

COROLLARY 26 (constructive cut elimination for ictt with non-logical
axioms). Consider any set of non-logical axioms. Let Γ be a context and A
be a formula. If Γ ` A has a proof in ictt, then it has a proof without cut.

Proof. By soundness and cut-free completeness, both of which were proved
constructively. �

6 ictt and rewriting cuts

Here, we assume we have non-logical axioms as well (Def. 20), as in the
previous section but with the additional assumption that the non-logical
axioms satisfy a sign-preserving condition (given below). We obtain a con-
structive semantic cut elimination theorem that guarantees the existence of
a cut-free proof with the following rewriting cuts only, which are a restriction
of axiomatic cuts.

Before proving the strengthened cut elimination theorem, we state some
useful results, and we begin by recalling briefly terminology of rewriting.

6.1 Rewrite rules

DEFINITION 27. Let R = {li→ ri : i ∈ I} be a rewrite system where all
the left and right members have type o.

20 Olivier Hermant, James Lipton

A proposition C is said to R-rewrite to C ′ if for some i and some D ≡λ C
such that there is a redex in D matching an instance of li, via a unifier θ,
D′ is D where this redex is replaced by θri and D′ ≡λ C ′.

We use the notation →∗ to denote the transitive, reflexive closure of the
R relation → and ≡R the congruence it generates.

A rewrite system R is confluent if and only if for any two formulae A ≡R
B, there is a formula C such that A →∗ C and B →∗ C. A rewrite system
R is an atomic system if every antecedent A with A→B ∈ R is an atomic
formula of type o.

The reader should consult e.g. [2] for more details on term rewriting.
Notice that ≡R contains ≡λ and that here we are interested only in propo-
sitional rewriting, which is where interaction between rewriting and sequent
rules can be delicate (see Deduction Modulo [12]).

LEMMA 28 (Main connective). Let {Ai → Bi} be an atomic and confluent
rewrite system. Let C,D be non atomic formulae. If C ≡R D, they have
the same main connective, and their immediate subformulae are congruent.

Proof. By confluence, we can find a E such that C →∗ E and D →∗ E,
and rewriting occur only on atomic formulae by the atomicity condition.
Formally, this is done by induction on the length of rewriting paths. For
more details, see [12]. �

6.2 From rewrite rules to ictt

There are many ways to add rewrite rules to ictt, for instance, one can try
to define a Deduction Modulo [7, 6] within the ictt frame. Instead of that,
we constrain the axiomatic cuts of Lnla to have a rewriting form.

6.3 Rewriting cuts

DEFINITION 29 (From rewrite rules to an axiomatic system). Let R be
a propositional rewrite system consisting of rules of the form A→B with
A,B terms of type o. We consider the associated set of non logical axioms
(i.e. new initial rules) to be all the sequents σA ` σB and σB ` σA where
A → B ∈ R and σ is some substitution: we add all the instantiations of
rewrite rules, in both ways.

DEFINITION 30 (Rewriting cut). Let A ` B a non-logical axiom. A
rewriting cut is an axiomatic cut of one of the following forms:

Γ ` A
nlAxΓ, A ` B

Γ ` B

nlAx Γ, A ` B Γ, B ` C

Γ, A ` C

We define the logic Lnla to be Lnla with axiomatic cuts restricted in this
way.

Cut-elimination in Type Theory with Axioms 21

This restriction makes rewriting cuts almost inoffensive, since the formula
we cut on has to be immediately proved in one premise. That is very close
to a rewriting of A to B (on the right hand side) and of B to A (on the left
hand side).

As in Lem. 21, one can simulate the non-logical axiom rule, even in a
cut-free setting, with a rewrite cut. Of course the non-logical axiom that is
a premise of the cut has no mean to be simulated at its turn, but this gets
rid of lonely non-logical axioms, which is a technical simplification.

DEFINITION 31 (From rewrite rules to Lnla). Let R be a rewrite system.
Consider the associated set of non-logical axioms, as in Def. 29 and consider
the associated logical system Lnla generated by Def. 30.

If R is confluent, we call Lnla a confluent axiomatic system, and call it an
atomic system if every antecedent A with A→B ∈ R is an atomic formula
of type o.

Notice that in the logic Lnla we do not “rewrite” within the logic directly
(as with Deduction Modulo [7, 6]). We apply axiomatic cut rules. We
assume we have an atomic and confluent rewrite (or axiomatic) system.

