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Abstract. We give a fully constructive semantic proof of cut elimina-
tion for intuitionistic type theory with axioms. The problem here, as with
the original Takeuti conjecture, is that the impredicativity of the formal
system involved makes it impossible to define a semantics along conven-
tional lines, in the absence, a priori, of cut, or to prove completeness by
induction on subformula structure. In addition, unlike semantic proofs
by Tait, Takahashi, and Andrews of variants of the Takeuti conjecture,
our arguments are constructive.
Our techniques offer also an easier approach than Girard’s strong nor-
malization techniques to the problem of extending the cut-elimination
result in the presence of axioms. We need only to relativize the Heyting
algebras involved in a straightforward way.

1 Introduction

We give a new constructive semantic proof of cut elimination for an intuitionistic
formulation of Church’s Theory of Types (ICTT) with axioms. The argument
extends and modifies techniques of Prawitz, Takahashi, Andrews and [4] which
are non-constructive. A discussion of the constructive character of the proof, and
the reasons why some older semantic proofs are not constructive can be found in
Section 7. We also make use of a simple new technique to handle sets of axioms:
relativization of infinite-context Heyting Algebras, as discussed below.

We recall that the central problem in extending the conventional syntactic
proof of cut-elimination to certain impredicative higher-order logics is that one
cannot induct on the natural subformula ordering that places instances M [t/x]
below quantified formulae such as ∃x.M , because it is not a well-ordering. This
can be seen by taking M to be the variable x of type o and taking t = ∃x.M ∧A
for any A, for example.

The problem of extending cut-elimination to higher-order logic (known as
Takeuti’s conjecture when it was still open) was solved by e.g. Takahashi[21],
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Prawitz[18] and Andrews [1] by extending work by Tait [20] and following the
blueprint given by Schütte in [19] where he observed that cut admissibility can
be proved semantically by showing completeness of the cut-free fragment with
respect to a weaker semantics he called semivaluations, and then showing every
semivaluation gives rise to a total valuation extending it.

We generalize this approach by replacing Schütte’s semivaluations by a pair
of semantic mappings into a Heyting Algebra which give an upper and lower
bound for the desired model, and show that such a pair can be defined syntacti-
cally (and constructively) using sets of contexts of cut-free proofs. The resulting
model is easily relativized to extend to non-logical axioms by using a new pa-
rameter: an arbitrary set of axioms.

Cut-elimination for many impredicative formal systems (but not the ones
considered here) has also been proved constructively using strong normalization
techniques following Girard[8, 9]. We have chosen, rather, to take the alternative
approach, namely that of the Takahashi-Schütte-Andrews tradition because it
seems to lend itself more readily to the addition of axioms, a central concern
of this paper. Also one of the main interests of the authors in this work is to
apply these techniques to formal systems in which rewriting rules are combined
with sequent calculus, such as Deduction Modulo, invented by Dowek, Hardin,
Kirchner and Werner [5, 6]. Cut elimination for various fragments and variants of
this system, studied elsewhere by Hermant and Dowek, does not , in general, sat-
isfy strong normalization, and it is therefore not obviously amenable to Girard’s
techniques.

2 The Formal System: a Sketch

For definitions of types, terms and reduction in the intuitionistic formulation
of Church’s Theory of types, due originally to Miller et al. [13], we refer the
reader to [2, 1, 4], and limit ourselves to recapitulating the rules of inference,
in Fig. 1, where λ stands for βη conversion, and where structural rules, such
as contraction and weakening, are implicitly assumed. Types are omitted where
clear from context, and we use Church’s notation (βα) for the arrow type α → β
with association to the left. Fig. 1 does not include the cut rule:

Γ ` B Γ, B ` A

Γ ` A
Cut

When we mean a proof within the rules of Fig. 1, we use the symbol `∗, and the
unadorned ` when we allow the cut rule. Γ ` A will also abbreviate “the sequent
Γ ` A has a proof”. In the rest of the paper, we consider a fixed language S for
ictt, i.e. for each type, a set of constants.

