Isomorphisms in the presence of sum and function types

Axioms and decidability

Danko ILIK

Parsifal, Inria

February 7, 2014
Deducteam Seminar, Paris

Types in the language $\{\top, \times,+, \rightarrow\}$

Language of polynomials with exponentiation

$$
\mathcal{E} \ni f, g::=1\left|x_{i}\right| f+g|f g| g^{f},
$$

$$
\begin{aligned}
\llbracket 1 \rrbracket & =\top \\
\llbracket x_{i} \rrbracket & =\mathbf{x}_{\mathbf{i}} \\
\llbracket g^{f} \rrbracket & =\llbracket f \rrbracket \rightarrow \llbracket g \rrbracket \\
\llbracket f g \rrbracket & =\llbracket f \rrbracket \times \llbracket g \rrbracket \\
\llbracket f+g \rrbracket & =\llbracket f \rrbracket+\llbracket g \rrbracket
\end{aligned}
$$

Write " $\tau \in \mathcal{E}$ " when $\llbracket f \rrbracket=\tau$ for some $f \in \mathcal{E}$

Isomorphisms of types (Constructive cardinality of sets)

Definition ($\tau \cong \sigma$)

Types τ and σ are isomorphic when there exist

$$
\phi: \tau \rightarrow \sigma, \quad \psi: \sigma \rightarrow \tau
$$

such that

$$
\phi \circ \psi=\mathrm{id}_{\sigma}, \quad \psi \circ \phi=\mathrm{id}_{\tau} .
$$

In typed lambda calculus, one would work with $\beta \eta$-equality,

$$
\lambda x \cdot \phi(\psi x)={ }_{\beta \eta} \lambda x \cdot x, \quad \lambda y \cdot \psi(\phi y)={ }_{\beta \eta} \lambda y \cdot y .
$$

Type isomorphisms for \mathcal{E}

Questions

1. Completeness: Can we always, given $\llbracket f \rrbracket \cong \llbracket g \rrbracket$, show that a finite number of rewrite equations suffice to derive it? - i.e. is there a set of axioms for \cong over \mathcal{E} ?
2. Decidability: Can we always, given f and g, effectively decide whether $\llbracket f \rrbracket \cong \llbracket g \rrbracket$ or not?

Type isomorphisms for $\mathcal{E} \backslash\{+\}$ and $\mathcal{E} \backslash\{\rightarrow\}$

Finitely axiomatizable and decidable (Soloviev 1981)

Take the corresponding fragment of High School Identities (HSI):

$$
\begin{aligned}
f & \doteq f \\
f+g & \doteq g+f \\
(f+g)+h & \doteq f+(g+h) \\
f g & \doteq g f \\
(f g) h & \doteq f(g h) \\
f(g+h) & \doteq f g+f h \\
1 f & \doteq f \\
f^{1} & \doteq f \\
1^{f} & \doteq 1 \\
f^{g+h} & \doteq f^{g} f^{h} \\
(f g)^{h} & \doteq f^{h} g^{h} \\
\left(f^{g}\right)^{h} & \doteq f^{g h}
\end{aligned}
$$

Type isomorphisms for \mathcal{E}

Connection to Tarski's HSI Problem

In simultaneous presence of + and \rightarrow, we do have

$$
\mathrm{HSI} \vdash f \doteq g \Rightarrow \llbracket f \rrbracket \cong \llbracket g \rrbracket \Rightarrow \mathbb{N}^{+} \vDash f \equiv g,
$$

but

$$
\mathbb{N}^{+} \vDash f \equiv g \nRightarrow \mathrm{HSI} \vdash f \doteq g
$$

and

$$
\llbracket f \rrbracket \cong \llbracket g \rrbracket \nRightarrow \quad \mathrm{HSI} \vdash f \doteq g .
$$

Type isomorphisms for \mathcal{E}

Martin-Wilkie-Gurevič negative solution of the HSI Problem

Take

$$
\left(A^{x}+B^{x}\right)^{y}\left(C^{y}+D^{y}\right)^{x} \equiv\left(A^{y}+B^{y}\right)^{x}\left(C^{x}+D^{x}\right)^{y},
$$

where $A=1+x, B=1+x+x^{2}, C=1+x^{3}, D=1+x^{2}+x^{4}$.
The equation holds both in \mathbb{N}^{+}and as a type isomorphism, but it is not derivable from the HSI axioms.

Type isomorphisms for \mathcal{E}

Martin-Wilkie-Gurevič negative solution of the HSI Problem

In fact,

$$
\left(A^{2^{x}}+B_{n}^{2^{x}}\right)^{x}\left(C_{n}^{x}+D_{n}^{x}\right)^{2^{x}} \equiv\left(A^{x}+B_{n}^{x}\right)^{2^{x}}\left(C_{n}^{2^{x}}+D_{n}^{2^{x}}\right)^{x},
$$

where $A=x+1, B_{n}=1+x+x^{2}+\cdots+x^{n-1}, C_{n}=1+x^{n}, D_{n}=$ $1+x^{2}+x^{4}+\cdots+x^{2(n-1)}$, has the same fate, for any odd $n>3$.