LEMMA 32. Let R an atomic and confluent rewrite system. Let Γ ≡R Γ′

(pointwise equivalence) be contexts and A ≡R A′ be formulae. If we have
a proof θ of the sequent Γ `∗ A then we can build a proof of the sequent
Γ′ `∗ A′.

Proof. By induction on the structure of θ. We copy every rule, applying
the induction hypothesis before that. The only non trivial case are:

• a λ conversion rule. Apply induction hypothesis.

• A′ is atomic and we have a logical rule on A. The principle is that
we rewrite A′ with rewriting cuts (and λ rules) until it becomes non
atomic.

By confluence, we must have a chain of instances of rewrite rules
Ai → Bi, i ≤ n, such that A0 ≡λ A′, Ai ≡λ Bi−1 and Bn non atomic,
having the same main connective (by Lem. 28) as A. Since Bn ≡R A,
we construct a proof of Γ′ `∗ Bn by applying the induction hypothesis.
We then add successive rewriting cuts and λ-conversion rules.

• we have the same on the left hand side.

• an axiom rule. We only know the existence A
′′ ∈ Γ′ such that A

′′ ≡R
A ≡R A′, so we can’t apply the axiom rule as such since A′, A′′ are not
atomic and the rewriting path between A′ and A′′ is not straight. But

22 Olivier Hermant, James Lipton

we know by confluence that there is a formula D such that A
′′ →n D

and A′ →m D.

We prove by induction over n + m + #D, where #D is the number of
connectives and quantifiers of D that we can build a proof of A′′ `∗ A′.
If D is non atomic, while A′ or A

′′
is (assume it is A′), let A′ → B the

first rule used in the rewrite sequence A′ →n D. We have by induction
hypothesis a proof of the sequent Γ′ `∗ B we then make a rewriting
cut with the axiom B `∗ A′, adding λ rules if necessary. Otherwise,
if, say D ≡λ B1 ∨ B2 and A′, A′′ are compound, they are equal to
B′

1 ∨ B′
2 and B

′′

1 ∨ B
′′

2 . By induction hypothesis we have proofs of
B

′′

1 `∗ B′
1 and B

′′

2 `∗ B′
2 and we add an ∨L and an ∨R rule (plus λ if

needed) to conclude. At last, if D itself is atomic, this is just a matter
of using cut and λ rules with the non-logical axioms required by the
rewriting paths A′ →n D and A

′′ →m D.

�

We see that the ability to rewrite atoms with the help of rewriting cuts
is essential, as well as confluence.

7 Kleene’s lemma and rewriting

7.1 Kleene’s lemma in ictt

Kleene’s lemma is a standard rule inversion lemma, saying that – for certain
rules – a proof of a sequent that is the conclusion of the rule may be replaced
by a proof of the premise of that rule. For instance, if we have a proof of the
sequent Γ `∗ ∀xA then we can construct a proof of the sequent Γ `∗ (t/x)A
for any t. Some rules cannot be inverted, as the ∨R rule. Indeed, we can
find no proof of the sequent A ∨ B `∗ A ∨ B beginning with a ∨R rule.
Other non invertible rules are ⊃L,∀L,∃R. We here prove it in ictt, in Lnla

as well as in Lnla when the rewrite rules are confluent and atomic. This
lemma is used at some places in former sections.

LEMMA 33 (Kleene). Let D1 ≡λ . . . ≡λ Dn ≡λ B ∨ C. If we have a proof
π of the sequent Γ, D1, . . . , Dn `∗ A then we have a proof of Γ, B `∗ A
and Γ, C `∗ A. If the proof was cut-free, then the obtained proofs remain
cut-free.

Proof. Standard, by induction on the height of π (the depth of the associ-
ated tree). Notice that if n = 0 a use of the weakening rule is sufficient. If
the last rule is a rule r on Γ or on A, then apply induction hypothesis and
the same rule r. If the rule is an axiom, no Di is an active formula, so we
can replace them by B or C freely. Otherwise, assume D1 is active. The
rule can be:

Cut-elimination in Type Theory with Axioms 23

• a contraction. Apply induction hypothesis on the premise.

• a weakening: do the same.

• a λ-conversion rule. Apply induction hypothesis.

• an ∨-l rule, apply induction hypothesis on the premises, we get four
proofs, and keep only the two of interest, that we contract.

• an axiom, then the proof has the shape: Γ, D1, . . . , Dn ` D1
. We

expand it into the proof:

AxiomΓ, B, D2, . . . , Dn ` B ∨RΓ, B, D2, . . . , Dn ` B ∨ C
λΓ, B,D2, . . . , Dn ` D1

we do the same for C.