3 Global Models

We will make use of the notion of applicative structures, a well-known semantic
framework for the simply-typed lambda calculus [7, 17, 14].
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Γ ` > Γ, U ` U Γ,⊥ ` ⊥
Γ, B, C ` A

Γ, B ∧ C ` A
∧L

Γ ` B Γ ` C
Γ ` B ∧ C

∧R

Γ, B ` A Γ, C ` A

Γ, B ∨ C ` A
∨L

Γ ` Bi

Γ ` B1 ∨B2
∨R

Γ ` B Γ, C ` A

Γ, B ⊃ C ` A
⊃L

Γ, B ` C

Γ ` B ⊃ C
⊃R

Γ, P [t/x] ` A

Γ,∀x.P ` A
∀L

Γ ` P
Γ ` ∀x.P

∀R ∗

Γ, P ` A

Γ,∃x.P ` A
∃L ∗

Γ ` P [t/x]

Γ ` ∃x.P
∃R

Γ ′ ` A′

Γ ` A
λ

Γ ` ⊥
Γ ` B

⊥R

Fig. 1. Higher-order Sequent Rules

Definition 1. A typed applicative structure 〈D,App,Const〉 consists of an in-
dexed family D = {Dα} of sets Dα for each type α, an indexed family App of
functions Appα,β : Dβα × Dα → Dβ for each pair (α, β) of types, and an (in-
dexed) interpretation function Const = {Constα} taking constants of each type α
to elements of Dα.

We will abbreviate the mapping App to the infix operator · when types are clear
from context.

So far we have only supplied a structure to interpret the underlying typed
λ-calculus. Now we interpret the logic as well, by adjoining a Heyting algebra
and some additional structure to handle the logical constants and predicates.

Definition 2. A Heyting applicative structure, or HAS 〈D,App,Const, ω,Ω〉 for
ictt is a typed applicative structure with an associated Heyting algebra Ω and
function ω from Do to Ω such that for each f in Doα, Ω contains the parametrized
meets and joins^

{ω(App(f, d)) : d ∈ Dα} and
_
{ω(App(f, d)) : d ∈ Dα},

and the following conditions are satisfied:

ω(Const(>o)) = >Ω

ω(Const(⊥o)) = ⊥Ω

ω(App(App(Const(∧ooo), d1), d2)) = ω(d1) ∧ ω(d2)

ω(App(App(Const(∨ooo), d1), d2)) = ω(d1) ∨ ω(d2)

ω(App(App(Const(⊃ooo), d1), d2)) = ω(d1) → ω(d2)

ω(App(Const(Σo(oα)), f)) =
_
{ω(App(f, d)) : d ∈ Dα}

ω(App(Const(Πo(oα)), f)) =
^
{ω(App(f, d)) : d ∈ Dα}
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By supplying an object Ω of truth values we are able to distinguish between
denotations of formulae (elements d ∈ Do) and their truth-values ω(d) ∈ Ω.1

An assignment ϕ is a function from the free variables of the language into D
which respects types, and which allows us to give meaning to open terms.

Definition 3. A global model for ictt is a total assignment-indexed function
D = {D( )ϕ : ϕ an assignment} into an HAS (Heyting applicative structure)
〈D,App,Const, ω,Ω〉 which takes (possibly open) terms of type α into Dα and
satisfies the following environmental model conditions and η-conversion:

D(c)ϕ = Const(c) for constants c

D(x)ϕ = ϕ(x) for variables x

D((MN))ϕ = App(D(M)ϕ, D(N)ϕ)

D(λxα.Mβ)ϕ is the unique member of Dβα s.t.

for every d ∈ Dα App(D(λxα.Mβ)ϕ, d) = D(M)ϕ[d/x]

D(M)ϕ = D(N)ϕ M η-equivalent to N

Given a model D and an assignment ϕ, we say that ϕ satisfies B in D if
ω(D(Bo)ϕ) = >Ω ; this is abbreviated to D |=ϕ Bo. We say Bo is valid in D
(equivalently, D |= Bo) if D |=ϕ Bo for every assignment ϕ. We abbreviate the
truth-value ω(D(Bo)ϕ) to (Bo)∗ϕ. We also omit the subscript ϕ and parenthesis
when our intentions are clear. We often use the word model just to refer to the
mapping ( )∗ from logical formulae to truth values in Ω.

3.1 Soundness of ICTT for Global Models

In the following we extend interpretations to sequents in a natural way.

Definition 4. We define the meaning of a sequent in a model to be the truth-
value in Ω given by:

(Γ ` A)∗ := (
∧

Γ ⊃ A)∗

where
∧

Γ signifies the conjunction of the elements of Γ .

Note that (
∧

Γ ⊃ A)∗ = > if and only if > ≤ (
∧

Γ ⊃ A)∗, which is equivalent
to (

∧
Γ )∗ ≤ (A)∗. We will abbreviate (

∧
Γ )∗ to (Γ )∗, and express the validity

of the indicated sequent by (Γ )∗ ≤ (A)∗ or, when referring to the environment,
by (Γ )∗ϕ ≤ (A)∗ϕ henceforth.

Theorem 1 (Soundness). If Γ ` A is provable in ictt then (Γ )∗ ≤ (A)∗ in
every global model E of ictt.

