
On Constructive Cut Admissibility in Deduction
Modulo

Richard Bonichon1 and Olivier Hermant1

Université Paris 6 - LIP6 ?

Abstract. Deduction modulo is a theoretical framework which allows
the introduction of computational steps in deductive systems. This ap-
proach is well suited to automated theorem proving. We describe a proof-
search method based upon tableaux for Gentzen’s intuitionistic LJ ex-
tended with rewrite rules on propositions and terms . We prove its com-
pleteness with respect to Kripke structures. Then we give a soundness
proof with respect to cut-free LJ modulo. This yields a constructive proof
of semantic cut elimination, which we use to characterize the relation be-
tween tableaux methods and cut elimination in the intuitionistic case.

1 Introduction

The road to automated deduction has many pitfalls. Efficient treatment of
equality and equational theories is for instance a challenging area and prov-
ing (a + b) + ((c + d) + e) = a + ((b + c) + (d + e)) with the usual associativity
and identity axioms can easily lead to an infinite loop when using an ineffec-
tive strategy. What we would like is a deterministic and terminating method
where we only have to check if the two terms are indeed the same modulo
the given axioms. We would rather use computation (aka blind execution) in-
stead of deduction (non-deterministic search), thus transforming the associativ-
ity axiom into a term-rewriting rule. Although the orientation of equational
theories using rewriting techniques is nothing unusual, propositional rewrite
rules are hardly considered in the literature. However it can be useful to al-
low them. One framework to handle such rewrite rules is deduction modulo
([4]). The rewrite rule x ∗ y = 0 → x = 0 ∨ y = 0 is the orientation of the
axiom ∀x ∀y (x ∗ y = 0 ⇔ (x = 0 ∨ y = 0)) and can be used to prove
∃z(a ∗ a = z ⇒ a = z) by automated deduction methods ([1, 4]) adapted to
use such rules. This rule can not be easily turned into a term-rewriting rule.

Using rewrite rules instead of unoriented axioms should speed up automated
theorem provers. However, deduction modulo has other interesting consequences:
propositional rewrite rules can be used to restart a deductive process such as in
P (a) → ∀xP (x). Also, the proof skeleton of a proof modulo only contains the
important deductive steps — or those a human sees as important — and not
the computational details.
? Laboratoire d’Informatique de Paris 6, 8 rue du Capitaine Scott, 75015 Paris, France
email: (richard.bonichon | olivier.hermant)@lip6.fr

Classical first-order logic modulo has first been studied in [4], However, intu-
itionistic logic is particularly interesting as it has the witness and the disjunction
properties, and is therefore adapted to constructive mathematics and computer
science, through the Curry-Howard isomorphism. Intuitionistic automated de-
duction procedures seem less studied, maybe because intuitionistic semantics
are harder to deal with. In particular, two main different semantics exist: Kripke
structures and Heyting algebras.

In this paper, we focus on the cut-elimination theorem. Starting with Gent-
zen’s result, it has turned out to be one of the most important properties in the
field of logic. Cut-elimination in deduction modulo is a harder problem because
this property is not valid even for all confluent and terminating rewrite systems.
The result can be obtained in two different ways: the first is syntactic and proves
termination of a certain cut-elimination process, its modern variant uses proof
terms [5] and the reducibility method; the other proves the admissibility (or
redundancy) of the cut rule by establishing the completeness of the cut-free
calculus with respect to some notion of model. Known since Beth and Hintikka,
the latter has been recently used by De Marco and Lipton [3].

This article shows the deep link between all these topics. First, we recall the
intuitionistic sequent calculus modulo defined in [7] (Sec. 2) and its semantics.

– We give a proof-search method for LJmod (Sec. 3). Such methods are often
based on tableaux when dealing with nonclassical logics. We here formu-
late a tableau method modulo rewrite rules on terms and propositions and
conditions on their use.

– We prove that this method enjoys the usual property of completeness in
Sec. 4. We give a semantic proof using Kripke structures, and give several
conditions on rewrite rules for which the completeness theorem holds. Simply
adding (propositional) rewrite rules make this theorem harder to prove.

– Finally, we argue that the tableau method we defined is sound with respect
to the cut-free intuitionistic sequents modulo (Sec. 5). Soundness is usually
proved by semantic arguments, as building a tableau can be viewed as a
search for a countermodel. Our approach is thus more technical, but we reap
huge benefits: it entails a constructive cut elimination theorem and sheds
light on the relation between intuitionistic tableaux and cut-free sequent
calculus. To our knowledge, this has never been studied in the intuitionistic
frame (even without rewrite rules), although it is a well-known result in
classical logic. As final result, we discuss the computational content of such
semantic cut-elimination methods and compare it to proof normalization.

2 Intuitionistic Sequent Calculus Modulo

Figure 1 shows a representative sample of the rules and the transformation made
on the usual sequent inferences, reformulated to account for the fact that we
now manipulate equivalent formulas modulo a rewrite system (R) on terms and
atomic propositions. The full calculus can be found in [7]. In this work, R is

supposed to be terminating and confluent. When R is empty, we get back the
usual LJ .

axiom if P ≡R Q
P `R Q

Γ `R P Γ, Q `R S
⇒-l if R ≡R (P ⇒ Q)

Γ, R `R S

Γ, P `R Q
⇒-r if R ≡R (P ⇒ Q)

Γ `R R

Γ, P `R S Γ `R Q
cut if P ≡R Q

Γ `R S

Fig. 1: Some rules of LJ modulo

A cut-free derivation of a sequent is denoted Γ `∗R P . The semantics put
behind these rules is a modified version of Kripke semantics, where negation is
expressed in a positive way.