Notice that the proof remains valid if we add axiomatic cuts and non-logical
axioms. We have two more cases to consider: a non-logical axiom with D1

as a left (resp. right) active formula. Let’s see the left case, with D1 ` E
as a non-logical axiom. Then we can construct the following proof:

axiomΓ, B, D2, . . . , Dn ` B ∨RΓ, B,D2, . . . , Dn ` B ∨ C
λΓ, B,D2, . . . , Dn ` D1

non-logical axiom
Γ, E, . . . ,Dn ` E

rewriting cut
Γ, B,D2, . . . , Dn ` E

introducing a rewriting cut, allowed even in the cut-free case. �

The lemma and the proof are the same for all the other connectives, save
the four mentioned above.

7.2 Kleene’s lemma in Lnla

Now, we prove Kleene’s lemma in the confluent atomic case, in Lnla. The
statement of the lemma must be somewhat modified to obtain the results
we need.

LEMMA 34 (Kleene). If we have a proof θ of the sequent Γ, D1, . . . , Dn `∗
A then we have a proof of Γ, B `∗ A and Γ, C `∗ A, where Di ≡R B ∨ C.
If the proofs is cut-free, then the obtained proofs remain cut-free (with only
rewriting cuts).

Proof. The only cases that are different from those of the proof of Lem.
33 are:

24 Olivier Hermant, James Lipton

• the case of a λ rule is treated by induction hypothesis, even in the
case of Di being an active formula.

• in the inductive cases we have to consider the case of a rewriting
cut on Γ, on Di or on A. Let’s consider the third case, and assume
the rewriting cut is with the non-logical axiom E `∗ A. We apply
induction hypothesis on the proof of the premise Γ, D1, . . . , Dn `∗ E.
Then we add a rewriting cut to Γ, B `∗ E. Similarly if the rewriting
cut is done with respect to some formula in Γ (first case). If the
rewriting cut is done on Di, then it is sufficient to apply induction
hypothesis thanks to the generalized hypothesis.

• the connective case on Di: thanks to confluence and Lem. 28 it can
only be a ∨L rule. After an application of induction hypothesis, we
have proofs of Γ, B, B′ `∗ A and Γ, C, C ′ `∗ A with B′ ≡R B and
C ′ ≡R C. We then apply Lem. 32 and contract.

• an axiom involving some Di, say D1. We have a proof of the se-
quent Γ, D1, . . . , Dn `∗ D1. By Lem. 32, we have as well a proof of
Γ, D1, D2, . . . , Dn ` B ∨ C. This is easily transformed into a proof of
Γ, B `∗ B ∨ C and Γ, C `∗ B ∨ C. We apply Lem. 32 once again to
get proofs of Γ, B `∗ D1 and Γ, C `∗ D1.

�

8 Atomic confluent rewriting, the sign-preserving case

In this section we show how, by carefully choosing the interpretation of
atomic predicates, we can restrict axiomatic cuts to be rewriting cuts in the
case of sign-preserving rewrite rules (see Def. 36).

8.1 Sign-preserving condition

DEFINITION 35. Let {Pi, i ∈ Λ} the collection of atomic predicate symbols
of a language S for ictt. A decoration on them is a total function p : Λ →
{+,−}. We note P+

i (resp. P−
i) whenever p(i) = + (resp. p(i) = −). A

formula A in λ normal form is said positive (resp. negative) if and only if
it does not contains any flex variable and:

• A is an instantiation of a predicate Pi and p(i) = + (resp. p(i) = −).

• A = > or A = ⊥ (resp. idem).

• A = B ∧ C and B and C are positive (resp. negative).

• A = B ∨ C and B and C are positive (resp. negative).

Cut-elimination in Type Theory with Axioms 25

• A = B ⊃ C and B is negative and C is positive (resp. B is positive
and C is negative).

• A = Π.f and for any term t, ft is positive (resp. negative).

• A = Σ.f and for any term t, ft is positive (resp. negative).

A formula that is not in λ normal form is said positive (resp. negative) if
its corresponding normal form is.

There are many formulae that are neither positive, nor negative. First
of all, any formula containing flex variables, as ∀X.X or P ∨X, since every
instance of X can not have the same polarity. A∨¬A is another counterex-
ample. Notice that we even explicitly forbid ∀X.X to be analyzed in Def.
35, although it can be proved that it does not fit the pattern.

