# Natural Algorithms and Influence Systems 

Bernadette Charron-Bost<br>CNRS, Ecole polytechnique, France

March 7th 2014

The living world speaks the language of algorithms

The living world speaks the language of algorithms

Why the sky is blue ?
vs.
Why tomatoes are red?


## PDE

Natural algorithm

## PDE

## Natural algorithm

loops, conditionals, memory...

## PDE

## Natural algorithm

not human-designed

# Part I : consensus algorithms 

Part II : influence systems

## Consensus in a multiagent system

## Consensus in a multiagent system

- $N$ agents denoted by $1, \cdots, N$


## Consensus in a multiagent system

- $N$ agents denoted by $1, \cdots, N$
- A discrete global clock


## Consensus in a multiagent system

- $N$ agents denoted by $1, \cdots, N$
- A discrete global clock
- An infinite sequence of directed graphs: $G_{0}, G_{1}, \ldots, G_{t}, \ldots$

$$
G_{t}=\left([N], E_{t}\right)
$$

## Consensus in a multiagent system

- $N$ agents denoted by $1, \cdots, N$
- A discrete global clock
- An infinite sequence of directed graphs: $G_{0}, G_{1}, \ldots, G_{t}, \ldots$

$$
G_{t}=\left([N], E_{t}\right)
$$

- The state of the agent $i$ is captured by a variable $x_{i}$ whose value at time $t$ is denoted $x_{i}(t) \in \mathbb{R}^{d}$


## Consensus in a multiagent system

- $N$ agents denoted by $1, \cdots, N$
- A discrete global clock
- An infinite sequence of directed graphs: $G_{0}, G_{1}, \ldots, G_{t}, \ldots$

$$
G_{t}=\left([N], E_{t}\right)
$$

- The state of the agent $i$ is captured by a variable $x_{i}$ whose value at time $t$ is denoted $x_{i}(t) \in \mathbb{R}^{d=1}$


## Consensus in a multiagent system

- $N$ agents denoted by $1, \cdots, N$
- A discrete global clock
- An infinite sequence of directed graphs: $G_{0}, G_{1}, \ldots, G_{t}, \ldots$

$$
G_{t}=\left([N], E_{t}\right)
$$

- The state of the agent $i$ is captured by a variable $x_{i}$ whose value at time $t$ is denoted $x_{i}(t) \in \mathbb{R}^{d=1}$
- At time $t \geq 1$, each agent $i$ updates $x_{i}$ with a weighted average of of the values of its outgoing neighbors in the directed graph $G_{t}$.


## Consensus in a multiagent system (cont'd)

$$
x_{i}(t+1)=\sum_{j \in \text { Out } t_{i}\left(G_{t}\right)} A_{i j}(t) x_{j}(t)
$$

with $\sum_{j \in O u t_{i}\left(G_{t}\right)} A_{i j}(t)=1$ and $A_{i j}(t)>0$

## Consensus in a multiagent system (cont'd)

$$
x_{i}(t+1)=\sum_{j \in \text { Out }_{i}\left(G_{t}\right)} A_{i j}(t) x_{j}(t)
$$

with $\sum_{j \in O u t_{i}\left(G_{t}\right)} A_{i j}(t)=1$ and $A_{i j}(t) \geq \alpha>0$

## Consensus in a multiagent system (cont'd)

$$
x_{i}(t+1)=\sum_{j \in \text { Out } t_{i}\left(G_{t}\right)} A_{i j}(t) x_{j}(t)
$$

with $\sum_{j \in O u t_{i}\left(G_{t}\right)} A_{i j}(t)=1 \quad$ and $A_{i j}(t) \geq \alpha>0$

$$
x(t+1)=A(t) x(t)
$$

where $A$ is a stochastic matrix with entries in $\{0\} \cup[\alpha, 1]$

## Consensus in a multiagent system (cont'd)

$$
x(t+1)=A(t) x(t)
$$

where $A$ is a stochastic matrix with entries in $\{0\} \cup[\alpha, 1]$

$$
\begin{gathered}
\rightsquigarrow x_{i}(t+1) \in\left[(1-\alpha) m_{i}(t)+\alpha M_{i}(t), \alpha m_{i}(t)+(1-\alpha) M_{i}(t)\right] \\
\text { with }\left\{\begin{array}{l}
m_{i}(t)=\min \left\{x_{j}(t): j \in \operatorname{Out}_{i}\left(G_{t}\right)\right\} \\
M_{i}(t)=\max \left\{x_{j}(t): j \in \operatorname{Out}_{i}\left(G_{t}\right)\right\}
\end{array}\right.
\end{gathered}
$$