1 This allows us to assign different truth values to poo(Ao) and poo(Bo) even when A
and B are provably equivalent and hence have the same truth value. The equivalence
of the higher order formulae poo(Ao) and poo(Bo) holds neither in ictt as presented
here nor in the λProlog programming language, based on a sub-system of ictt.
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A proof can be found in [4].
A straightforward proof of completeness of ICTT for global models can be

given under the assumption that cut is admissible for ICTT along the lines of
[22, 4], i.e. by choosing Ω to be the Lindenbaum algebra of equivalence classes of
formulae and then interpreting each formula as its own equivalence class. Just
to show Ω is partially ordered, we need cut.

Since we are not assuming cut holds in ICTT we must proceed differently.
We will choose the complete Heyting algebra Ωcfk generated by “relativized
cut-free contexts”, that is to say, contexts from which formulae can be proved
without using cut. A partial valuation will be defined for this cHa, yielding an
interpretation that establishes completeness and the admissibility of cut.

4 From Semivaluations to Valuations

In order to apply Schütte’s plan [19], we need to extend the definition of a
semivaluation in our intuitionistic (and higher-order) setting and lift the notion
to Heyting Algebras. We also generalize Schütte’s definition in one critical way:
the partial information is given in terms of lower and an upper bounds for a
model, which gives us an additional degree of freedom in how we approximate
the truth value of a formula.

Definition 5. Let Ω be a Heyting algebra. A global Ω semivaluation V =
〈D,App,Const, π, ν,Ω〉 consists of a typed applicative structure 〈D,App,Const〉
together with a pair of maps π : Do −→ Ω and ν : Do −→ Ω, called the lower
and upper constraints of V, satisfying π(d) ≤ ν(d) for any d ∈ Do, as well as the
following:

π(>o) = >Ω π(⊥o) = ⊥Ω

π(Const(∗) ·A ·B) ≤ π(A) ∗Ω π(B) for ∗ ∈ {∧,∨,⊃}

π(Const(Σo(oα)) · f) ≤
_
{π(f · d) : d ∈ Dα}

π(Const(Πo(oα)) · f(oα)) ≤
^
{π(f · d) : d ∈ Dα}

and

ν(>o) = >Ω ν(⊥o) = ⊥Ω

ν(Const(∗) ·A ·B) ≥ ν(A) ∗Ω ν(B) for ∗ ∈ {∧,∨,⊃}

ν(Const(Σo(oα)) · f) ≥
_
{ν(f · d) : d ∈ Dα}

ν(Const(Πo(oα)) · f(oα)) ≥
^
{ν(f · d) : d ∈ Dα}

and the consistency or separation conditions

π(Const(⊃) ·B · C) ∧ ν(B) ≤ π(C) (1)

π(B) →Ω ν(C) ≤ ν(Const(⊃) ·B · C). (2)



6

Remark 1. The reader should note that some of these requirements are super-
fluous. For example, the separation conditions and the first condition imply the
⊃ requirements for both π and ν. If we think of [π(A), ν(A)] as a – by definition
nonempty – interval, one sees that it contains all the potential truth values of
A, indeed the semantic “truth value candidates”, instead of Girard’s reducibility
candidates. The circularity mentioned in the introduction will then be avoided
by quantifying over all those candidates rather than subformulae.

The definition of environment, and global structure remain the same for
semivaluations. As with Heyting applicative structures, in the presence of an
environment ϕ, a semivaluation V induces an interpretation Vϕ from open terms
A to the carriers D as follows:

V(c)ϕ = Const(c) for constants c
V(x)ϕ = ϕ(x) for variables x
V(M)ϕ = V(N)ϕ M eta-equivalent to N
V((MN))ϕ = App(V(M)ϕ, V(N)ϕ)
App(V(λxα.Mβ)ϕ, d) = V(M)ϕ[x:=d] with V(λxα.Mβ)ϕ the unique such value.

This assignment induces a pair of partial, or semi-truth-value assignments [[ ]]πϕ
and [[ ]]νϕ to terms Ao of type o given by

V[[A ]]πϕ = π(V(A)ϕ) V[[A ]]νϕ = ν(V(A)ϕ)

Theorem 2. Given an Ω-semivaluation V = 〈D, ·,Const, π, ν,Ω〉, there is a
model D = 〈D̂,�, Ĉ, ω,Ω〉 extending V in the following sense: for all closed
terms Ao

V[[A ]]π ≤ ω(D(A)) ≤ V[[A ]]ν .

Furthermore, there is a surjective indexed map δ : D̂ −→ D such that for any
d̂ ∈ D̂o

π(δ(d̂)) ≤ ω(d̂) ≤ ν(δ(d̂))

Proof. We refer the reader to [4] for the proof.