Def. 35 may seem a bit circular. It can apply to quantification over
propositional types (of type . . . → o), but only if the bound variable is not
at a propositional position. i.e. not “flex”. For instance, ∀X.P (X) is posi-
tive provided P is, but not ∀X.(P (X)∧X). Since the flex variables are the
only impredicative case, Def. 35 is well founded. So we do allow quantifi-
cation over propositional types, when the bound variable X appears as an
argument of a predicate symbol, as for instance P.X. With this definition,
we will forbid rewrite rules of the form P (X) → X for any predicate P .
Otherwise ∀XP (X) would have a sign, whereas ∀X.X has not. Although
this rule seems harmless, it does not fit the pattern for now.

Def. 36 below can be applied as well to rewrite systems.

DEFINITION 36. An axiomatic system is sign-preserving if there exists a
decoration on the predicates symbol such that for any axiom A ` B, A has
the same sign than B.

We in this section assume to have a rewrite system being atomic, conflu-
ent and sign-preserving, and consider the axiomatic system and the Lnla

logic associated. The atomicity and confluence conditions implies that
Kleene’s Lem. 33 holds, which will be of paramount importance in the
proof of the main lemma 40.

8.2 Model construction
As in Sec. 4 and 5.1 we can define the complete Heyting algebra Ωcfk, with
respect to provability in Lnla, here noted Ω(Lnla). We build the same intu-
itionistic semivaluation π, ν as in Def. 16, and use the Takahashi-Schütte
Thm. 8, but with the little following modification in choosing the interpre-
tation of atoms, which is of crucial importance:

DEFINITION 37. Let A be an atomic formula of type o. We let

26 Olivier Hermant, James Lipton

• ρ(A) = ν(A) if A is positive.

• ρ(A) = π(A) if A is negative.

Since any atomic formula is either positive or negative, this definition is
complete. Remember that π(A) = cl(A) and ν(A) = JAK are both expressed
in Lnla. The Takahashi-Schütte Thm. 8 implies then the following definition
of the interpretation of formulae:

DEFINITION 38. Let A be a formula of type o. Let φ be an environ-
ment, associating V-complexes of the right type to variables. Let φ1 the
substitution associating the term φ(x)1 to any variable x. Define A∗

φ, the
interpretation of A as:

• A∗
φ = ν(φ1A) if A is atomic and positive.

• A∗
φ = π(φ1A) if A is atomic and negative.

• otherwise, define it inductively as in Def. 2.

REMARK 39. We could certainly switch the π and ν in the previous two
definitions since the choice of polarities is symmetric in Def. 36.

As in Sec. 5.1 it remains to prove only one claim: the model we con-
structed is a model of the non-logical axioms. Since every time we have
A ` B as a non-logical axiom we as well have B ` A, we must show that
A∗ = B∗. The following lemma is the key to show this. It speaks more gen-
erally about any positive and negative formulae, but this includes, thanks
to the conditions of Def. 36 any non-logical axiom.

LEMMA 40. Let A a positive (resp. negative) formula. Let φ be an envi-
ronment. Then (A∗

φ)2 = ν(φ1A) (resp. (A∗
φ)2 = π(φ1A)).

Proof. By induction over the structure of A. Since A does not contain any
flex variable (Def. 35), this induction is well-founded. We should consider
every single case for A, and we omit to mention the environment φ where
it is not essential. Also remark that this proof does not work for every π, ν,
but only for the one we give (cl and JK), since they are in a sense maximal.

• if A is atomic, this comes from the very definition of A∗. If A is >,
this is because in this particular case cl(>) = J>K, similarly for ⊥.

• if A = B ∧ C and A is positive, then by induction hypothesis we
have (B∗)2 = JBK and (C∗)2 = JCK, and then, by definition, (A∗)2 =
JBK∩JCK. Since JBK∩JCK ≤ JB ∧ CK from Lem. 17 (ν is a upper con-
straint of an intuitionistic semivaluation), we must show only the con-
verse. Let Γ such that Γ `∗ B ∧ C. Applying Kleene’s Lem. 33 gives

Cut-elimination in Type Theory with Axioms 27

us proofs of the sequents Γ `∗ B and Γ `∗ C. Hence Γ ∈ JBK ∩ JCK.

If A is negative, reasoning in the same way leads us to try to show
the inclusion cl(B) ∩ cl(C) ⊆ cl(B ∧ C). Let Γ ∈ cl(B) ∩ cl(C), Γ is
B and C-cuttable. Let D such that B ∧C `∗ D. Then, B,C `∗ D as
well, by Kleene’s Lem. 33. By B, and then C cuttability, one get a
proof of the sequent Γ `∗ D.