## Objectif :

Theorem: The CH algorithm achieves asymptotic consensus in a multi-agent system

## Objectif :

Theorem: The CH algorithm achieves asymptotic consensus in a multi-agent system

$$
\left\{\begin{array}{l}
x(t+1)=P(t) x(0) \\
P(t)=A(t) \ldots A(0)
\end{array}\right.
$$

## Objectif :

Theorem: The CH algorithm achieves asymptotic consensus in a multi-agent system

$$
\left\{\begin{array}{l}
x(t+1)=P(t) x(0) \\
P(t)=A(t) \ldots A(0)
\end{array}\right.
$$

Theorem : The sequence of (stochastic) matrices $(P(t))_{t \geq 0}$ converges to a rank one (stochastic) matrix

## Part l.a : Convergence and consensus

## Assumptions

A1: Every matrix $A(t)$ is stochastic
A2: For each agent $i$ and each time $t, A_{i}(t)>0$
A3: Non null entries of $A(t)$ are uniformly lower bounded by $\alpha>0$

$$
A_{i j}(t) \in\{0\} \cup[\alpha, 1]
$$

## Communication graphs

The graph associated to the matrix $A(t)$ is $G_{t}=\left([N], E_{t}\right)$ :

$$
A_{i j}(t)>0 \quad \text { iff }(i, j) \in E_{t}
$$

## Some results

- The Perron-Frobenius theorem
$\forall t \in \mathbb{N}, A(t)=A$ where $A$ is ergodic


## Some results

- The Perron-Frobenius theorem

$$
\forall t \in \mathbb{N}, A(t)=A \text { where } A \text { is ergodic }
$$

- The Wolfowitz theorem


## Some results

- The Perron-Frobenius theorem
- The Wolfowitz theorem

$$
\forall t \in \mathbb{N}, \quad A(t) \in \mathcal{M}
$$

where $\mathcal{M}$ is finite and each finite product of matrices from $\mathcal{M}$ is ergodic

## Some results

- The Perron-Frobenius theorem
- The Wolfowitz theorem
- Bounded intercommunication intervals [Tsitsiklis 84]

$$
\forall t \in \mathbb{N}, \quad A(t+\Phi) \cdots A(t)>0
$$

## Some results

- The Perron-Frobenius theorem
- The Wolfowitz theorem
- Bounded intercommunication intervals [Tsitsiklis 84]


## Some results

- The Perron-Frobenius theorem
- The Wolfowitz theorem
- Bounded intercommunication intervals [Tsitsiklis 84]
- The coordinated model [Cao, Spielman, Morse 05]

$$
\forall t \in \mathbb{N}, G_{t} \text { is oriented }
$$

i.e., there exists some node $j$ such that each node $i$ is connected to $j$ by a walk from $i$ to $j$.

## Some results

- The Perron-Frobenius theorem
- The Wolfowitz theorem
- Bounded intercommunication intervals [Tsitsiklis 84]
- The coordinated model [Cao, Spielman, Morse 05]
- The bidirectional model [Moreau 05]

1. $\forall t \in \mathbb{N}, G_{t}$ is bidirectional
2. $\forall s \in \mathbb{N}, \cup_{t \geq s} G_{t}$ is strongly connected

## Some results

- The Perron-Frobenius theorem
- The Wolfowitz theorem
- Bounded intercommunication intervals [Tsitsiklis 84]
- The coordinated model [Cao, Spielman, Morse 05]
- The bidirectional model [Moreau 05]
- The decentralized model [Touri, Nedič 11]

1. $\forall t \in \mathbb{N}, G_{t}$ is semi-simple
2. $\forall s \in \mathbb{N}, \cup_{t \geq s} G_{t}$ est fortement connexe

## Some results

- The Perron-Frobenius theorem
- The Wolfowitz theorem
- Bounded intercommunication intervals [Tsitsiklis 84]
- The coordinated model [Cao, Spielman, Morse 05]
- The bidirectional model [Moreau 05]
- The decentralized model [Touri, Nedic̀ 11]
$\rightsquigarrow$ What happens if condition 2 does not hold?