5 Cut Elimination by Completeness

From Thm. 2, deriving a (cut-free) completeness theorem for ictt requires a
complete Heyting algebra Ω and an Ω-semivaluation. We first give the definition
of Ωcfk, the Heyting algebra of cut-free contexts, critically different from the one
given in [4], where a tableaux-style construction is used, and extend the usual
notion of context-based semantics [16, 15] to the notion of infinite contexts, taken
themselves as a new free parameter.

5.1 The Cut-free Contexts Heyting Algebra

We first define what is a cut-free context, generalizing Okada [16, 15].
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Definition 6 (outer value). Assume given a set of formulae Ξ, possibly infi-
nite, but containing only a finite number of variables. Let A be a closed formula.
We let the outer value of A be:

JAK = {Γ | Ξ,Γ `∗ A}

The contexts Γ considered are always finite. The provability relation Ξ,Γ `∗ A
is with respect to some finite subset of Ξ,Γ .

So, an outer value JAK is the set of contexts proving A without cut (cut-free
contexts). With this, we build Ωcfk. When it is relevant, we stress the dependence
on the considered set of axioms Ξ by Ωcfk(Ξ).

Definition 7 (Ωcfk). Let Ξ be a fixed set of formulae. Let |Ω| be the least set
of sets of contexts generated by JAK for any formula A, closed under arbitrary
(denumerable) intersection, and ordered by inclusion. Then define meets and
joins on |Ω| as follows

–
∧

= arbitrary intersection, just set-theoretic intersections.
–

∨
= arbitrary pseudo-union, that is to say∨

S =
⋂
{c ∈ |Ω| : c ≥ S}

where c ≥ S means ∀s ∈ S c ≥ s

Remark 2. From the definition, it follows that:

– >Ω is the set of all contexts and as well J>oK.
– ⊥Ω is the intersection of all JAK and as well J⊥oK. In particular, ⊥Ω 6= ∅.
– the suprema can be slightly simplified: a∨Ω b =

⋂
{JAK | a∪ b ⊆ JAK}, since

any c ∈ Ω is of the form
⋂

i∈Λ JAiK. As well,
∨

S =
⋂
{JAK | JAK ≥ S}.

Taking a→ b =
∨
{x : x ∧ a ≤ b}, the resulting structure Ω = 〈|Ω|,

∨
,
∧

,→〉
(also written Ωcfk, when ambiguity may arise) is a complete Heyting algebra.
We now check that the ∧

∨
distributivity law [22] holds.

We first show one direction: for each member a =
⋂

i JAiK of Ω, we must
have a∩

∨
S ≤

∨
a∩S, where a∩S means {a∩s : s ∈ S}. Unfolding definitions,

the inclusion to prove becomes:

a ∩
⋂
{JBK : JBK ≥ S} ⊆

⋂
{JDK : JDK ≥ a ∩ S} (3)

Let Γ be a context member of the left hand side, i.e. such that Ξ,Γ `∗ Ai

for any Ai and Ξ,Γ `∗ B for every B such that JBK ≥ S. Let D be a formula
such that JDK ≥ a ∩ S. We must show Ξ,Γ `∗ D to prove that 3 holds.

Let ∆ be a context such that ∆ ∈ s for some s ∈ S. Since provability in
Def. 6 deals with subcontexts, we directly have Ξ,∆, Γ `∗ Ai and by a similar
reasoning ∆, Γ ∈ s. By definition of D, we get Ξ,∆, Γ `∗ D. Hence ∆ `∗ Γ ⊃ D,
where Γ ⊃ D is a shorthand for B1 ⊃ · · ·Bn ⊃ C, and ∆ ∈ JΓ ⊃ DK. Since this
is valid for any s, we have shown JΓ ⊃ DK ≥ S.
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But then, Ξ,Γ `∗ Γ ⊃ D by assumption on Γ . By Kleene’s Lem. 1 below
and contraction on the formulae of Γ we have Ξ,Γ `∗ D, which shows that Γ
is a member of the right-hand-side of 3, which proves the claim.

The other direction follows, by elementary lattice theory: for any s ∈ S it is
the case that a ∩

∨
S ≥ a ∩ s. Now take the supremum of a ∩ s over all s ∈ S.

To complete the proof, we need Kleene’s lemma, for the ⊃R rule.

Lemma 1 (Kleene). Let C ≡λ A ⊃ B be formulae and Γ be a context. If
Γ ` C then Γ,A ` B, and if Γ `∗ C then Γ,A `∗ B.

Proof. Standard (see [10]) by induction on the structure of the proof.

