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The living world speaks the language of algorithms
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The living world speaks the language of algorithms

Why the sky is blue ?

vs.

Why tomatoes are red ?
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  PDE

  Natural  algorithm



  PDE

  Natural  algorithm

  loops, conditionals, memory…



  PDE

  Natural  algorithm

  not human-designed 



Part I : consensus algorithms

Part II : influence systems
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Consensus in a multiagent system
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Consensus in a multiagent system

I
N agents denoted by 1, · · · ,N

I
A discrete global clock

I
An infinite sequence of directed graphs : G

0

,G
1

, . . . ,Gt , . . .

Gt =
�
[N ] , Et

�

I
The state of the agent i is captured by a variable xi whose

value at time t is denoted

I
At time t � 1, each agent i updates xi with a weighted

average of of the values of its outgoing neighbors in the

directed graph Gt .
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Consensus in a multiagent system (cont’d)

xi(t + 1) =
X

j2Outi (Gt)

Ai j(t) xj(t)

with
P

j2Outi (Gt)
Ai j(t) = 1 and Ai j(t) > 0
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Consensus in a multiagent system (cont’d)

xi(t + 1) =
X

j2Outi (Gt)

Ai j(t) xj(t)

with
P

j2Outi (Gt)
Ai j(t) = 1 and Ai j(t) � ↵ > 0

x(t + 1) = A(t) x(t)

where A is a stochastic matrix with entries in {0} [ [↵, 1]
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Consensus in a multiagent system (cont’d)

x(t + 1) = A(t) x(t)

where A is a stochastic matrix with entries in {0} [ [↵, 1]

 xi(t+1) 2
⇥
(1�↵)mi(t)+↵Mi(t) , ↵mi(t)+(1�↵)Mi(t)

⇤

with

⇢
mi(t) = min{xj(t) : j 2 Outi(Gt)}
Mi(t) = max{xj(t) : j 2 Outi(Gt)}
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Objectif :

Theorem : The CH algorithm achieves asymptotic consensus
in a multi-agent system

8
<

:

x(t + 1) = P(t) x(0)

P(t) = A(t) . . .A(0)

Theorem : The sequence of (stochastic) matrices
�
P(t)

�
t�0

converges to a rank one (stochastic) matrix

7/24



Objectif :

Theorem : The CH algorithm achieves asymptotic consensus
in a multi-agent system

8
<

:

x(t + 1) = P(t) x(0)

P(t) = A(t) . . .A(0)

Theorem : The sequence of (stochastic) matrices
�
P(t)

�
t�0

converges to a rank one (stochastic) matrix

7/24



Objectif :

Theorem : The CH algorithm achieves asymptotic consensus
in a multi-agent system

8
<

:

x(t + 1) = P(t) x(0)

P(t) = A(t) . . .A(0)

Theorem : The sequence of (stochastic) matrices
�
P(t)

�
t�0

converges to a rank one (stochastic) matrix

7/24



Part I.a : Convergence and consensus
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Assumptions

A1: Every matrix A(t) is stochastic

A2: For each agent i and each time t, Ai i (t) > 0

A3: Non null entries of A(t) are uniformly lower bounded

by ↵ > 0

Ai j(t) 2 {0} [ [↵, 1]
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Communication graphs

The graph associated to the matrix A(t) is Gt = ([N ],Et) :

Ai j(t) > 0 i↵ (i , j) 2 Et
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Some results

I The Perron-Frobenius theorem

8t 2 N, A(t) = A where A is ergodic

I The Wolfowitz theorem

I Bounded intercommunication intervals [Tsitsiklis 84]

I The coordinated model [Cao, Spielman, Morse 05]

I The bidirectional model [Moreau 05]

I The decentralized model [Touri, Nedic̀ 11]
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Some results
I The Perron-Frobenius theorem

I The Wolfowitz theorem

I Bounded intercommunication intervals [Tsitsiklis 84]

I The coordinated model [Cao, Spielman, Morse 05]

8t 2 N, Gt is oriented

i.e., there exists some node j such that each node i is
connected to j by a walk from i to j .

I The bidirectional model [Moreau 05]

I The decentralized model [Touri, Nedic̀ 11]
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Some results

I The Perron-Frobenius theorem

I The Wolfowitz theorem

I Bounded intercommunication intervals [Tsitsiklis 84]

I The coordinated model [Cao, Spielman, Morse 05]

I The bidirectional model [Moreau 05]

1. 8t 2 N, Gt is bidirectional

2. 8s 2 N, [t�sGt is strongly connected

I The decentralized model [Touri, Nedic̀ 11]
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Some results

I The Perron-Frobenius theorem

I The Wolfowitz theorem

I Bounded intercommunication intervals [Tsitsiklis 84]

I The coordinated model [Cao, Spielman, Morse 05]

I The bidirectional model [Moreau 05]

I The decentralized model [Touri, Nedic̀ 11]

1. 8t 2 N, Gt is semi-simple

2. 8s 2 N, [t�sGt est fortement connexe
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Some results

I The Perron-Frobenius theorem

I The Wolfowitz theorem

I Bounded intercommunication intervals [Tsitsiklis 84]

I The coordinated model [Cao, Spielman, Morse 05]

I The bidirectional model [Moreau 05]