Definition 1 (modified Kripke structures). A modified Kripke structure K
is a quadruple 〈K,≤, D, 〉 such that:

– K is a non-empty set (the worlds), partially ordered by ≤.
– D (the domain) is a monotonous function over K: if α ≤ β then Dα ⊆ Dβ

– .̂ is a (partial) interpretation function associating a function to a function
symbol f and a world: f̂ : K 7→ Dm

α 7→ Dα, such that when α ≤ β,
f̂(α)(a1, ..., an) = f̂(β)(a1, ..., an) on Dα. (f in β extends f in α).

– Predicate symbols are interpreted syntactically, which is enough for the scope
of this paper.

– The interpretation |t|ασ of a term t in Dα, under a substitution σ is defined
by induction on t as usual.

– is a relation between worlds α and propositions, modulo a substitution σ
mapping variables to elements of Dα. It satisfies:
1. Monotonicity on atoms. For any atomic predicate A(x1, ..., xn), any worlds

β ≥ α and terms t1, ..., tn: α σ A(t1, ..., tn) implies β σ A(t1, ..., tn).
2. α σ A ∨B iff α σ A or α σ B.
3. α σ A ∧B iff α σ A and α σ B.
4. α σ A ⇒ B iff for any β ≥ α, β σ A implies β σ B.
5. α σ ¬A iff for any β ≥ α, β σ A implies β σ ⊥ (denoted β 1σ A).
6. α σ ∃xA iff there exists an element a ∈ D(α) such that α σ+〈a/x〉 A.
7. α σ ∀xA iff for any β ≥ α, for any element a ∈ D(β), β σ+〈a/x〉 A.
8. The explosion property: if β σ ⊥ then for any α ∈ K, any proposition

P , any substitution θ, α P .

A modified Kripke structure K (for short Kripke structure) such that α ⊥
is called improper.

The positive treatment of the negation is essential for constructivity. As we
do not have to consider proper Kripke structures, we avoid the use of König’s
lemma to identify an infinite branch. Our definition is inspired by Veldman’s

[12] and Friedman’s [11], but it is perhaps closer to Krivine’s classical one ([8]),
as we add only one Kripke structure to the usual definition (the improper one).

Our Kripke structures are also constrained to validate rewrite rules: for any
world p ∈ K, any formulas P ≡R Q, p P iff p Q. This is equivalent ([6]) to
considering two formulas A → P where A is atomic and P the one-step reduct
of A and forcing that for any world p ∈ K, p A iff p P .

3 Intuitionistic Predicate Tableaux Modulo

Proof-search methods for deduction modulo have been developed using both
resolution [4] and tableaux [1] for first-order classical logic. We present here a
simple ground tableau method for intuitionistic deduction modulo. A tableau
is at heart an attempt to define a model of the formulas at its root. Working
with Kripke structures forces us to build worlds, therefore a truth statement in
a tableau will be a truth statement in a particular world.

Any branch represents a possible model. A closed branch represents a con-
tradiction in the attempt to define a particular model (the one laying on this
branch), thus it is improper. If all the branches can be closed, the root for-
mulas should be provable (Sec. 5). The systematic tableau generation of Sec. 4
corresponds to the systematic search of a model.

A↓ stands for the normalization of the formula A with respect to the rewrite
rules of R (supposed to be terminating and confluent). We keep the basic expan-
sion rules of [9] in Figure 2, working on statements representing signed forced
formulas at some world p (identical Kripke world, hence partially ordered by ≥).
A statement Tp P (resp. Fp P) should be read as the commitment to set
P forced (resp. unforced) at world p. P is unforced at world p means that if P
is forced, then ⊥ should also be forced (the Kripke structure we try to define
is improper). Notice that we use the same forcing symbol when we deal with
Kripke structures and that nothing is said about the partial order ≥ on worlds.
When the sign of a forcing statement is irrelevant, B is a shortcut for “T or F”.

We extend intuitionistic tableaux to use term and propositional rewriting.
Expansion rules should be read as follows: when the premise formula is anywhere
in the considered path (i.e. not necessarily the leaf), the tableau tree can be
expanded with the consequence formula(s). Branch closure is the usual binary
closure: we close a branch if both Tp P and Fq P occurs on it for p ≤ q.
A tableau is closed and yields a refutation of the input formula when every
branch is closed. We choose to pre-normalize every formula with respect to the
rewrite system before entering the tableau construction. Therefore we need to
be careful when using any rule handling certain quantifiers. Each time a formula
is produce by the positive ∀ or the negative ∃ quantifier rule, we re-normalize it.
In the other two quantifier rules, we need not normalize as the constant is fresh
also with respect to rewrite rules.

Figure 2 does not explicate how proofs are constructed with the given rules.
As we are mainly interested in the generation of a model, we define a systematic
complete search within our tableau modulo framework.