5.2 A Semivaluation π and ν

Now, we need to exhibit a Ω-semivaluation to be able to apply Thm. 2. For this,
we need the following definition:

Definition 8 (closure). Let S be a set of contexts, we define its closure by:

cl(S) =
⋂
{JAK | S ⊆ JAK}

It is the least element of Ω containing S. We also write, for a single context Γ ,
cl(Γ ) to mean cl({Γ}).

Remark 3. cl(A) ⊆ d is equivalent to A ∈ d for any d ∈ Ω. Indeed, A ∈ cl(A)
and cl(A) is the l.u.b. of A. cl(S) can also be seen as the set of contexts admitting
cut with all the elements of S as shown in the following lemma.

Lemma 2. Let A be a formula. The following formulations are equivalent:

(i) cl(A) =
⋂
{JBK | A ∈ JBK}

(ii) cl(A) = {Γ | Ξ,Γ `∗ B whenever Ξ,A `∗ B}. Equivalently, Γ ∈ cl(A) iff
given any proof Ξ,A `∗ B, a proof of Ξ,Γ `∗ B is derivable.

(iii) cl(A) = {Γ | Ξ,Γ `∗ B whenever Ξ,Γ,A `∗ B}. Equivalently, Γ ∈ cl(A) iff
given any proof Ξ,Γ, A `∗ B a proof of Ξ,Γ `∗ B is derivable.

(iv) cl(A) = {Γ | Ξ,∆, Γ `∗ B whenever Ξ,∆,A `∗ B}. Equivalently, Γ ∈ cl(A)
iff given any proof Ξ,∆,A `∗ B a proof of Ξ,∆, Γ `∗ B is derivable.

Cases (ii) – (iv) can be summarized as follows: Γ admits (Ξ-) cuts with A, hence
the terminology “Γ is A-cuttable”.

Proof. (ii) unfolds the definition of JBK in (i). (iii) and (iv) reformulate (ii)
with equivalent – thanks to Lem. 1, ⊃R and contraction rules – notions of cuts.

We shall use any of the formulations given above, depending on our need.
Now we are ready to give the semivaluation we work with.
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Definition 9 (the cut-free context semivaluation). Let the typed applica-
tive structure 〈D,App,Const〉 be the open term model: carriers Dα are open terms
of type α in normal form, application A · B is [AB], the normal form of AB,
and we interpret constants as themselves. For any formula A, define:

π(A) = cl(A) and ν(A) = JAK

The definition just given of a pair of semantic mappings based on cut-free
proofs and their contexts, and shown below to give rise to a semivaluation in
the sense of Def. 5, is essential to the constructive character of our proof of
cut-elimination, avoiding as it does the use of tableau style (Hintikka-set) con-
struction of partial models, as in [1, 4], and the infinite tree arguments required.

Lemma 3. 〈D,App,Const, π, ν,Ωcfk〉 is a semivaluation in the sense of Def. 5.

Proof. We check the conditions of Def. 5, with respect to the open term model.
Each case follows the same pattern: it uses the corresponding rule of inference.

– cl(A) ⊆ JAK. Immediate since {A} ⊆ JAK and from Rem. 3.
– cl(>o) = >Ω . >Ω is the greatest element so we focus on the reverse inclusion.

Consider a proof of Ξ,>o `∗ A. The only rule we can use on >o besides
structural ones and conversion is the axiom. We can replace it:

>R`∗ >o

Hence, Ξ `∗ A and, by weakening, Ξ,Γ `∗ A for any Γ , and >Ω ⊆ cl(>o).
– cl(⊥o) = ⊥Ω . ⊥Ω is the least element and, by other cases cl(⊥) ⊆ J⊥K = ⊥Ω .
– cl(A∧B) ≤ cl(A)∩cl(B). This amounts to showing A∧B ∈ cl(A)∩cl(B). We

prove that A∧B is A-cuttable. Consider a proof of Ξ,A `∗ C. We construct
the following proof:

Ξ, A `∗ C
weak

Ξ, A, B `∗ C ∧L
Ξ, A ∧B `∗ C

Hence, A ∧B ∈ cl(A). On the same way, A ∧B ∈ cl(B).
– cl(A ∨B) ⊆ cl(A) ∨Ω cl(B). It suffices to show A ∨B ∈ cl(A) ∨Ω cl(B). Let

C be such that cl(A) ∪ cl(B) ⊆ JCK. A ∈ JCK, B ∈ JCK, and the proof:

Ξ, A `∗ C Ξ, B `∗ C ∨L
Ξ, A ∨B `∗ C

shows that A ∨ B ∈ JCK. This holds for any such C, hence for their meet,
and A ∨B ∈ cl(A) ∨Ω cl(B).

