Isomorphisms in the presence of sum and function types Axioms and decidability

Danko ILIK

Parsifal, Inria

February 7, 2014 Deducteam Seminar, Paris

Types in the language $\{\top, \times, +, \rightarrow\}$

Language of *polynomials* with exponentiation

$$\mathcal{E} \ni f, g ::= 1 \mid x_i \mid f + g \mid fg \mid g^f,$$
$$\llbracket 1 \rrbracket = \top$$
$$\llbracket x_i \rrbracket = \mathbf{x_i}$$
$$\llbracket g^f \rrbracket = \llbracket f \rrbracket \to \llbracket g \rrbracket$$
$$\llbracket fg \rrbracket = \llbracket f \rrbracket \times \llbracket g \rrbracket$$
$$\llbracket f + g \rrbracket = \llbracket f \rrbracket + \llbracket g \rrbracket$$

Write " $\tau \in \mathcal{E}$ " when $\llbracket f \rrbracket = \tau$ for some $f \in \mathcal{E}$

Isomorphisms of types (Constructive cardinality of sets)

Definition $(\tau \cong \sigma)$

Types τ and σ are isomorphic when there exist

$$\phi: \tau \to \sigma, \quad \psi: \sigma \to \tau$$

such that

$$\phi \circ \psi = \mathsf{id}_{\sigma}, \quad \psi \circ \phi = \mathsf{id}_{\tau}.$$

In typed lambda calculus, one would work with $\beta\eta$ -equality,

$$\lambda x.\phi(\psi x) =_{\beta\eta} \lambda x.x, \quad \lambda y.\psi(\phi y) =_{\beta\eta} \lambda y.y.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Type isomorphisms for ${\cal E}$ $_{\rm Questions}$

- Completeness: Can we always, given [[f]] ≅ [[g]], show that a finite number of rewrite equations suffice to derive it? i.e. is there a set of axioms for ≅ over *E*?
- Decidability: Can we always, given f and g, effectively decide whether [[f]] ≃ [[g]] or not?

Type isomorphisms for $\mathcal{E} \setminus \{+\}$ and $\mathcal{E} \setminus \{\rightarrow\}$ Finitely axiomatizable and decidable (Soloviev 1981)

Take the corresponding fragment of *High School Identities* (HSI):

$$f \doteq f$$

$$f + g \doteq g + f$$

$$(f + g) + h \doteq f + (g + h)$$

$$fg \doteq gf$$

$$(fg)h \doteq f(gh)$$

$$f(g + h) \doteq fg + fh$$

$$1f \doteq f$$

$$f^{1} \doteq f$$

$$1^{f} \doteq 1$$

$$f^{g+h} \doteq f^{g}f^{h}$$

$$(fg)^{h} \doteq f^{h}g^{h}$$

$$(f^{g})^{h} \doteq f^{gh}$$

Type isomorphisms for ${\mathcal E}$ Connection to Tarski's HSI Problem

In simultaneous presence of + and \rightarrow , we do have

$$\mathsf{HSI} \vdash f \doteq g \; \Rightarrow \; \llbracket f \rrbracket \cong \llbracket g \rrbracket \; \Rightarrow \; \mathbb{N}^+ \vDash f \equiv g,$$

but

$$\mathbb{N}^+ \vDash f \equiv g \; \not\Rightarrow \; \mathsf{HSI} \vdash f \doteq g$$

and

$$\llbracket f \rrbracket \cong \llbracket g \rrbracket \not\Rightarrow \mathsf{HSI} \vdash f \doteq g.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Type isomorphisms for $\mathcal E$

Martin-Wilkie-Gurevič negative solution of the HSI Problem

Take

$$(A^{x} + B^{x})^{y}(C^{y} + D^{y})^{x} \equiv (A^{y} + B^{y})^{x}(C^{x} + D^{x})^{y},$$

where A = 1 + x, $B = 1 + x + x^2$, $C = 1 + x^3$, $D = 1 + x^2 + x^4$.

The equation holds both in \mathbb{N}^+ and as a type isomorphism, but it is **not derivable** from the HSI axioms.

Type isomorphisms for ${\mathcal E}$

Martin-Wilkie-Gurevič negative solution of the HSI Problem

In fact,

$$(A^{2^{\times}} + B_n^{2^{\times}})^{\times} (C_n^{\times} + D_n^{\times})^{2^{\times}} \equiv (A^{\times} + B_n^{\times})^{2^{\times}} (C_n^{2^{\times}} + D_n^{2^{\times}})^{\times},$$

where A = x + 1, $B_n = 1 + x + x^2 + \dots + x^{n-1}$, $C_n = 1 + x^n$, $D_n = 1 + x^2 + x^4 + \dots + x^{2(n-1)}$, has the same fate, for any odd n > 3.