This means that type isomorphism over \mathcal{E} is not finitely axiomatizable.

Type isomorphisms for \mathcal{E}
 What about decidability?

What about decidability?

Theorem (Richardson 1969, Macintyre 1981)
One can effectively decide $\mathbb{N}^{+} \vDash f \equiv g$ for any $f, g \in \mathcal{E}$.

Unfortunately, although

$$
\mathrm{HSI} \vdash f \doteq g \Rightarrow \llbracket f \rrbracket \cong \llbracket g \rrbracket \Rightarrow \mathbb{N}^{+} \vDash f \equiv g
$$

a proof of

$$
\llbracket f \rrbracket \cong \llbracket g \rrbracket \Leftarrow \mathbb{N}^{+} \vDash f \equiv g
$$

is not known, and HSI is not complete:

$$
\mathrm{HSI} \vdash f \doteq g \nLeftarrow \mathbb{N}^{+} \vDash f \equiv g
$$

Type isomorphisms for the subclass $\mathcal{L} \subsetneq \mathcal{E}$

Levitz 1975, Henson-Rubel 1984

Recall

$$
\mathcal{E} \ni f, g::=1\left|x_{i}\right| f+g|f g| g^{f} .
$$

Definition (The subclass \mathcal{L})

$$
\mathcal{L} \ni f, g::=1\left|x_{i}\right| f+g|f g| I^{f},
$$

where $I \in \Lambda$ is defined by

$$
\wedge \ni f, g::=1\left|x_{i}\right| f+g|f g| I_{0}^{f},
$$

and $I_{0} \in \Lambda$ has no variables.

Type isomorphisms for the subclass $\mathcal{L} \subsetneq \mathcal{E}$

Theorem (Henson-Rubel 1984)
For all $f, g \in \mathcal{L}$,

$$
\mathbb{N}^{+} \vDash f \equiv g \Rightarrow H S I \vdash f \doteq g .
$$

Corollary
Type isomorphisms for \mathcal{L} is decidable and finitely axiomatizable.
Proof.
$\mathrm{HSI} \vdash f \doteq g \Rightarrow \llbracket f \rrbracket \cong \llbracket g \rrbracket \Rightarrow \mathbb{N}^{+} \vDash f \equiv g \Rightarrow \mathrm{HSI} \vdash f \doteq g$

Types of the subclass $\mathcal{L} \subsetneq \mathcal{E}$

Martin-Wilkie's identity $\notin \mathcal{L}$

Example
Consider the identity

$$
\left(A^{x}+B^{x}\right)^{y}\left(C^{y}+D^{y}\right)^{x} \equiv\left(A^{y}+B^{y}\right)^{x}\left(C^{x}+D^{x}\right)^{y}
$$

where $A=1+x, B=1+x+x^{2}, C=1+x^{3}, D=1+x^{2}+x^{4}$.
We have $\left(A^{x}+B^{x}\right)^{y},\left(C^{x}+D^{x}\right)^{y} \notin \mathcal{L}$, because bases of exponentiation are not allowed to contain bases of exponentiation that contain variables

Types of the subclass $\mathcal{L} \subsetneq \mathcal{E}$

Identities $\in \mathcal{L}$ whose HSI-rewrite $\notin \mathcal{L}$

Example

The typed versions of the induction axiom for a decidable predicate,

$$
(y+z)^{x(y+z)(y+z)^{\times(y+z)}} \in \mathcal{L},
$$

but its curried form,

$$
\left(\left((y+z)^{x}\right)^{\left((y+z)^{y+z}\right)^{x}}\right)^{y+z} \notin \mathcal{L}
$$

although the two terms are inter-derivable using the HSI axioms.

Types of the subclass $\mathcal{L} \subsetneq \mathcal{E}$

```
Identities }\in\mathcal{L}\mathrm{ whose HSI-rewrite }\not\in\mathcal{L
```


Example

The typed versions of the induction axiom for a decidable predicate,

$$
(y+z)^{x(y+z)(y+z)^{x(y+z)}} \in \mathcal{L},
$$

but its curried form,

$$
\left(\left((y+z)^{x}\right)^{\left((y+z)^{y+z}\right)^{x}}\right)^{y+z} \notin \mathcal{L}
$$

although the two terms are inter-derivable using the HSI axioms.
This means that one could in principle further extend \mathcal{L}.

Wilkie's positive solution of the HSI Problem

For the whole of \mathcal{E}, the axioms of HSI are almost complete.

Wilkie's positive solution of the HSI Problem

For the whole of \mathcal{E}, the axioms of HSI are almost complete. Define

$$
\mathcal{E}^{*} \ni f, g::=t_{z}|1| x_{i}\left|g^{f}\right| f g \mid f+g,
$$

where z is a positive polynomial with integer monomial coefficients and t_{z} are new constant symbols indexed by such polynomials.