Definition 2 (Systematic tableau generation). We introduce here the no-
tion of complete systematic tableau. We try to construct a tree representing an
intuitionistic variation of a Hintikka set which satisfies Lem. 1 conditions. The
construction is similar to those in [3, 9]. Our set of worlds K is made of finite
sequences of natural numbers, ordered by the prefix ordering. For any world, we
define by induction a base set D(p):
– D(∅) is the language constructed over L0∪C∅, L0 is the ground terms of the

first-order language ;
– if q is the concatenation of the sequence p and the natural number k (p ∗ k),

we define D(q) as the language constructed over D(p) ∪ Cq, where we have
countably many disjoint sets Cp of fresh constants for each finite sequence p

In each of those sets, we define an enumeration of the terms. We also define an
enumeration of the pairs (p, t) where p is a world and t ∈ D(p). The tableau is
then constructed step by step by expanding each time the least unused node on
it (the ordering is based on depth and left-to-right precedences). Let π the path
from the root to this node. We detail some cases among the most significant:
– If on the path π we have two contradictory statements, then close all the

branches containing this path.
– Tp ∀xP (x): Let (q, t) the least pair such that q ≥ p, t ∈ D(q), q occurs

on π, and the statement Tq P (t)↓ does not appear on π. Attach at each
leaf of the branches having π as an initial segment the two statements {Tq
P (t)↓, Tp ∀xP (x)}. We keep an unused copy of Tp ∀xP (x) in order to
go on (later) in the enumeration of the terms and worlds.

– Fp ∀xP (x). Let k the least number such that p ∗ k does not occur on any
branch having π as initial segment to Fp ∀xP (x). It is incomparable with
any world, but p. Let also c ∈ Cq be a fresh constant. Attach at each leaf of
the branches extending π the statement Fq P (c).

Tp A ∨B

Tp A | Tp B

Fp A ∧B

Fp A | Fp B

Tp A ∧B

Tp A, Tp B

Fp A ∨B

Fp A, Fp B

Tp A ⇒ B

Fp′ A, Tp′ B
for any p′ ≥ p

Fp A ⇒ B

Tp′ A, Fp′ B
for some new p′ ≥ p

Tp ¬A

Fp′ A
for any p′ ≥ p

Fp ¬A

Tp′ A
for some new p′ ≥ p

Tp ∃xP (x)

Tp P (c)
for some new c

Fp ∃xP (x)

Fp P (t)↓
for any t

Tp ∀xP (x)

Tp′ P (t)↓
for any p′ ≥ p

and any t

Fp ∀xP (x)

Fp′ P (c)
for some new p′ ≥ p

and some new c

Fig. 2: Rules for intuitionistic predicate tableaux modulo

From Def. 1, we adopt the convention that on a closed branch, any statement
appears (since the Kripke structure will be improper). The tableau construction
of Def. 2 satisfies the following lemma:

Lemma 1. Let π be a branch of a completely developed tableau by Def. 2. Then:
• if Bp P appears, then Bp P↓ appears.
• if Tp A ∧ B (resp. Fp A ∨ B) appears, then Tp A and Tp B (resp.
Fp A and Fp B) appears.
• if Fp A ∧ B (resp. Tp A ∨ B) appears, then either Fp A or Fp B
(resp. Tp A or Tp B) appears.
• if Tp ¬P (resp. Tp A ⇒ B) and a world p′ ≥ p appear then Fp′ P
(resp. Fp′ A or Tp′ B) appears
• if Fp ¬P (resp. Fp A ⇒ B) appears then for some world p′ ≥ p, Tp′ P
(resp. Tp′ A and Fp′ B) appears.
• if Fp ∃xP (x) appears then for every t ∈ D(p), Tp P (t)↓ appears.
• if Tp ∃xP (x) appears then for some fresh constant c ∈ D(p), P (c) appears.
• if Fp ∀xP (x) appears then for some world p′ ≥ p and some fresh constant
c ∈ D(p′), Tp′ P (c) appears.
• if Tp ∀xP (x) and a world p′ ≥ p appear on the branch, then for every term
t ∈ D(p′), Tp′ P ([x := t]↓ appears.

Proof. If we define τ = lim τn the tableau generated by Definition 2, all nodes
are used, and we have enumerated all the worlds q ≥ p and all the terms of D(q)
(for the ∀ statements), no matter if the branch considered is closed or not, from
the convention we adopted. ut

Remark: This lemma proves that an open branch is the exact intuitionistic
counterpart of a Hintikka set (in the same way, a Schütte’s semi-valuation). But
we cannot identify an open branch. •

4 Completeness

The extended liberality of LJmod rules entails a harder completeness proof, as
the constructed Kripke structure must also be a model of the rewrite rules.

Theorem 1 (Completeness of the tableau method). Let R be a rewrite
system verifying one of the conditions below, Γ be a set of propositions, P be a
proposition. If for any node α of any Kripke structure K, α Γ implies α P ,
then any branch of the complete systematic tableau for T∅ Γ, F∅ Q is closed.

Without rewrite rules, it suffices to set our model from a complete branch of
the tableau according to the statements over atoms, and extend it “naturally” to
compound formulas. But we have here to ensure that the built Kripke structure
is a model of the rewrite rules. We detail such an extension in the following
sections, describing large classes of rewrite systems, and the completeness proofs
associated.

Moreover, our proofs differ from the usual tableau completeness proof, since
we do not consider open branches anymore. We use instead the following plan:
from a branch of the completely developped tableau, we define a Kripke structure
then we prove that it agrees with the statements on the branch and that it is a

model of R. We get as result ∅ Γ , and by hypothesis ∅ P . But we also get
(∅ P) ⇒ (∅ ⊥), hence the Kripke structure is improper, and we shall meet
on the branch Tp ⊥ for some p. So the branch is closed.