I The decentralized model [Touri, Nedic̀ 11]

 What happens if condition 2 does not hold?
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Part I.b : Speed of convergence
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Speed of convergence

I Rate of convergence

⇢ = sup
x(0) /2R1 ^ x(0)2B

�
lim
t!1

(kx(t)� x⇤k)1/t
�

I Convergence time

T (✏) = inf{⌧ : 8t � ⌧, 8x(o) 2 B , kx(t)� x⇤k ✏}

13/24



Speed of convergence

I Rate of convergence

⇢ = sup
x(0) /2R1 ^ x(0)2B

�
lim
t!1

(kx(t)� x⇤k)1/t
�

I Convergence time

T (✏) = inf{⌧ : 8t � ⌧, 8x(o) 2 B , kx(t)� x⇤k ✏}

13/24



The reversible constant case

In particular :

1. G is bidirectional

2. Ai j = 1/�i , 8i 2 [N ], 8j 2 Ni

Theorem [Olshevsky, Tsitsiklis 11] :

In the bidirectional Equal Neighbor model,

1� �
1

N3

 ⇢  1� �
2

N3

et TN(✏) = ⌦(N

3

log

�
N
✏

�
)

 [C, Nowak 13] Extension to the general constant case
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Time-varying influence

Two problematic issues with time-varying influence matrices:

1. time-varying Perron vectors

2. no progress during finite but unbounded periods

A(t) = · · · = A(t + ✓) = I

[Chazelle 11] : For each initial state x(0) 2 B ,

E (s) =

X

t�0

X

(i ,j)2Et

|xi (t)� xj(t)|s
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Time-varying influence with bidirectional graphs

Theorem [Chazelle 11] : The total energy of a N-agent
bidirectional system following the CH algorithm from an initial
state x(0) 2 B satisfies

E (s) 

8
<

:

↵�O(N) if s = 1

s1�N ↵�N2

+O(1) if 0 < s < 1

Corollary [Chazelle 11] : The number of ✏-nontrivial steps of
the CH algorithm from an initial state x(0) 2 B in a N-agent
bidirectional system satisfies

T ⇤
N(✏) 

1

N
↵1�N

and this bound is tight
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Time-varying influence with bidirectional graphs

Theorem [Chazelle 11] : The total energy of a N-agent
bidirectional system following the CH algorithm from an initial
state x(0) 2 B satisfies

E (s) 

8
<

:

↵�O(N) if s = 1

s1�N ↵�N2

+O(1) if 0 < s < 1

 An algorithmic proof for s = 1
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Part II : Influence Systems
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Influence Systems

I communication algorithm: each agent i determines its
outgoing neighbors ( = agents which inluence i)

x 2
�
Rd

�N �! N+

i (x)

I
�
N

+

i (x)
�
i=1...N

 G (x) = ([N],E (x)) (endogenous system)

I
any distributed algorithm with rules in the first order theory
of the reals

I
join agent i to any agent within ri

I
join agent i to six nearest neighbors
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Influence Systems

I communication algorithm:

x 2
�
Rd

�N �! G (x)

I action algorithm : each agent performs a local action
which depends only on the states of the outgoing
neighbors

fi : x 2
�
Rd

�N �! fi(x1, . . . , xj , . . . , xi , . . . , xk , . . . , xN)

où N+

i (x) = {j , i , k}

I
functions fi may be di↵erent ( 6= physics)

I
action algorithms are quite simple in general
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I action algorithm : each agent performs a local action
which depends only on the states of the outgoing
neighbors

fi : x 2
�
Rd

�N �! fi(x1, . . . , xj , . . . , xi , . . . , xk , . . . , xN)

où N+

i (x) = {j , i , k}
I

functions fi may be di↵erent ( 6= physics)

I
action algorithms are quite simple in general

 di↵usive systems : each fi is a linear convex combination of

the xk ’s
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Hegselmann-Krause Systems

“We are influenced mostly by our kind”

[French, de Groot, Lehrer, Wagner, Cohen, Friedkin, Johnsen,
Weisbuch, Dittmer, Hegselmann, Krause]

Formally,
j 2 N+

i (x) , |xi � xj |< r

 all communication graphs are bidirectional

Theorem [Blondel, Hendrickx, Tsitsiklis 09] : The HK
system converges in finite time.
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Flocking

I communication algorithm: the same as for HK

(i , j) 2 E (x) , |xi � xj |< r

I action : each bird harmonizes its velocity w.r.t. the
velocities of its neighbors

⇢
z(t + 1) = z(t) + v(t)

v(t + 1) = P(t) v(t)

[Vicsek, Cucker, Smale]

Theorem [Cucker, Smale 07], [Chazelle 09] : Conditions
under which birds asymptotically adopt the same velocity
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⇢
z(t + 1) = z(t) + v(t)

v(t + 1) = P(t) v(t)

 non di↵usive system

[Vicsek, Cucker, Smale]

Theorem [Cucker, Smale 07], [Chazelle 09] : Conditions
under which birds asymptotically adopt the same velocity
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Influence Systems

Examples :

1. the HK model

2. Flocking

3. Chemiotaxis, the Ising model, neural networks, population
dynamics, ...

Theorem [Chazelle 13] : Di↵usive systems are
asymptotically periodic almost surely
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Thanks !
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