– cl(A ⊃ B) ⊆ cl(A) → cl(B) is a consequence of cl(A ⊃ B) ∧ JAK ⊆ cl(B)
(proved below) as mentioned in Rem. 1.

– cl(Σ.f) ⊆
∨
{cl(ft) | t ∈ Tα} (where α is the suitable type). Equivalently,

Σ.f ∈
∨
{cl((ft)) | t ∈ Tα}. Let t be a variable y of type α that is fresh

for f and Ξ. We prove that Σ.f is fy-cuttable. Assume we have a proof
Ξ, fy `∗ C. The proof:
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Ξ, fy `∗ C
∃L

Ξ, Σ.f `∗ C

justifies the fy-cuttability. Hence Σ.f ∈ cl(fy), and it is in the supremum.
– cl(Π.f) ∈

∧
{cl(ft) | t ∈ Tα}. Let t be a term of type α. The proof:

Ξ, ft `∗ C
∀L

Ξ, Π.f `∗ C

shows that Π.f is ft-cuttable for any t.
– J>oK = >Ω and J⊥oK = ⊥Ω hold both by definition, from Rem. 2.
– JA ∧BK ⊇ JAK∧Ω JBK. Let Γ such that Ξ,Γ `∗ A and Ξ,Γ `∗ B. The claim

is established by the proof:

Ξ, Γ `∗ A Ξ, Γ `∗ B ∧R
Ξ, Γ `∗ A ∧B

– JA ∨BK ⊇ JAK ∨Ω JBK. We show JA ∨BK ⊇ JAK. Let Γ ∈ JAK. The proof:

Ξ, Γ `∗ A ∨R
Ξ, Γ `∗ A ∨B

shows that Γ ∈ JA ∨BK. Hence JA ∨BK is an upper bound for JAK and JBK.
– JA ⊃ BK ⊇ JAK →Ω JBK is a consequence of cl(A) → JBK ⊆ JA ⊃ BK.
– JΣ.fK ⊇

∨
{JftK | t ∈ Tα}. Let t be a term, and Γ ∈ JftK. The proof:

Ξ, Γ `∗ ft
∃R

Ξ, Γ `∗ Σ.f

shows that JΣ.fK is an upper bound for any JftK, hence for their supremum.
– JΠ.fK ⊇

∧
{JftK | t ∈ Tα}. Let Γ ∈

∧
{JftK | t ∈ Tα}. Let y be a fresh

variable with respect to Γ , Ξ and f . In particular, Γ ∈ JfyK. The proof:

Ξ, Γ `∗ fy
∀R

Ξ, Γ `∗ Π.f

shows that Γ ∈ JΠ.fK.
– cl(B ⊃ C) ∧Ω JBK ⊆ cl(C). Let Γ ∈ cl(B ⊃ C) ∩ JBK. We must show the

C-cuttability of Γ . Consider a proof of Ξ,C `∗ D. Since Γ `∗ B:

Ξ, Γ `∗ B Ξ, Γ, C `∗ D ⊃L
Ξ, Γ, B ⊃ C `∗ D

By B ⊃ C-cuttability of Γ we get Ξ,Γ `∗ D.
– cl(B) →Ω JCK ⊆ JB ⊃ CK. Let Γ ∈ cl(B) → JCK and show Ξ,Γ `∗ B ⊃ C.

Since Γ ∈ cl(B) → JCK, we have cl(Γ )∩cl(B) ⊆ JCK. Furthermore, Γ ∈ cl(Γ )
and B ∈ cl(B), therefore Γ,B belongs to both. So Γ,B ∈ JCK, and we derive
the desired proof:

Ξ, Γ, B `∗ C ⊃R
Ξ, Γ `∗ B ⊃ C
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5.3 Completeness and Cut Elimination of ictt

We now have all the results needed to establish completeness.

Theorem 3 (cut-free completeness of ictt). Let Γ be a context and A be
a formula such that for any global model Γ ∗ ≤ A∗. Then Γ ` A has a cut-free
proof.

Proof. Calling ε the empty context, we apply Thm. 2 with the Heyting algebra
Ωcfk(ε) given in Def. 7 and the semivaluation π, ν of Def. 9. We get, from Rem.
3, by Thm. 2 and by hypothesis that:

Γ ∈ cl(Γ ) ⊆ Γ ∗ ⊆ A∗ ⊆ JAK

Hence, Γ `∗ A. An alternative proof involves Ωcfk(Γ ): any context is trivially
Γ -cuttable, so ε ∈ cl(Γ ) = >. With the same inclusions as above (but the first)
we get that Γ, ε `∗ A. The interested reader may in fact prove Thm. 3 as many
different ways than elements in P(Γ ), the powerset of Γ .