## Part I.b : Speed of convergence

## Speed of convergence

- Rate of convergence

$$
\rho=\sup _{x(0) \notin \mathbb{R} \mathbf{1} \wedge x(0) \in B}\left(\lim _{t \rightarrow \infty}\left(\left\|x(t)-x^{*}\right\|\right)^{1 / t}\right)
$$

## Speed of convergence

- Rate of convergence

$$
\rho=\sup _{x(0) \notin \mathbb{R} \mathbf{1} \wedge x(0) \in B}\left(\lim _{t \rightarrow \infty}\left(\left\|x(t)-x^{*}\right\|\right)^{1 / t}\right)
$$

- Convergence time

$$
T(\epsilon)=\inf \left\{\tau: \forall t \geq \tau, \forall x(o) \in B,\left\|x(t)-x^{*}\right\| \leq \epsilon\right\}
$$

## The reversible constant case

## The reversible constant case

In particular :

1. $G$ is bidirectional
2. $A_{i j}=1 / \delta_{i}, \forall i \in[N], \forall j \in N_{i}$

## The reversible constant case

In particular :

1. $G$ is bidirectional
2. $A_{i j}=1 / \delta_{i}, \forall i \in[N], \forall j \in N_{i}$

Theorem [Olshevsky, Tsitsiklis 11] :
In the bidirectional Equal Neighbor model,

$$
1-\frac{\gamma_{1}}{N^{3}} \leq \rho \leq 1-\frac{\gamma_{2}}{N^{3}} \text { et } T_{N}(\epsilon)=\Omega\left(N^{3} \log \left(\frac{N}{\epsilon}\right)\right)
$$

$\rightsquigarrow[C$, Nowak 13] Extension to the general constant case

## Time-varying influence

Two problematic issues with time-varying influence matrices:

1. time-varying Perron vectors

## Time-varying influence

Two problematic issues with time-varying influence matrices:

1. time-varying Perron vectors
2. no progress during finite but unbounded periods

$$
A(t)=\cdots=A(t+\theta)=I
$$

## Time-varying influence

Two problematic issues with time-varying influence matrices:

1. time-varying Perron vectors
2. no progress during finite but unbounded periods

$$
A(t)=\cdots=A(t+\theta)=I
$$

[Chazelle 11] : For each initial state $x(0) \in B$,

$$
E(s)=\sum_{t \geq 0} \sum_{(i, j) \in E_{t}}\left|x_{i}(t)-x_{j}(t)\right|^{s}
$$

## Time-varying influence with bidirectional graphs

Theorem [Chazelle 11] : The total energy of a $N$-agent bidirectional system following the CH algorithm from an initial state $x(0) \in B$ satisfies

$$
E(s) \leq \begin{cases}\alpha^{-O(N)} & \text { if } s=1 \\ s^{1-N} \alpha^{-N^{2}+O(1)} & \text { if } 0<s<1\end{cases}
$$

## Time-varying influence with bidirectional graphs

Theorem [Chazelle 11] : The total energy of a $N$-agent bidirectional system following the CH algorithm from an initial state $x(0) \in B$ satisfies

$$
E(s) \leq \begin{cases}\alpha^{-O(N)} & \text { if } s=1 \\ s^{1-N} \alpha^{-N^{2}+O(1)} & \text { if } 0<s<1\end{cases}
$$

Corollary [Chazelle 11] : The number of $\epsilon$-nontrivial steps of the CH algorithm from an initial state $x(0) \in B$ in a $N$-agent bidirectional system satisfies

$$
T_{N}^{*}(\epsilon) \leq \frac{1}{N} \alpha^{1-N}
$$

and this bound is tight

## Time-varying influence with bidirectional graphs

Theorem [Chazelle 11] : The total energy of a $N$-agent bidirectional system following the CH algorithm from an initial state $x(0) \in B$ satisfies

$$
E(s) \leq \begin{cases}\alpha^{-O(N)} & \text { if } s=1 \\ s^{1-N} \alpha^{-N^{2}+O(1)} & \text { if } 0<s<1\end{cases}
$$