• A = B∨C and A is positive. By the same reasoning as in the previous
case, showing that JB ∨ CK ⊆ JBK ∪ JCK is sufficient. Let Γ be such
that Γ `∗ B ∨ C. Let also D an upper bound for JBK and JCK: if
∆ `∗ B or ∆ `∗ C then ∆ `∗ D. We need to show that JDK is an
upper bound for JB ∨ CK, i.e. Γ `∗ D.

We construct a proof of Γ `∗ D by induction over the proof of Γ `∗ E
with E ≡R B ∨ C. The base case occurs when the active formula is
E. If it’s a ⊥R rule, then we can as well have this rule generating D
instead of E. If it is a rewriting cut or a λ, we simply use the induc-
tion hypothesis. If it is a logical rule, it can be only ∨-right rule, by
confluence. Then we use the hypothesis on D, since we get a proof of
either Γ `∗ B′ or Γ `∗ C ′, which is the same, by Lem. 32 as a proof
of Γ `∗ B (resp. Γ `∗ C). If it is an axiom, we can, as in the last
case of the proof of Lem. 32. add ∨-left, ∨-right and two axiom rules,
at the potential cost of adding rewriting cuts. But this case boils
down to the previous ones. For the induction case, the last rule is on
a formula of Γ. Apply the induction hypothesis on the premises (if
needed, e.g. not on the left premise of ⊃R), and apply the same rule.
Therefore Γ ∈ JDK, and it belongs to the least upper bound JBK∪JCK.

If A is negative, we show that cl(B) ∪ cl(C) ⊆ cl(B ∨C). Let D such
that B ∨ C `∗ D. Then by Kleene’s Lem. 33, B `∗ D and C `∗ D,
and JDK is an upper bound for cl(B) and cl(C). Since this holds for
any D, the result follows.

• A = B ⊃ C and A is positive. We prove JB ⊃ CK ⊆ cl(B) ⊃Ω JCK, or
equivalently JB ⊃ CK∩ cl(B) ⊆ JCK. Let Γ a B-cuttable context, and
such that we have a proof of the sequent Γ `∗ B ⊃ C. By an appli-
cation of Kleene’s Lem. 33 we have a proof of the sequent Γ, B `∗ C.
Since Γ is B-cuttable, it gives a proof of Γ `∗ C. Hence Γ ∈ JCK.

If A is negative, then we have to show JBK ⊃Ω cl(C) ⊆ cl(B ⊃ C).
Let Γ ∈ JBK ⊃Ω cl(C), we must show that Γ is B ⊃ C-cuttable.

28 Olivier Hermant, James Lipton

We can not apply Kleene’s Lem. 33, as in the ∨ positive case. So,
assume we have a proof of ∆, E1, . . . , En `∗ D for some D, with
Ei ≡R B ⊃ C. In contrast with the ∨ positive case we here have to
consider an arbitrary multiplicity n. We show by induction on this
proof that we can build a proof of ∆,Γ `∗ D. As always, if it is a rule
on D or a proposition of ∆ (including axiom), we apply the induction
hypothesis to the premises and then the same rule. Otherwise, if it is
a contraction, a weakening, a λ or a rewriting cut on Ei, we apply the
induction hypothesis. We forget the axiom case on Ei, since it boils
down to the other cases in the same way as in the ∨ positive case, an
⊃R rule on, say, E1. Then we have the proof:

π1

∆, E2, . . . , En `∗ B′
π2

∆, E2, . . . , En, C ′ `∗ D

∆, E1, . . . , En `∗ D

Applying the induction hypothesis on the premises gives us proofs of
the sequents: ∆,Γ `∗ B′ and ∆,Γ, C ′ `∗ D, that we convert into
proofs of γ `∗ B and ∆,Γ, C `∗ D by Lem. 32). Hence ∆,Γ ∈ JBK,
and ∆,Γ ∈ cl(Γ). So by definition of⊃Ω, ∆,Γ ∈ cl(C): it is C-cuttable
and we have directly a proof of the sequent Γ `∗ D.

• A = Π.f and A is positive. Calling φ′ = φ + (d/x), we know that:

A∗
φ =

\
d∈D

f∗φd =
\

d∈D

(fx)∗φ′ =
\

d∈D

Jφ′1(fx)K =
\
t∈T

J(φ′1f)tK =
\
t∈T

J(φ1f)tK

the third equality holding by the induction hypothesis, choosing x
such that it does not appear in f .