4.1 An order condition

It is shown in [6] how to build a model for an order condition. We again give
the construction (the Kripke structure built is rather different), but no proof
since they are almost the same. We consider a well-founded order ≺ such that if
P → Q then Q ≺ P and if A is a subformula of B then A ≺ B. Given a branch,
we define the Kripke structure K = 〈K,≤, D, 〉 :

– K = {p sequences of integers }. It is ordered by the order used in the tableau
construction.

– D(p) is the set of closed terms appearing in all the forcing statements in-
volving the world p, or a world q ≤ p.

– The forcing relation is defined by induction on the size of formulas. For
normal atomic formulas we let q A iff Tp A appears on the branch for
some p ≤ q. We extend this forcing relation to non atomic formulas according
to the definition of a Kripke structure. There is three non standard cases:
we let p ¬P if for any q ≥ p we do not have q P . If A is a non-normal
atom, we set p A iff p A↓. At last if we meet Tp ⊥ on the branch,
then we add q P for any q and P .

This definition is well-founded as ≺ is well-founded. It obviously defines a
Kripke structure. We now prove a result that would not be needed with the
usual definition of Kripke structures:

Lemma 2. If the Kripke structure is improper, then the branch is closed.

Proof. We can have p ⊥ for two reasons. The first is if the statement Tp ⊥
appears. Thus the branch is closed. The second reason is if we have both p P
and (p P) ⇒ (p ⊥), for some world p and formula P . The second statement
can only be derived from q ¬P for some q ≤ p, but this is never set - since
p P - unless we already know that p ⊥.

The constructed Kripke structure agrees with the branch: if Tp P appears
on the branch, then p P . And if Fp P appears on the branch then p 1 P .
This is obvious for normal atomic formulas, and extended by induction on ≺.
The case analysis is slightly different, since we now interpret p 1 P as “if p P
then p ⊥”. We detail some cases below.

– if Fp A appears, with A a normal atom. Then p A is set in the Kripke
structure only if it is improper.

– if Fp ¬P appears. From the tableau construction, we have below in the
branch the statement Tp ∗ k P for some new world p ∗ k – remember
that we choose the convention that if q ⊥ appears, then any statement
appear. By induction hypothesis, p ∗ k P . If p ¬P then by monotonicity
p ∗ k ¬P and the Kripke structure is improper.

Moreover, the Kripke structure is a model of the rewrite rules (by induction
on the w.f.o. ≺). We then have: ∅ Γ , ∅ 1 Q, and K is a Kripke model of R.

4.2 A positivity condition

We present a new condition on propositional rewrite rules. We suppose that if
P → Q ∈ R, all atomic predicates occurring in Q occur positively (under an even
number of negations/right implication positions). If this condition is fulfilled, we
first need to saturate the branch, in order to decide the truth value of as many
formulas as possible. We define the saturation process following the definition
of a Kripke structure. We enumerate the pairs (p, P) where p ∈ K and P is a
formula over the language D(p) and add the following statements to the branch:

– Bp P if Bp P↓ appears.
– Tp P (resp. Fp P) if Tq P (resp. Fq P) appears for q ≤ p (resp.

q ≥ p). Truth propagates upwards and falsity downwards, from Def. 1. .
– Tp P ∧Q (resp. Fp P ∧Q) if Tp P and Tp Q (resp. either Fp P

or Fp Q) appear.
– Tp ¬P (resp. Fp ¬P) if for any q ≥ p, Fq P (resp. for some q ≥ p,

Tq P) appears.
– Tp ∀xP (x) (resp. Fp ∀xP (x)) if for any q ≥ p, any term t ∈ D(q),

q P (t)↓ (resp. for some q ≥ p and some t ∈ D(q), Fq P (t)↓ appears.

The steps of this completion process satisfy the conditions that two opposite
forcing statements Tp P and Fq P for some q ≥ p appear only if the branch
was already closed, and that Lem. 1 remains valid.

Since the number of formulas having an interpretation increases at each it-
eration of this process, this operation has a least fixpoint that we take as the
branch in the rest of this section.

Lemma 3. • If Tp P appears, then for any q ≥ p, Tq P appears.
• If Fp P appears, then for any q ≤ p, Fq P appears.
• If P ≡R Q and Bp P appears, then Bp Q appears.
• The new branch is closed iff the original one is closed.
• The new branch verifies lemma 1

Proof. The completion process entails the two first claims and we have just
proved the two last ones. The third one stands because Bp P appears only if
Bp P↓ does (which is proved by induction on the size of P). ut

This process is necessary to define a Kripke structure. We need to know
as much as possible about every formula. It is really absolutely necessary for
Lem. 5. This is the intuitionistic counterpart of Schütte partial valuation, since
it satisfies more than Lem. 1. For the formulas, we go not only top-down but
also bottom-up. For instance: Fp ∀xP (x) appears iff for some world p′ ≥ p
and some fresh constant c ∈ D(p′), Tp′ P (c)↓ appears. The only difference
with usual partial valuations is that we could be in a degenerated case. However,

the valuation is not yet total (some formulas can be left uninterpreted), and we
still have no model. So we build the Kripke structure K = 〈K,≤, D, 〉 as in
Sec. 4.1 except that the forcing relation is defined by induction on the size of
formulas. For every atomic predicate (over the language D(q)) we let q A if
Tq A appears on the branch. If Fp A does not appear we also let p A.
We extend this forcing relation to non atomic formulas as before. This model is
trivially a Kripke structure. We now prove that K agrees with the branch:

Lemma 4. If a statement Tp P (resp.Fp P) appears on the branch, then
p P (resp. p 1 P) in the Kripke structure K.