As an immediate corollary, we have:

Corollary 1 (constructive cut elimination for ictt). Let Γ be a context
and A be a formula. If Γ ` A in ictt, then it has a proof without cut.

Proof. By soundness and cut-free completeness, both of which were proved con-
structively.

6 Adding Non-logical Axioms

Now, we allow a more liberal notion of proof, with non-logical axioms.

Definition 10. A non-logical axiom is a closed sequent A ` B. Assuming such
and axiom A ` B, an axiomatic cut is the following implicit cut rule

Γ ` A Γ, B ` C

Γ ` C

A proof with non-logical axioms is a proof whose leaves are either a proper
axiom rule, or a non-logical axiom and allowing the use of axiomatic cuts.

In the sequel, we fix a set (potentially infinite) of axioms, and consider proof
system is ictt with those non-logical axioms.

The constraint for A ` B to be closed is not a theoretical limitation: it suffices
to quantify over the free variables. In particular, we capture axiom schemes.

The two new rules overlap, since an axiomatic cut is simulated with a non-
logical axiom and two (usual) cuts. Conversely, we can simulate the non logical
axiom rules, even in a cut-free setting, so we often consider only axiomatic cuts:

Γ, A ` A Γ, B ` B
axiomatic cut

Γ, A ` B
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We show in this section that we still have, by the same means, cut elimination
in ictt with non-logical axioms, but that we can not, in the general setting,
eliminate axiomatic cuts. First, we need another, unsurprising, notion of model:

Definition 11 (model for axioms). A global model for ictt (Def. 3) is a
model of the non-logical axioms Ai ` Bi, i ∈ Λ if and only if for any i, A∗

i ≤ B∗
i .

In the sequel, we will only be interested in such models.

Theorem 4 (Soundness of ictt with non-logical axioms). If Γ ` A in
ictt with non-logical axioms, then Γ ∗ ≤ A∗ in any global model of the non-
logical axioms.

Proof. We replace axiomatic cuts by axioms and cuts. Then the proof is done
by the very same induction as the one of Thm. 1. The only additional case is a
non-logical axiom A ` B, trivial from the assumption on the model.

Now we work towards a proof of a cut-free completeness theorem for ictt
with non-logical axioms. Cut-free means free of cuts, but not of axiomatic cuts,
which we will not be able to remove.

6.1 Completeness and Cut Elimination in Presence of Axioms

Given the non logical axioms Ai ` Bi, let Ξ be the set of all the Ai ⊃ Bi. We
show that the valuation in Ωcfk(Ξ) given by the Ω-semivaluation of Def. 9 is a
model of the non-logical axioms. So in Lem. 4, provability refers to pure ictt.

Lemma 4. The valuation given by Theorem 2 with cl( ), J K as an Ωcfk(Ξ)-
semivaluation is a model of the non-logical axioms.

Proof. Let A ` B be an axiom. A∗ ⊆ JAK and cl(B) ⊆ B∗ by Thm. 2, so we
show JAK ⊆ cl(B). This is implied by the fact that Γ is B-cuttable whenever
Ξ,Γ `∗ A. Given a proof Ξ,Γ, B `∗ C, the following proof shows this claim:

Ξ, Γ, B `∗ C Ξ, Γ `∗ A ⊃L
Ξ, Γ, A ⊃ B `∗ C

contraction
Ξ, Γ `∗ C

Before we prove the completeness theorem, we have to switch from proofs of
Ξ,Γ `∗ A in ictt to proofs of Γ `∗ A in ictt with axiomatic cuts.

Lemma 5. Assume we have a proof π of the sequent Γ,A ⊃ B ` C in ictt,
possibly using axiomatic cuts. We can transform it into a proof of the sequent
Γ ` C in ictt with additional cuts on the non logical axiom A ` B. If the initial
proof is free of cuts, then so is the resulting proof (save axiomatic cuts).

Proof. We can omit (by simulating) non logical axiom rules. We track the de-
composition of A ⊃ B, and replace it by an axiomatic cut rule, that is the
exact premises of the ⊃L rule. We assume to have a proof of the sequent
Γ,D1, . . . , Dn ` C, where Di ≡λ A ⊃ B and prove the result by induction
over the structure of π. All cases are a trivial use of induction hypothesis, save:
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– an axiom rule with D1 the active formula. We build the following proof:

axiom
Γ, A ` A

axiom
Γ, B ` B

axiomatic cut
Γ, A ` B ⊃R

Γ ` A ⊃ B
λ

Γ ` D1

– a ⊃-l rule on Di = A′ ⊃ B′. We have the proof:

π1

Γ, D2, . . . , Dn ` A′
π2

Γ, B′, D2, . . . , Dn ` C ⊃R
Γ, D1, D2, . . . , Dn ` C

Applying induction hypothesis to get π′
1 and π′

2, we form the proof:

π′
1

Γ ` A′
λ

Γ ` A

π′
2

Γ, B′ ` C
λ

Γ, B ` C
axiomatic cut

Γ ` C

Observe that we do not introduce any cut save axiomatic ones.