We then show Jφ1Π.fK = JΠ.(φ1f)K ≤
⋂
{J(φ1f).tK | t ∈ T }. Let Γ

such that Γ `∗ Π.φ1f . Then by Kleene’s Lem. 33, we have a proof θ
of Γ `∗ (φ1f).t, for any term t. Hence Γ ∈

⋂
{J(φ1f).tK | t ∈ T }.

If A is negative, let B be a formula such that Π.(φ1f) `∗ B. We show⋂
{cl((φ1f)t), t ∈ Tα} ⊆ JBK. Let Γ ∈

⋂
{cl((φ1f)t), t ∈ Tα}. We show

that Γ `∗ B, knowing that for any t, and for any C, if (φ1f)t `∗ C,
then Γ `∗ C.

We cannot apply Kleene’s Lem. 34. So we construct by induction a
proof of Γ,∆ `∗ B, over the proof structure of a proof of ∆, (Π.f)n `∗
B, where n is any number of contractions of Π.f . Formally we should
assume that for Ei ≡R Π.f as in the ∨ positive and ⊃ negative cases.

Cut-elimination in Type Theory with Axioms 29

n = 0 is a trivial case. If the last rule is a rule r on ∆ or on B,
then apply the induction hypothesis and then r on the proofs we
obtain. Otherwise, we then have a proof of ∆, ft, (Π.f)n−1 `∗ B.
After applying the induction hypothesis, we get a proof of Γ,∆, ft `∗
B. We can then safely replace ft by Γ, since Γ is ft-cuttable by
hypothesis. We then contract on the formulae of Γ.

• A = Σ.f and A is positive. We must show JΣ.(φ1f)K ≤
⋃
{J(φ1f)tK, t ∈

T }, by the same reasoning as in the previous case. We omit φ from
now on. Let Γ such that Γ `∗ Σ.f . We cannot apply Kleene’s lemma.
Let C such that JftK ≤ JCK for any term t. We show by induction
on the proof of Γ `∗ E, with E ≡R Σ.f that we can build a proof
of Γ `∗ C. As always, copy every left rule, applying the induction
hypothesis. And when we get to a right rule, it can be either ⊥R,
then replace it with ⊥R introducing D, a rewriting cut or a λ, then
apply the induction hypothesis, or an axiom, that boils down to the
last case, an ∃R rule. In this case, we get a proof of Γ `∗ ft for some
t. But then, by definition of Γ and C we get directly a proof of Γ `∗ C.

If A is negative, we show
⋃
{cl((φ1f)t)} ≤ cl(Σ.(φ1f)). We omit φ.

Let Γ such that Γ is ft-cuttable for any t. Assume that we have a
proof of Σ.f `∗ B. By Kleene’s Lem. 33 we have a proof of fx `∗ B
for a fresh x. Since Γ is as well fx-cuttable, we have directly Γ `∗ B,
and Γ ∈ cl(Σ.f).

�

REMARK 41. This lemma just says that the π, ν semivaluation is indeed
much more than a semivaluation in the sense of Def. 6. Since we have
π(A∧B) = π(A)∧Ω π(B), and so on for the other connectives (special case
for ⊃, since it has a positive and a negative part). We have the same result
on ν. This is due to the choice of π, ν we have made. This is not valid any
π, ν but for our very specific one.

REMARK 42. Instead of invoking Kleene’s lemma, we could use everywhere
an induction on the proof structure. Anyway, we would need confluence and
atomicity, in order to ensure that the rewrite rules are treated properly.

8.3 Completeness and cut elimination for Lnla with
sign-preserving axioms

Lem. 40 is stated and proved in the Lnla logic. We have carefully chosen
the ρ function (Def. 38 and Thm. 8) on the only one degree of freedom
we had, the atomic formulae. With this interpretation, we have A∗ = JAK

30 Olivier Hermant, James Lipton

(resp. A∗ = cl(A)) in Ω(Lnla), whenever A is positive. This result holds as
well for Ω(L) but we don’t care here.

LEMMA 43. The global model we constructed is a model of the non-logical
axioms.

Proof. If we have, say, a positive non-logical axiom A ` B in Lnla, we have
JAK ⊆ JBK by an elementary reasoning:

Γ ` A A ` B
Γ ` B

The symmetric comes from the symmetric axiom B ` A we assumed to have.
Hence A∗ = JAK = JBK = B∗. We as well have A∗ = cl(A) = cl(B) = B∗,
i.e. Γ is A-cuttable if and only if it is B-cuttable by a similar reasoning.