Wilkie's positive solution of the HSI Problem

For the whole of \mathcal{E}, the axioms of HSI are almost complete. Define

$$
\mathcal{E}^{*} \ni f, g::=t_{z}|1| x_{i}\left|g^{f}\right| f g \mid f+g,
$$

where z is a positive polynomial with integer monomial coefficients and t_{z} are new constant symbols indexed by such polynomials.
Define HSI* by extending HSI with

$$
\begin{aligned}
t_{1} & \doteq 1 \\
t_{x_{i}} & \doteq x_{i} \\
t_{z u} & \doteq t_{z} t_{u} \\
t_{z+u} & \doteq t_{z}+t_{u} \\
t_{z} & \doteq t_{u}
\end{aligned}
$$

$$
\text { (when } \mathbb{N}^{+} \vDash z \equiv u \text {) }
$$

Type isomorphism for \mathcal{E} is recursively axiomatizable

Theorem (Wilkie 1981)
For all $f, g \in \mathcal{E}$ (i.e. all f, g of \mathcal{E}^{*} that do not contain t_{z}-symbols), we have that $\mathbb{N}^{+} \vDash f \equiv g$ implies HSI* $\vdash f \doteq g$.

Corollary
Type isomorphism for \mathcal{E} is axiomatizable by the primitively recursive set HSI*.

Type isomorphism for \mathcal{E} is decidable?

We have

$$
\mathrm{HSI} \vdash f \doteq g \Rightarrow \llbracket f \rrbracket \cong \llbracket g \rrbracket \Rightarrow \mathbb{N}^{+} \vDash f \equiv g \Rightarrow \mathrm{HSI} \stackrel{\rightharpoonup}{ } \vdash f \doteq g,
$$

but to close the circle we need

$$
\mathrm{HSI}^{*} \vdash f \doteq g \Rightarrow \llbracket f \rrbracket \cong \llbracket g \rrbracket .
$$

Question:

$$
\llbracket t_{z} \rrbracket=?
$$

Soundness of HSI* as type isomorphisms

We do not need negative types. Use the fact that z - even if has negative coefficients - is point-wise positive:

$$
\forall x_{1}, \ldots, x_{n} \in \mathbb{N}^{+} . z\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{+}
$$

So, define the interpretation of types point-wise:

$$
\begin{aligned}
\llbracket 1 \rrbracket_{\rho} & =\mathbf{1} \\
\llbracket x_{i} \rrbracket_{\rho} & =\rho\left(x_{i}\right) \\
\llbracket g^{f} \rrbracket_{\rho} & =\llbracket f \rrbracket_{\rho} \rightarrow \llbracket g \rrbracket_{\rho} \\
\llbracket f g \rrbracket_{\rho} & =\llbracket f \rrbracket_{\rho} \times \llbracket g \rrbracket_{\rho} \\
\llbracket f+g \rrbracket_{\rho} & =\llbracket f \rrbracket_{\rho}+\llbracket g \rrbracket_{\rho} \\
\llbracket t_{z} \rrbracket_{\rho} & =\underbrace{1+1+\cdots+1}_{k \text {-times }}=\mathbf{k} \quad \text { where } k=\operatorname{eval}\left(t_{z}, \rho\right)
\end{aligned}
$$

Soundness of HSI* as type isomorphisms

Theorem
Let $f, g \in \mathcal{E}^{*}$. If $H S I^{*} \vdash f \doteq g$ then $\llbracket f \rrbracket_{\rho} \cong \llbracket g \rrbracket_{\rho}$ for any ρ that interprets variables by types of form \mathbf{k}.

Corollary
Given two types $f, g \in \mathcal{E}$, one can decide whether $\llbracket f \rrbracket_{\rho} \cong \llbracket g \rrbracket \rrbracket_{\rho}$ or not, and this holds at least when ρ interprets variable by types of form \mathbf{k}.

Beyond decidability for base types of form \mathbf{k}

Consider base types given in Cantor normal form (CNF),

$$
\omega^{\alpha_{1}} n_{1}+\cdots+\omega^{\alpha_{k}} n_{k},
$$

where α_{i} are in CNF and $\alpha_{1}>\cdots>\alpha_{k}$.

Beyond decidability for base types of form \mathbf{k}

Consider base types given in Cantor normal form (CNF),

$$
\omega^{\alpha_{1}} n_{1}+\cdots+\omega^{\alpha_{k}} n_{k},
$$

where α_{i} are in CNF and $\alpha_{1}>\cdots>\alpha_{k}$.
Since we could rewrite z as $p_{1}-p_{2}$, where $p_{1}>p_{2}$ and p_{1}, p_{2} only have positive coefficients, the interpretation

$$
\llbracket t_{z} \rrbracket=\llbracket t_{p_{1}-p_{2}} \rrbracket=\llbracket t_{p_{1}} \rrbracket \dot{-} \llbracket t_{p_{2}} \rrbracket
$$

is in CNF because subtraction $(\dot{-}$) between two CNFs is well defined when $\llbracket t_{p_{1}} \rrbracket>\llbracket t_{p_{2}} \rrbracket$.