## Time-varying influence with bidirectional graphs

Theorem [Chazelle 11] : The total energy of a $N$-agent bidirectional system following the CH algorithm from an initial state $x(0) \in B$ satisfies

$$
E(s) \leq \begin{cases}\alpha^{-O(N)} & \text { if } s=1 \\ s^{1-N} \alpha^{-N^{2}+O(1)} & \text { if } 0<s<1\end{cases}
$$

$\rightsquigarrow$ An algorithmic proof for $s=1$

## Part II : Influence Systems

## Influence Systems

- communication algorithm: each agent $i$ determines its outgoing neighbors ( $=$ agents which inluence $i$ )

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow N_{i}^{+}(x)
$$

## Influence Systems

- communication algorithm: each agent $i$ determines its outgoing neighbors ( $=$ agents which inluence $i$ )

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow N_{i}^{+}(x)
$$

- $\left(N_{i}^{+}(x)\right)_{i=1 \ldots N} \rightsquigarrow G(x)=([N], E(x))$ (endogenous system)


## Influence Systems

- communication algorithm: each agent $i$ determines its outgoing neighbors ( $=$ agents which inluence $i$ )

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow N_{i}^{+}(x)
$$

- $\left(N_{i}^{+}(x)\right)_{i=1 \ldots N} \rightsquigarrow G(x)=([N], E(x))$ (endogenous system)
- any distributed algorithm with rules in the first order theory of the reals


## Influence Systems

- communication algorithm: each agent $i$ determines its outgoing neighbors ( $=$ agents which inluence $i$ )

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow N_{i}^{+}(x)
$$

- $\left(N_{i}^{+}(x)\right)_{i=1 \ldots N} \rightsquigarrow G(x)=([N], E(x))$ (endogenous system)
- any distributed algorithm with rules in the first order theory of the reals
- join agent $i$ to any agent within $r_{i}$


## Influence Systems

- communication algorithm: each agent $i$ determines its outgoing neighbors ( $=$ agents which inluence $i$ )

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow N_{i}^{+}(x)
$$

- $\left(N_{i}^{+}(x)\right)_{i=1 \ldots N} \rightsquigarrow G(x)=([N], E(x))$ (endogenous system)
- any distributed algorithm with rules in the first order theory of the reals
- join agent $i$ to any agent within $r_{i}$
- join agent $i$ to six nearest neighbors

Influence Systems

- communication algorithm:

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow G(x)
$$

## Influence Systems

- communication algorithm:

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow G(x)
$$

- action algorithm : each agent performs a local action which depends only on the states of the outgoing neighbors

$$
\begin{aligned}
& f_{i}: x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow f_{i}\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{k}, \ldots, x_{N}\right) \\
& \text { où } N_{i}^{+}(x)=\{j, i, k\}
\end{aligned}
$$

## Influence Systems

- communication algorithm:

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow G(x)
$$

- action algorithm : each agent performs a local action which depends only on the states of the outgoing neighbors
$f_{i}: x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow f_{i}\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{k}, \ldots, x_{N}\right)$
où $N_{i}^{+}(x)=\{j, i, k\}$
- functions $f_{i}$ may be different ( $\neq$ physics)


## Influence Systems

- communication algorithm:

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow G(x)
$$

- action algorithm : each agent performs a local action which depends only on the states of the outgoing neighbors
$f_{i}: x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow f_{i}\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{k}, \ldots, x_{N}\right)$
où $N_{i}^{+}(x)=\{j, i, k\}$
- functions $f_{i}$ may be different ( $\neq$ physics)
- action algorithms are quite simple in general


## Influence Systems

- communication algorithm:

$$
x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow G(x)
$$

- action algorithm : each agent performs a local action which depends only on the states of the outgoing neighbors
$f_{i}: x \in\left(\mathbb{R}^{d}\right)^{N} \longrightarrow f_{i}\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{k}, \ldots, x_{N}\right)$
où $N_{i}^{+}(x)=\{j, i, k\}$
- functions $f_{i}$ may be different ( $\neq$ physics)
- action algorithms are quite simple in general
$\rightsquigarrow$ diffusive systems: each $f_{i}$ is a linear convex combination of the $x_{k}$ 's