Therefore, from Lem. 40 for any axiom A ` B, A∗ = B∗. �

THEOREM 44 (cut-free completeness of Lnla). Consider a set of non-
logical axioms atomic, confluent and sign-preserving. Let Γ be a context
and A be a formula of S. Assume that for any global model of the non-
logical axioms, we have Γ∗ ≤ A∗. Then we have a cut-free proof of Γ ` A.

Proof. As Thm. 18 and 25. Ω(Lnla) is a model of the non-logical axioms.
�

As well, we have the cut elimination theorem as a corollary:

COROLLARY 45 (constructive cut elimination for Lnla). Consider a set of
non-logical axioms atomic, confluent and sign-preserving. Let Γ be a context
and A be a formula. If Γ ` A has a proof in Lnla, then it has a proof in
Lnlawithout cut.

Proof. By the soundness Thm. 23, that remains exactly the same as in
Sec. 5, and the above cut-free completeness Thm. 44, both of which were
proved constructively. �

9 On the constructivity of the proof of cut
admissibility

Our proof extends existing semantic proofs for cut admissibility in a number
of ways, as remarked above, in particular by adding axioms, and considering
the intuitionistic (rather than classical) Theory of Types.

In addition, our proof, unlike [24, 1] for the classical case or [5] for the
intuitionistic case, makes no appeal to the excluded middle. The works
cited, as ours, start from Schütte’s observation [22] that cut admissibility

Cut-elimination in Type Theory with Axioms 31

can be proved semantically by showing completeness of the cut-free fragment
with respect to semivaluations, and then showing every semivaluation gives
rise to a total valuation extending it.

There are a number of pitfalls to avoid here if one wants a constructively
valid proof based on this kind of argument, both in the way a semivaluation
is produced and how one passes to a valuation.

Andrews shows [1] that any abstract consistency property gives rise to a
semivaluation, but then builds one in a way that requires deciding whether
or not a refutation exists of a given finite set of sentences. One can also
exhibit a semivaluation by developing a tableau refutation of a formula (a
Hintikka set) as is done in [5] but must take some care in the way the steps
are formalized not to appeal to the fan theorem in order to produce an open
path. No discussion of this appears in [5]. Such a step can possibly be done
with countable choice, working, say in the realizability interpretation of IZF,
but no such formalization has been worked out to the authors’ knowledge.

In the proof given above we appeal to the strengthened version in [5]
of Schütte’s lemma and use the more liberal definition of semivaluation
pairs. By choosing the context-based semantics developed above we are
able to avoid the construction of tableaux, and bypass abstract consistency
properties.

As pointed out by Gödel and discussed in e.g. [14, 26], a strictly con-
structive completeness proof is impossible if an excessively narrow proof
of validity is assumed, e.g. conventional Kripke models. However, there
are a number of ways to liberalize the definition of validity to “save” con-
structive completeness [27, 4, 25, 13], in particular by allowing truth-values
in arbitrary cHa’s or cBa’s (complete Heyting/Boolean algebras). In [25]
completeness is shown constructively by mapping formulae to their own
equivalence class in the Lindenbaum cHa (if the object logic is classical, as
in [1] one would use the corresponding Boolean algebra). One is not required
decide the provability of formulae in order to show model existence, as one
must using just the >,⊥-valued semantics of [1, 24]. The semantics used in
this paper is over a similar cHa, modified to work with cut-free proofs. In
the final valuation produced, formulae are mapped to sets of contexts that
prove them without cut. Here too, one does not have to decide provability
to show model existence.

10 Conclusion

We have given a constructive semantic proof of cut-elimination for ICTT,
the intuitionistic formulation of Church’s Theory of Types introduced by
Miller et. al. [16] and various extensions with non-logical axioms, using
new techniques extending Takahashi, Schütte and Andrews’ original ideas,

32 Olivier Hermant, James Lipton

based on a new formulation of semivaluations from [5] and notions of cut-
free context closure and context-based Heyting algebras based on earlier
work by Hermant and Okada [19, 18, 3].

The techniques are not especially dependent on the formal systems stud-
ied here, and it would be interesting to apply them to other impredicative
logics.

Much of the work in the paper on cut-elimination for axiomatic exten-
sions of ICTT is motivated by work in combining rewriting and sequent
calculus by Dowek, Werner, Hardin, Kirchner, Hermant and others (deduc-
tion modulo) cited earlier in the paper. It is hoped that some of our results
could be extended to full higher-order logic modulo, with a characterization
of those rewrite rules that preserve cut-elimination.