Proof. By induction on the structure of P . The base case (atomic) is trivial from
the definition. Other cases are immediate as the branch satisfies Lem. 1. ut

As the Kripke structure agrees with the branch, ∅ Γ and ∅ 1 P . We now
need to show that the Kripke structure is a model of R. We know (Lem. 4)
that if A → P and P ↓= A↓ appear in the branch as Bp A↓, then all three
formulas (A,P, P↓) share the same forcing relation with p. But what if P↓ does
not appear? Recall then that the rewrite system is positive. Hence P is positive.
Let us prove the following lemma:

Lemma 5. Let P+ be a positive formula and Q− be a negative formula (i.e.
¬Q is positive) defined over D(p). If Bp P+ (resp. Bp Q−) does not appear
(whether B = T or B = F) in the branch, then p P+ (resp. p 1 Q−).

Proof. We suppose that no statement Tp ⊥ appear in the branch, otherwise
Bp R appear for any p and R. Thereforein the (proper) Kripke structure
defined p 1 P means in particular that we do not have p P . We proceed by
induction on the structure of P and Q and detail only some key cases. If P is
an atom, even non normal, then it is positive, and in the constructed Kripke
structure, p P .

If P+ = A+ ∨ B+, then since Tp P+ does not appear, neither Tp A
nor Tp B appears. Otherwise Tp P would have been set by the saturation
process. Similarly, either Fp A or Fp B does not appear. Suppose the first
statement does not appear, then we apply the induction hypothesis to A and get
that p A, therefore p P . Now if P− = A− ∨ B−, we have the same results.
We have to prove p 1 A and p 1 B. There are two cases: if Fp A appears,
conclude by Lemma 4 otherwise use the induction hypothesis.

If P = ∀xR+(x), let q ≥ p be a world and t ∈ D(q). Fp P+ does not
appear, hence no statement Fq R(t) appear (otherwise Fp P would have
been set by the saturation process). If Tq R(t) appears, q R(t) by Lem.
4. Otherwise q R(t) by the induction hypothesis. Therefore, by the Kripke
structure definition, p ∀xR+(x). If Q = ∀xR−(x) then similarly there is at
least one world q ≥ p and one term t ∈ D(q) for which Tq R(t) does not
appear. If Fq R(t) appears, we apply Lem. 4, otherwise we use the induction
hypothesis. In both cases, q 1 R(t). Thus, by the Kripke structure definition,
p 1 ∀xR−(x). The other connectors are treated in exactly the same way. ut

Now let A be an atom, p a world, and A → P . If A appears in a statement
Bp A, then Bp P (by Lem. 3) and by Lem. 4 A and P have the same
interpretation. Otherwise, since P is positive by hypothesis, p P . And p A
by definition. Anyway, the rewrite rules are valid in K which is thus a model.

4.3 Mixing the two conditions

Consider two rewrite systemsR> andR+. Under the confluence and termination
of R = R> ∪R+ and the condition that R+ is right-normal for R>, we are able
to prove completeness of the tableau method:

Definition 3 (Right normality). Let two rewrite systems R′ and R. R′ is
right normal for R if, for any propositional rule l → r ∈ R′, all the instances of
atoms of r by R-normal substitutions σ are in normal form for R.

This condition has never been studied before. The model is built as follows:
given a branch, saturate it as in Section 4.2 and define the model by induction
on the well-founded order. We interpret non R+-normal atoms exactly as in
Section 4.2. The Kripke structure K agrees as before with the branch and is a
model of R> Both claims are proved by induction over the well-founded order
>. Furthermore, K is also a model of R+.

Lemma 6. Let P+ be a positive formula and Q− be a negative formula defined
over D(p). Suppose that all instances (by R-normal substitutions) of atoms from
P,Q are normal for R>.

If Bp P+ (resp. Bp Q−) does not appear (whether B = T or B = F) in
the branch, then p P+ (resp. p 1 Q−).

Proof. By induction on the formula structure, as lemma 5. Notice that we cannot
apply the rewrite rules of R>. ut

We then can conclude that any P → Q ∈ R+ is valid in the Kripke structure.

4.4 On computational content

We exhibit a result that will be important in the discussion of the relations
between constructive semantic cut elimination and proof normalization. This
rewrite rule is already discussed in [7], in a nonconstructive frame. Consider this
rewrite system where A is any atomic formula, and y ' z stands for ∀x(y ∈ x ⇒
z ∈ x):

R ∈ R → ∀y(y ' R ⇒ (y ∈ R ⇒ (A ⇒ A))) (1)

Theorem 2. The tableau modulo method for this rewrite system is complete.

Proof. Given a branch, define the Kripke structure K as in Section 4.2: it agrees
with this branch (proved as in Section 4.2). If the Kripke structure is improper,
it means that the branch is closed. Moreover the rewrite rule 1 is valid. Indeed,
the formula R ∈ R ⇔ ∀y(y ' R ⇒ (y ∈ R ⇒ (A ⇒ A))) is always forced at any
node of any Kripke structure (it is an intuitionistic tautology). This completeness
proof leads to a cut elimination theorem for this rewrite system. ut

5 Soundness

We now must prove the soundness of the tableau method w.r.t. cut-free LJmod.
In classical logic, it is common knowledge that a ground tableau proof corre-
sponds to a cut-free proof of the sequent calculus. In the intuitionistic case, it
is not obvious since a tableau proof corresponds to a sequent with multiple con-
clusions, understood as a disjunction of formulas, altough sequent calculus has
at most one right member. Hence, the soundness of intuitionistic tableaux is
always proved with respect to Kripke structures. [3] attempts a syntactic sound-
ness proof but some details seem rather unclear (∨ case). For that, we first state
some definitions, building upon those of [3].