## Hegselmann-Krause Systems

"We are influenced mostly by our kind"
[French, de Groot, Lehrer, Wagner, Cohen, Friedkin, Johnsen, Weisbuch, Dittmer, Hegselmann, Krause]

## Hegselmann-Krause Systems

"We are influenced mostly by our kind"
[French, de Groot, Lehrer, Wagner, Cohen, Friedkin, Johnsen, Weisbuch, Dittmer, Hegselmann, Krause]

Formally,

$$
j \in N_{i}^{+}(x) \Leftrightarrow\left|x_{i}-x_{j}\right|<r
$$

## Hegselmann-Krause Systems

"We are influenced mostly by our kind"
[French, de Groot, Lehrer, Wagner, Cohen, Friedkin, Johnsen, Weisbuch, Dittmer, Hegselmann, Krause]

Formally,

$$
j \in N_{i}^{+}(x) \Leftrightarrow\left|x_{i}-x_{j}\right|<r
$$

$\rightsquigarrow$ all communication graphs are bidirectional

## Hegselmann-Krause Systems

"We are influenced mostly by our kind"
[French, de Groot, Lehrer, Wagner, Cohen, Friedkin, Johnsen, Weisbuch, Dittmer, Hegselmann, Krause]

Formally,

$$
j \in N_{i}^{+}(x) \Leftrightarrow\left|x_{i}-x_{j}\right|<r
$$

$\rightsquigarrow$ all communication graphs are bidirectional
Theorem [Blondel, Hendrickx, Tsitsiklis 09] : The HK system converges in finite time.

Flocking

## Flocking

- communication algorithm: the same as for HK

$$
(i, j) \in E(x) \Leftrightarrow\left|x_{i}-x_{j}\right|<r
$$

## Flocking

- communication algorithm: the same as for HK

$$
(i, j) \in E(x) \Leftrightarrow\left|x_{i}-x_{j}\right|<r
$$

- action : each bird harmonizes its velocity w.r.t. the velocities of its neighbors


## Flocking

- communication algorithm: the same as for HK

$$
(i, j) \in E(x) \Leftrightarrow\left|x_{i}-x_{j}\right|<r
$$

- action : each bird harmonizes its velocity w.r.t. the velocities of its neighbors

$$
\left\{\begin{array}{l}
z(t+1)=z(t)+v(t) \\
v(t+1)=P(t) v(t)
\end{array}\right.
$$

## Flocking

- communication algorithm: the same as for HK

$$
(i, j) \in E(x) \Leftrightarrow\left|x_{i}-x_{j}\right|<r
$$

- action : each bird harmonizes its velocity w.r.t. the velocities of its neighbors

$$
\left\{\begin{array}{l}
z(t+1)=z(t)+v(t) \\
v(t+1)=P(t) v(t)
\end{array}\right.
$$

$\rightsquigarrow$ non diffusive system

## Flocking

- communication algorithm: the same as for HK

$$
(i, j) \in E(x) \Leftrightarrow\left|x_{i}-x_{j}\right|<r
$$

- action : each bird harmonizes its velocity w.r.t. the velocities of its neighbors

$$
\left\{\begin{array}{l}
z(t+1)=z(t)+v(t) \\
v(t+1)=P(t) v(t)
\end{array}\right.
$$

[Vicsek, Cucker, Smale]

## Flocking

- communication algorithm: the same as for HK

$$
(i, j) \in E(x) \Leftrightarrow\left|x_{i}-x_{j}\right|<r
$$

- action : each bird harmonizes its velocity w.r.t. the velocities of its neighbors

$$
\left\{\begin{aligned}
z(t+1) & =z(t)+v(t) \\
v(t+1) & =P(t) v(t)
\end{aligned}\right.
$$

[Vicsek, Cucker, Smale]
Theorem [Cucker, Smale 07], [Chazelle 09] : Conditions under which birds asymptotically adopt the same velocity

## Influence Systems

## Examples:

1. the HK model
2. Flocking
3. Chemiotaxis, the Ising model, neural networks, population dynamics, ...

## Influence Systems

## Examples:

1. the HK model
2. Flocking
3. Chemiotaxis, the Ising model, neural networks, population dynamics, ...

Theorem [Chazelle 13]: Diffusive systems are asymptotically periodic almost surely

## Thanks!