Theorem 5 (cut-free completeness of ictt with non-logical axioms).
Let Γ be a context and A be a formula such that Γ ∗ ≤ A∗ for any global model
of the non logical axioms. Then Γ ` A has a cut-free proof.

Proof. Considering Ωcfk(Ξ) in Thm. 3, we get Ξ,Γ `∗ A in ictt. Applying Lem.
5 a finite number of times (provability is always with respect to a finite subset,
from Def. 6), we get a cut-free proof of Γ `∗ A.

As an immediate corollary, we have:

Corollary 2 (constructive cut elimination for ictt). Let Γ be a context
and A be a formula. If Γ ` A has a proof in ictt with non logical axioms, then
it has a proof without cut.

Proof. By soundness and cut-free completeness, both of which were proved con-
structively.

7 On the Constructivity of the Proof of Cut Admissibility

Our proof, unlike [21, 1] for the classical case or [4] for the intuitionistic case,
makes no appeal to the excluded middle. The works cited (and our work as well)
start directly, or indirectly from Schütte’s observation [19] that cut admissibility
can be proved semantically by showing completeness of the cut-free fragment
with respect to semivaluations, and then showing every semivaluation gives rise
to a total valuation extending it.

There are a number of pitfalls to avoid in finding a constructively valid proof
based on this kind of argument, both in the way a semivaluation is produced
and how one passes to a valuation.
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Andrews shows [1] that any abstract consistency property gives rise to a
semivaluation, but then builds one in a way that requires deciding whether or
not a refutation exists of a given finite set of sentences. In particular, he needs to
show (Thm. 3.5 in [1]) that any finite set S satisfying an Abstract Consistency
Property is consistent. The proof actually establishes ¬¬[Th. 3.5]. Furthermore,
when showing that his cut-free proof system defines an Abstract Consistency
Property (Sec. 4.10.2) he ends up proving the contrapositives of the defining
properties of an ACP.

One can also exhibit a semivaluation by developing a tableau refutation of
a formula (a Hintikka set) as is done in [4] but some care must be taken in the
way the steps are formalized so as not to appeal to the fan theorem to produce
an open path. No discussion of how this might be done appears in [4].

The proof given in this paper appeals to the strengthened version of Schütte’s
lemma in [4] which uses the more liberal definition of semivaluation pairs, (rather
than semivaluations) which provide an upper and lower bound for the truth val-
ues of the valuation eventually produced by Takahashi’s V-complex construction.

As we have shown, it is possible to give an instance of such a pair (namely
cl( ) and J K) without using tableaux and prove they satisfy the semivaluation
axioms without appeal to the excluded middle.

Constructive Completeness. Producing a constructive proof of completeness is
itself problematic, as pointed out by Gödel and discussed in [12, 23] if a suf-
ficiently restrictive definition of validity is assumed, e.g. conventional Kripke
models. However, there are a number of ways to liberalize the definition of valid-
ity to “save” constructive completeness [24, 3, 22, 11], in particular by allowing
truth-values in a sufficiently broad class of structures. In our case these struc-
tures include complete Heyting Algebras in which we cannot decide whether or
not any given element is distinct from > or even, for that matter, if the structure
itself collapses to a one-element set. This appears to be a natural Heyting-valued
counterpart to Veldman’s exploding nodes [24].

In [22] completeness for an intuitionistic system with cut is shown construc-
tively by mapping each formula to its own equivalence class in the Lindenbaum
cHa. We cannot use this semantics here since cut is required to show that the
target structure is partially ordered.

The semantics used in this paper can be seen as a cut-free variant of the
Lindenbaum algebra, in which formulas are mapped to the sets of contexts that
prove them without cut. Here too, one is not required to decide the provability
of formulae in order to show model existence, in contrast with the >,⊥-valued
semantics of [1, 21].

References

1. Peter Andrews. Resolution in type theory. Journal of Symbolic Logic, 36(3), 1971.

2. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.



15

3. H. C.M̃. de Swart. Another intuitionistic completeness proof. Journal of Symbolic
Logic, 41:644–662, 1976.

4. M. DeMarco and J. Lipton. Completeness and cut elimination in the intuitionistic
theory of types. Journal of Logic and Computation, pages 821–854, November
2005.
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