Definition 4. Let p be a world. We define the sets Tp(π) = {P | Tq P ∈ π for
some q ≤ p and Fp(π) = {P | Fp P ∈ π} Let

∨
S holds for the disjunction of

some elements of S. A path π is consistent if for any world p, Tp(π) 0∗R
∨

Fp(π)

Remark: A forcing statement belongs to π means that this very statement
appears on the path π. Notice that Tp(π) contains all true formulas at any world
below p. On the other hand, Fp(π) contains the false formulas only at world p.
This is due to the Kripke structure definition: an unforced formula at p can be
forced in a future world, whereas truth is a commitment for all the future worlds.
The major difference between our definition and the one of [3] is the definition
of consistency of a path. •

Associativity of the ∨ connector would be a triviality using the cut rule but
needs here a proof.

Lemma 7. Let A,B, C be formulas and Γ be a set of formulas. If we have a
proof θ of Γ `∗R A∨(B∨C) then we can construct a proof θ′ of Γ `∗R (A∨B)∨C.

Proof. The proof proceeds by induction on θ. We need a stronger induction
hypothesis: θ is a proof of Γ `∗R P where P can either be A∨ (B ∨C) or B ∨C.

If the last rule is axiom, then replace it by the proof of P `∗R (A∨B)∨C. If
the last rule is ∨-r, we get a proof of Γ `∗R A, Γ `∗R B, Γ `∗R C, or Γ `∗R B∨C.
In the first three cases, plug the two ∨-r rules for a proof of Γ `∗R (A ∨B) ∨ C.
In the last one, apply the induction hypothesis to Γ `∗R B∨C. Otherwise, apply
the induction hypothesis to the premise(s) (unless P becomes erased) and apply
the same rule on Γ `∗R (A ∨B) ∨ C. ut

The commutativity of ∨ is immediate (switching premises). Hence, we now
note

∨
S the disjunction of some subset of S, disregarding order and parenthesis.

We also can weaken the conclusion, adding ∨-r rules to get the disjunction of the
whole S. The following lemma “strengthens” some rules of the sequent calculus,
allowing multiple right propositions. Such properties are trivial with the cut rule.
As we want a cut elimination theorem, we need more elaborate proofs.

Lemma 8. Let A,B, C be formulas and Γ1, Γ2 be sets of formulas. From proofs
of Γ1 `∗R A ∨ C and Γ2 `∗R B ∨ C (resp. Γ1 `∗R P (t) ∨ C, resp. Γ1, B `∗R C
and Γ2 `∗R A ∨ C) we can construct a proof of Γ1, Γ2 `∗R (A ∧ B) ∨ C(resp.
Γ1 `∗R (∃xP (x)) ∨ C, resp. Γ1, Γ2, A ⇒ B `∗R C)

Proof. We focus on the first part of the lemma. The other parts are proved
using the same pattern. We construct bottom-up from the two proofs π1 and π2

of Γ1 `∗R A∨C and Γ2 `∗R B ∨C a proof of the sequent Γ1, Γ2 `∗R (A∧B)∨C.
The idea is simple: first, include a copy of π1, using Γ1 then, at the leaves of

π1, when necessary, take a copy of π2, using Γ2 (unchanged by the first induction
on π1). Let us detail a bit. We construct a proof of Γ1, Γ2 `∗R (A ∧ B) ∨ C by
induction on π1. If the first rule is:

– a rule with Γ1 as an active formula, apply the induction hypothesis to the
premise(s) and then apply the same rule. For instance, for the ⇒-l rule:

π′1
Γ1, Q `∗R A ∨ C

π′′1
Γ1 `∗R P

Γ1, P ⇒ Q `∗R A ∨ C

we apply the induction hypothesis to π′1, get a proof π′ of Γ1, Q, Γ2 `∗R
(A ∧B) ∨ C, and we then apply the ⇒-l rule:

π′

Γ1, Q, Γ2 `∗R (A ∧B) ∨ C

π′′1 weaks
Γ1, Γ2 `∗R P

Γ1, P ⇒ Q,Γ2 `∗R (A ∧B) ∨ C

– a right weakening (on A ∨ C). We instead weaken on (A ∧ B) ∨ C and add
left weakenings to introduce Γ2. We get a proof of Γ1, Γ2 `∗R (A ∧B) ∨ C.

– an axiom rule (A1) or a ∨-r rule (V1). This is the most interesting case.
We stop the induction on π1 and initiate an induction on π2. As usual, we
rename the fresh constants of π2 in order for them to be fresh for Γ1. If the
first rule is:
• a left rule r. Apply r the the proof(s) obtained by induction hypothesis.
• a right weakening. Similar as in the induction on π1.
• an axiom (A2) or a ∨-r rule (V2). We have four cases. Consider the case
A1,A2 first. We have PA∨C ∈ Γ1 and PB∨C ∈ Γ2 with PA∨C ≡R A ∨ C
and PB∨C ≡R B∨C. It is trivial to construct a proof of PA∨C , PB∨C `∗R
(A ∧B) ∨ C.
Consider the V1 (similarly V2) case. There are two subcases. If the
premise is a proof π′1 of Γ1 `∗R C ′ with C ′ ≡R C, construct the fol-
lowing proof (ignoring π2):