This means that type isomorphism over \mathcal{E} is **not finitely axiomatizable**.

Type isomorphisms for \mathcal{E} What about decidability?

What about decidability?

Theorem (Richardson 1969, Macintyre 1981) One can effectively decide $\mathbb{N}^+ \vDash f \equiv g$ for any $f, g \in \mathcal{E}$.

Unfortunately, although

$$\mathsf{HSI} \vdash f \doteq g \; \Rightarrow \; \llbracket f \rrbracket \cong \llbracket g \rrbracket \; \Rightarrow \; \mathbb{N}^+ \vDash f \equiv g,$$

a proof of

$$\llbracket f \rrbracket \cong \llbracket g \rrbracket \iff \mathbb{N}^+ \vDash f \equiv g$$

is not known, and HSI is not complete:

$$\mathsf{HSI} \vdash f \doteq g \notin \mathbb{N}^+ \vDash f \equiv g.$$

Type isomorphisms for the subclass $\mathcal{L} \subsetneq \mathcal{E}$ Levitz 1975, Henson-Rubel 1984

Recall

$$\mathcal{E} \ni f, g ::= 1 \mid x_i \mid f + g \mid fg \mid g^f.$$

Definition (The subclass \mathcal{L})

$$\mathcal{L} \ni f, g ::= 1 \mid x_i \mid f + g \mid fg \mid l^f,$$

where $I \in \Lambda$ is defined by

$$\Lambda \ni f, g ::= 1 \mid x_i \mid f + g \mid fg \mid l_0^f,$$

and $I_0 \in \Lambda$ has no variables.

Type isomorphisms for the subclass $\mathcal{L} \subsetneq \mathcal{E}$

Theorem (Henson-Rubel 1984) For all $f, g \in \mathcal{L}$,

$$\mathbb{N}^+ \vDash f \equiv g \; \Rightarrow \; HSI \vdash f \doteq g.$$

Corollary

Type isomorphisms for \mathcal{L} is decidable and finitely axiomatizable. Proof.

$$\mathsf{HSI} \vdash f \doteq g \; \Rightarrow \; \llbracket f \rrbracket \cong \llbracket g \rrbracket \; \Rightarrow \; \mathbb{N}^+ \vDash f \equiv g \; \Rightarrow \; \mathsf{HSI} \vdash f \doteq g$$

Types of the subclass $\mathcal{L} \subsetneq \mathcal{E}$

Martin-Wilkie's identity $\notin \mathcal{L}$

Example

Consider the identity

$$(A^{x} + B^{x})^{y}(C^{y} + D^{y})^{x} \equiv (A^{y} + B^{y})^{x}(C^{x} + D^{x})^{y},$$

where A = 1 + x, $B = 1 + x + x^2$, $C = 1 + x^3$, $D = 1 + x^2 + x^4$.

We have $(A^x + B^x)^y$, $(C^x + D^x)^y \notin \mathcal{L}$, because bases of exponentiation are not allowed to contain bases of exponentiation that contain variables

Types of the subclass $\mathcal{L} \subsetneq \mathcal{E}$ Identities $\in \mathcal{L}$ whose HSI-rewrite $\notin \mathcal{L}$

Example

The typed versions of the induction axiom for a decidable predicate,

$$(y+z)^{x(y+z)(y+z)^{x(y+z)}} \in \mathcal{L},$$

but its curried form,

$$\left(((y+z)^x)^{((y+z)^{y+z})^x}\right)^{y+z}\notin\mathcal{L}$$

although the two terms are inter-derivable using the HSI axioms.

Types of the subclass $\mathcal{L} \subsetneq \mathcal{E}$ Identities $\in \mathcal{L}$ whose HSI-rewrite $\notin \mathcal{L}$

Example

The typed versions of the induction axiom for a decidable predicate,

$$(y+z)^{x(y+z)(y+z)^{x(y+z)}} \in \mathcal{L},$$

but its curried form,

$$\left(((y+z)^{x})^{((y+z)^{y+z})^{x}}\right)^{y+z}\notin\mathcal{L}$$

although the two terms are inter-derivable using the HSI axioms.

This means that one could in principle further extend \mathcal{L} .

Wilkie's positive solution of the HSI Problem

For the whole of \mathcal{E} , the axioms of HSI are *almost* complete.

Wilkie's positive solution of the HSI Problem

For the whole of ${\mathcal E},$ the axioms of HSI are almost complete. Define

$$\mathcal{E}^* \ni f, g ::= t_z \mid 1 \mid x_i \mid g^f \mid fg \mid f+g,$$

where z is a positive polynomial with integer monomial coefficients and t_z are new constant symbols indexed by such polynomials.