Olivier Hermant
Univ. Complutense de Madrid, Spain

ohermant@fdi.ucm.es

James Lipton
Wesleyan University, USA

and visiting Researcher,

Univ. Politécnica de Madrid, Spain

jlipton@wesleyan.edu

BIBLIOGRAPHY
[1] Peter Andrews. Resolution in Type Theory. Journal of Symbolic Logic, 36(3), 1971.
[2] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University

Press, New York, NY, USA, 1998.
[3] Richard Bonichon and Olivier Hermant. On Constructive Cut Admissibility in De-

duction Modulo. In Proceedings of the TYPES conference. Springer-Verlag, 2007.
[4] H. C.M̃. de Swart. Another Intuitionistic Completeness Proof. Journal of Symbolic

Logic, 41:644–662, 1976.
[5] M. DeMarco and J. Lipton. Completeness and Cut Elimination in the Intuitionistic

Theory of Types. Journal of Logic and Computation, pages 821–854, November 2005.
[6] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. Jour-

nal of Automated Reasoning, 31:33–72, 2003.
[7] Gilles Dowek and Benjamin Werner. Proof Normalization Modulo. The Journal of

Symbolic Logic, 68(4):1289–1316, December 2003.
[8] Albert G. Dragalin. Cut-Elimination Theorem for Higher-order Classical Logic, pages

243–252. Plenum Press, New York and London, 1987.
[9] Harvey Friedman. Equality between Functionals. In R. Parikh, editor, Logic Collo-

quium, volume 453 of Lecture Notes in Mathematics, pages 22–37. Springer, 1975.
[10] J. Y. Girard. Une extension de l’interprétation de Gödel à l’analyse et son application à

l’élimination de coupures dans l’analyse et la théorie des types. In J. E. Fenstad, editor,
Proceedings of the second Scandinavian proof theory symposium. North–Holland, 1971.

[11] Leon Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic,
15:81–91, June 1950.

[12] Olivier Hermant. Méthodes Sémantiques en Déduction Modulo. PhD thesis, Université
Paris 7 – Denis Diderot, 2005.

Cut-elimination in Type Theory with Axioms 33

[13] Georg Kreisel. A Remark on Free Choice Sequences and the Topological Completeness
Proofs. Journal of Symbolic Logic, 23:369–388, 1958.

[14] Georg Kreisel. On Weak Completeness of Intuitionistic Predicate Logic. Journal of
Symbolic Logic, 27:139–158, 1962.

[15] H. Läuchli. An Abstract Notion of Realizability for which Intuitionistic Predicate
Calculus is Complete. In A. Kino, J. Myhill, and R. E. Vesley, editors, Intuitionism and
Proof Theory, studies in logic, pages 277–234. North-holland, Amsterdam, London,
1970. Proceedings of the Conference on Intuitionism and Proof Theory, Buffalo, New
York, August 1968.

[16] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform Proofs
as a Foundation for Logic Programming. Annals of Pure and Applied Logic, 51(1-
2):125–157, 1991.

[17] John Mitchell. Foundations for Programming Languages. MIT Press, Cambridge,
Massachusetts, 1996.

[18] Mitsuhiro Okada. Phase semantic cut-elimination and normalization proofs of first-
and higher-order linear logic. Theoretical Computer Science, 227:333–396, 1999.

[19] Mitsuhiro Okada. A uniform semantic proof for cut-elimination and completeness
of various first and higher order logics. Theoretical Computer Science, 281:471–498,
2002.

[20] Gordon Plotkin. Lambda definability in the full type hierarchy. In J.P. Seldin and J. R.
Hindley, editors, To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and
Formalism. Academic Press, New York, 1980.

[21] Dag Prawitz. Hauptsatz for Higher Order Logic. The Journal of Symbolic Logic,
33(3):452–457, September 1968.

[22] K. Schütte. Syntactical and semantical properties of simple Type Theory. Journal of
Symbolic Logic, 25:305–326, 1960.

[23] K. Schütte. Proof Theory. Springer, 1977.
[24] Moto-o Takahashi. A Proof of Cut-elimination in Simple Type Theory. J. Math. Soc.

Japan, 19(4), 1967.
[25] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction,

volume 2. Elsevier Science Publishers, 1988.
[26] Dirk van Dalen. Lectures on Intuitionism, pages 1 – 94. Number 337 in Lecture Notes

in Mathematics. Springer Verlag, 1973.
[27] W. Veldman. An Intuitionistic Completeness Theorem for Intuitionistic Predicate

Logic. Journal of Symbolic Logic, 41:159–166, 1976.