π′1 weaks
Γ1, Γ2 `∗R C ′

∨-right
Γ1, Γ2 `∗R (A ∧B) ∨ C

Otherwise the premise is a proof π′1 of Γ1 `∗R A′ with A′ ≡R A. If we
have V2 and the premise is a proof Γ2 `∗R C ′, we construct the above
proof, switching indexes 1 and 2. Otherwise, it is a proof of Γ2 `∗R B′

with B′ ≡R B, and we construct the proof:
π′2 weaks

Γ1, Γ2 `∗R B′
π′1 weaks

Γ1, Γ2 `∗R A′
∧-r

Γ1, B
′ `∗R (A ∧B)

∨-r
Γ1, Γ2 `∗R (A ∧B) ∨ C

If we have A2 we construct the proof:

axiom
Γ1, B

′ `∗R B

π′1
Γ1 `∗R A

∧-r
Γ1, B

′ `∗R (A ∧B)
∨-r

Γ1, B
′ `∗R (A ∧B) ∨ C

axiom
Γ1, C

′ `∗R C
∨-r

Γ1, C
′ `∗R (A ∧B) ∨ C

∨-l
Γ1, B

′ ∨ C′ `∗R (A ∧B) ∨ C
weaks

Γ1, Γ2 `∗R (A ∧B) ∨ C

where B′ ≡R B, C ′ ≡R C and B′ ∨C ′ is the formula used in A2. It is a
disjunction because R is confluent and left members are atomic, so main
connectors of two equivalent compound formulas are the same ([7, 6]).

The treatment of ∃ needs only one induction.⇒ as well: we need an induction
on the proof of Γ2 `∗R A ∨ C (Γ1, B `∗R C contains no disjunction). ut

Note. This result has to be compared with the LB sequent calculus [15], where
these very rules are allowed. However, soundness of LB is proved semantically.
Our result seems then to be new.

In the sequel, we use Lem. 8 with Γ1 = Γ2 = Γ . We get a proof of Γ, Γ `
(A ∧ B) ∨ C contracted as a proof of Γ `∗R (A ∧ B) ∨ C. We are now ready to
prove soundness of the intuitionistic tableau construction with respect to cut-free
sequent calculus.

Theorem 3 (Syntactic cut-free soundness of tableaux). If Γ 0∗R P then
there is a consistent path π in the systematic complete tableau developement of
T∅ Γ↓, F∅ P↓.

Remark: The contraposite of this theorem has exactly the same proof, compli-
cated by some uninteresting additional cases. •

Proof. We show that if π is a consistent branch in a partially developed tableau,
the method of Sec. 3 extends it (at some step) in at least one consistent path.

The root of the tableau is consistent: having Γ `∗R P is the same as having
Γ↓`∗R P↓. This is a classical result of deduction modulo (see for instance [4, 6,
7]). Now let Bp P the least unused statement in the tableau developement
appearing on π (and P is normal by construction). If Bp P is:

– Tp Q ∧ R, π is extended following the rules of figure 2 with Tp Q
and Tp R. If the new path is inconsistent, the added statement must be
involved, and we have a proof of Tp(π′) `∗R Fp(π′) But Tp(π′) = Tp(π) ∪
{Q,R} and Fp(π′) = Fp(π). We apply ∧-l and obtain a proof of Tp(π), P `∗R
Fp(π) contradicting P ∈ Tp(π).

– Fp Q ∧ R, π is extended with two paths π0 and π1. If both new paths
are inconsistent, we get the two proofs Tp(π) `∗R Q∨

∨
Fp(π) and Tp(π) `∗R

R ∨
∨

Fp(π) with Tp(π) = Tp(π0) = Tp(π1), Fp(π0) = Fp(π) ∪ {Q} and
Fp(π1) = Fp(π) ∪ {R}. Potentially weakening (Lem. 7), we consider both
occurrences of

∨
Fp(π) to be equal and we apply Lem. 8 to get a proof of

Tp(π) `∗R (Q ∧R) ∨
∨

Fp(π) i.e. a contradiction, since Q ∧R ∈ Fp(π)

– Tp Q∨R. If both new paths are inconsistent, combine with ∨-l the proofs
Tp(π), Q `∗R

∨
Fp(π) and Tp(π), R `∗R

∨
Fp(π) to get a contradiction.

– Fp Q ∨ R. If the new path is inconsistent, we have a proof of Tp(π) `∗R
(Q ∨R) ∨

∨
Fp(π) (using Lem. 7). But Q ∨R ∈ Fp(π).

– Tp Q ⇒ R, then if both new paths are inconsistent we have proofs
of Tp′(π0) `∗R

∨
Fp′(π0) and Tp′(π1) `∗R

∨
Fp′(π1) since things changing

from π change at world p′. By definitions of Tp′ and Fp′ , we have proofs of
Tp′(π) `∗R Q∨

∨
Fp′(π) and Tp′(π), R `∗R

∨
Fp′(π) By Lem. 8 we get a proof

of Tp′(π), Q ⇒ R `∗R
∨

Fp′(π), which contradicts Q ⇒ R ∈ Tp′(π).
– Fp Q ⇒ R. If the new path is inconsistent, we have a proof θ of Tp′(π′) `∗R∨

Fp′(π′). Since p′ is a new world, comparable only with the q ≤ p on π,
Tp′(π′) = Tp(π)∪{Q} and Fp′(π′) = {R}. Hence, we can apply the ⇒-r rule
to θ, and we obtain a proof of Tp(π) `∗R Q ⇒ R, yielding the inconsistency
of π since Q ⇒ R ∈ Fp(π).
This is extremely important to have no choice for Fp′(π′) but R. Exactly
at this point the logic gets intuitionistic. Other tableaux methods (like [15])
have also a special treatement of the ⇒ and ∀ connectors: we need a one-
member right side sequent.