Wilkie's positive solution of the HSI Problem

For the whole of \mathcal{E} , the axioms of HSI are *almost* complete. Define

$$\mathcal{E}^* \ni f, g ::= t_z \mid 1 \mid x_i \mid g^f \mid fg \mid f + g,$$

where z is a positive polynomial with integer monomial coefficients and t_z are new constant symbols indexed by such polynomials. Define HSI* by extending HSI with

$$t_{1} \doteq 1$$

$$t_{x_{i}} \doteq x_{i}$$

$$t_{zu} \doteq t_{z}t_{u}$$

$$t_{z+u} \doteq t_{z} + t_{u}$$

$$t_{z} \doteq t_{u}$$
 (when $\mathbb{N}^{+} \vDash z \equiv u$)

Theorem (Wilkie 1981)

For all $f, g \in \mathcal{E}$ (i.e. all f, g of \mathcal{E}^* that do **not** contain t_z -symbols), we have that $\mathbb{N}^+ \vDash f \equiv g$ implies $HSI^* \vdash f \doteq g$.

Corollary

Type isomorphism for \mathcal{E} is axiomatizable by the primitively recursive set HSI*.

We have

$$\mathsf{HSI} \vdash f \doteq g \; \Rightarrow \; \llbracket f \rrbracket \cong \llbracket g \rrbracket \; \Rightarrow \; \mathbb{N}^+ \vDash f \equiv g \; \Rightarrow \; \mathsf{HSI}^* \vdash f \doteq g,$$

but to close the circle we need

$$\mathsf{HSI}^* \vdash f \doteq g \; \Rightarrow \; \llbracket f \rrbracket \cong \llbracket g \rrbracket.$$

Question:

$$\llbracket t_z \rrbracket = ?$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Soundness of HSI* as type isomorphisms

We do not need negative types. Use the fact that z — even if has negative coefficients — is point-wise positive:

$$\forall x_1,\ldots,x_n \in \mathbb{N}^+$$
. $z(x_1,\ldots,x_n) \in \mathbb{N}^+$.

So, define the interpretation of types point-wise:

$$\begin{bmatrix} 1 \end{bmatrix}_{\rho} = \mathbf{1}$$

$$\begin{bmatrix} x_i \end{bmatrix}_{\rho} = \rho(x_i)$$

$$\begin{bmatrix} g^f \end{bmatrix}_{\rho} = \llbracket f \rrbracket_{\rho} \to \llbracket g \rrbracket_{\rho}$$

$$\begin{bmatrix} fg \rrbracket_{\rho} = \llbracket f \rrbracket_{\rho} \times \llbracket g \rrbracket_{\rho}$$

$$\llbracket f + g \rrbracket_{\rho} = \llbracket f \rrbracket_{\rho} + \llbracket g \rrbracket_{\rho}$$

$$\llbracket t_z \rrbracket_{\rho} = \underbrace{1 + 1 + \dots + 1}_{k-\text{times}} = \mathbf{k} \quad \text{where } k = \text{eval}(t_z, \rho)$$

Theorem

Let $f, g \in \mathcal{E}^*$. If $HSI^* \vdash f \doteq g$ then $\llbracket f \rrbracket_{\rho} \cong \llbracket g \rrbracket_{\rho}$ for any ρ that interprets variables by types of form **k**.

Corollary

Given two types $f, g \in \mathcal{E}$, one can decide whether $\llbracket f \rrbracket_{\rho} \cong \llbracket g \rrbracket_{\rho}$ or not, and this holds at least when ρ interprets variable by types of form **k**.

Beyond decidability for base types of form k

Consider base types given in Cantor normal form (CNF),

$$\omega^{\alpha_1}n_1+\cdots+\omega^{\alpha_k}n_k,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where α_i are in CNF and $\alpha_1 > \cdots > \alpha_k$.

Beyond decidability for base types of form ${\bf k}$

Consider base types given in Cantor normal form (CNF),

$$\omega^{\alpha_1}n_1+\cdots+\omega^{\alpha_k}n_k,$$

where α_i are in CNF and $\alpha_1 > \cdots > \alpha_k$.

Since we could rewrite z as $p_1 - p_2$, where $p_1 > p_2$ and p_1, p_2 only have positive coefficients, the interpretation

$$\llbracket t_{z} \rrbracket = \llbracket t_{p_{1}-p_{2}} \rrbracket = \llbracket t_{p_{1}} \rrbracket \dot{-} \llbracket t_{p_{2}} \rrbracket$$

is in CNF because subtraction $(\dot{-})$ between two CNFs is well defined when $[\![t_{p_1}]\!] > [\![t_{p_2}]\!]$.