– ¬P behaves as P ⇒ ⊥. So both cases are consequences of the previous.
– Tp ∃xQ(x). If the new path is inconsistent, we have a proof of Tp(π), Q(c) `∗R∨

Fp(π). We apply the ∃-l rule as c is fresh, yielding the inconsistency of π.
– Fp ∃xQ(x). If the new path is inconsistent, we have a proof of Tp(π) `∗R

Q(t)↓ ∨
∨

Fp(π). We transform this proof into a proof of Tp(π) `∗R Q(t) ∨∨
Fp(π) since Q(t) ≡R Q(t) ↓. Then using lemma 8 we get a proof of:

Tp(π) `∗R ∃xQ(x) ∨
∨

Fp(π), thereby contradicting the consistency of π.
– Tp ∀xQ(x). If the new path is inconsistent, we have a proof of Tp′(π), Q(t)↓
`∗R Fp′(π), then converted into a proof of Tp′(π), Q(t) `∗R Fp′(π). Apply the
∀-l rule to get Tp′(π),∀xQ(x) `∗R Fp′(π), and the inconsistency of π.

– Fp ∀xQ(x). If the new path is inconsistent, we must have a proof of
Tp′(π′) `∗R Fp′(π′). As for Fp Q ⇒ R, p′ is a new world, comparable only
with p. So, we have in fact a proof of Tp(π) `∗R Q(c). We apply the ∀-r rule,
since c is fresh. This yields the inconsistency of π. ut

We have established that a closed tableau is a cut-free proof of LJmod. This
result is new, even in LJ . The combination of the soundness theorem of sequent
calculus w.r.t. modified Kripke structures, Th. 1 and Th. 3 yields a constructive
semantic cut elimination theorem, holding for the conditions seen in Sec. 4:

Theorem 4 (Cut elimination for LJmod). If Γ `R P then Γ `∗R P .

6 Conclusion and further work

We have formulated a simple tableau method for intuitionistic logic modulo
and proved its completeness and syntactic soundness in order to to show that
the computational content our semantic cut elimination theorem is actually a
tableau method. Moreover, in [7], it is proven that the rewrite system 1 does not

possess the proof normalization property: any attempt to normalize the proof
(with a cut on R ∈ R) of `R A ⇒ A can only fail. We can semantically eliminate
this cut, because we have the semantical information that A ⇒ A is a tautology.
The proof normalization method does not own this information. In this case,
the semantic analysis is sharper, and it shows the gap between both methods.
The link with normalization by evaluation methods, for instance [2] where a
Kripke-style framework is presented, seems a promising field of investigations.
The tableau method itself could be much improved with a better handling of
the rewrite steps (instead of normalizing — which includes many possibly un-
necessary computing). Then we could deal with quantifiers more efficiently :
free-variable tableaux based upon [14, 15] or the introduction of Skolem symbols
(more tricky in intuionistic logic, see [10, 13]) would indeed improve efficiency.

References

[1] Richard Bonichon. Tamed: A tableau method for deduction modulo. In IJCAR,
pages 445–459, 2004.

[2] Catarina Coquand. From semantic to rules: a machine assisted analysis. In CSL,
1993.

[3] Mary De Marco and James Lipton. Completeness and cut elimination in Church’s
intuitionistic theory of types. Journal of Logic and Computation, 15:821–854,
December 2005.

[4] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo.
Journal of Automated Reasoning, (31):33–72, 2003.

[5] Gilles Dowek and Benjamin Werner. Proof normalization modulo. The Journal
of Symbolic Logic, 68(4):1289–1316, December 2003.

[6] Olivier Hermant. Méthodes Sémantiques en Déduction Modulo. PhD thesis, Uni-
versité Paris 7 - Denis Diderot, 2005.

[7] Olivier Hermant. Semantic cut elimination in the intuitionistic sequent calculus.
Typed Lambda-Calculi and Applications, pages 221–233, 2005.

[8] Jean-Louis Krivine. Une preuve formelle et intuitionniste du théorème de
complétude de la logique classique. The Bulletin of Symbolic Logic, 2:405–421,
1996.

[9] Anil Nerode and Richard A. Shore. Logic for Applications. Springer-Verlag, 1993.
[10] Natarajan Shankar. Proof search in the intuitionistic sequent calculus. In CADE,

pages 522–536, 1992.
[11] Anne S. Troelstra and Dirk Van Dalen. Constructivism in Mathematics, volume 2.

North Holland, 1988.
[12] Wim Veldman. An intuitionistic completeness theorem for intuitionistic predicate

logic. Journal of Symbolic Logic, 41:159–166, 1976.
[13] Andrei Voronkov. Proof-search in intuitionistic logic based on constraint satisfac-

tion. In TABLEAUX, pages 312–329, 1996.
[14] Arild Waaler. Handbook of Automated Reasoning, volume II, chapter Connection

in Nonclassical Logics. North Holland, 2001.
[15] Arild Waaler and Lincoln Wallen. Handbook of Tableau Methods, chapter Tableaux

for Intutionistic Logics, pages 255–296. Kluwer Academic Publishers, 1999.

