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Plain Rewriting

Inv (x + y)−1 → y−1 + x−1

Z x + 0 → x
A (x + y) + z → x + (y + z)

Plain rewriting uses plain pattern matching



Rewriting Modulo

(x + y)−1 → y−1 + x−1

0 + x → x

(x + y) + z = x + (y + z)
x + y = y + x

Rewriting modulo:

(1 + 2)−1 + 0→ (2−1 + 1−1) + 0→
1−1 + 2−1

Rewriting modulo uses pattern matching
modulo equations



Normal Rewriting

(x + y)−1 → y−1 + x−1

0 + x ↪→ x

(x + y) + z = x + (y + z)
x + y = y + x

Normal rewriting:

(1 + 2)−1 + 0 ↪→ (2 + 1)−1 →
2−1 + 1−1

Uses normalization wrt simplifiers first and then
pattern matching rules modulo all equations



Rewriting in λ-calculus

[Barendregt and Klop]:

ω 1 = (λx .(x x) λs.λz.(s z))
−→ (λs.λz.(s z) λs.λz.(s z))
−→ λz.(λs.λz.(s z) z)
−→ λz.λz.(z z) −wrong

(≥1)∗←→
α

λz.(λs′.λz ′.(s′ z ′) z)
1−→
β

λz.λz ′.(z z ′)

β-reduction rewrites modulo α-conversion
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Rewriting with recursors in Coq

rec(0,u, f ) → u
rec(s(y),u, f ) → @(f , y , rec(y ,u, f ))

@(λz.u, v) → u{z 7→ v}
rewrite:

rec(s(0),1, λxy .+ (x , y))→
@(λxy .+ (x , y),0, rec(0,1, λxy .+ (x , y)))→
@(λxy .+ (x , y),0,1)→ +(0,1)→ 1

Uses plain pattern matching wrt constructors
0,S, and pattern matching modulo α for binders



Higher-order rewriting [Nipkow]

rules (differentiation):

diff (λx .sin(f (x))) → λx .cos(f (x)) ∗ diff (f )
diff (λx .x) → λx .1

rewrite:

diff (λx .sin(x)) Λ←→
β

diff (λx .sin(λx .x x))

−→ λx .cos(x) ∗ diff (λx .x)
−→ λx .cos(x) ∗ diff (λx .x)
−→ λx .cos(x) ∗ λx .1
−→ λx .cos(x)

Higher-order rewriting is an instance of
normal rewriting modulo beta, eta and alpha.



Questions

1 What is a general definition of rewriting ?
2 is my rewriting calculus terminating ?
3 is my rewriting calculus confluent ?

We focus on:
Definition of normal rewriting
Confluence assuming termination
General abstract results
Application to higher-order rewriting
A treatment of binders as a particular case
Flexibility of higher-order definitions



Definitions

Conversion: u ∗←→ v

Local peak: u←− s−→ v

Joinability: u ∗−→ t ∗←− v

Church-Rosser:
convertible pairs are joinable.

Newmann:
Assume plain rewriting terminates. Then it is
Church-Rosser iff every local peak is joinable.



Critical peaks

Knuth-Bendix: joinability of critical peaks is just
enough for terminating plain rewriting



Normal Rewriting Systems (R,S,E)

Definition: s
p−→

R↓SE

t iff s = s↓SE

p−→
RSE

u !−→
SE

u↓SE= t

General Assumptions
(a) S is a Church-Rosser set of rules mod E
(b) RSE ∪ SE is terminating,
(c) Rules in R are SE -normalized,

For Nipkow’s higher-order rewriting:
E is α-conversion
S is made of β-reduction and η-expansion
R is made of rules l → r such that l and r have
the same base type and l is a pattern [Miller].
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Example : commutative groups

R = { x + x−1 → 0 }

S = { x + 0 → x }

E ={ (x + y) + z = x + (y + z)
x + y = y + x }



Example : differentiation at higher types

R = { diff (sin ◦ f ) → −cos ∗ diff (f )
diff (cos ◦ f ) → sin ∗ diff (f )

diff (λx .x) → λx .1 }

S = { λx .@(u, x) → u
if x 6∈ Var(u)

@(λx .u, v) → u{x 7→ v} }

E = { λy .u{x 7→ y} = λx .u
if y 6∈ Var(λx .u) }



Main property expected from normal rewriting

Conversion: t1
∗←→

R∪S∪E
t2

Joinability: t1
!−→

SE

∗−→
R↓SE

u ∗←→
E

v ∗←−
R↓SE

!←−
SE

t2

Church-Rosser: every conversion is joinable.

Theorem (Target result for NRSes)

Let (R,S,E) satisfy (a,b,c), and critical local
peaks be joinable. Then normal rewriting is CR.

Further requirements:
- First and higher-order rewriting as instances;
- A proof independent from any term structure.



Abstract Positional Rewriting with R

an abstract set of terms T
a monoid of positions P equiped with
concatenation ·, neutral Λ, prefix order >P

A domain P is any downward closed subset of P

Rewrite relations become ternary: u
p,P,Q
−−→ v

Successor below p of s: s
≥P p
−−→ t

In normal form below p: s = s↓p

Normal form below p of s: s
(≥P p)∗

−−−→ s↓p



Abstract Position Rewriting Modulo with (R,E)

Rewriting with R modulo E at p

p−→
RE

:=
(≥P p)∗

←−→
E

p−→
R

Disjoint redexes axiom
p←−

R′E′

q−→
RE

⊆ p−→
RE

q←−
R′E′

if p#q

Ancestor redex axiom
p,P←−
R′

p·q−→
RE

⊆
(>P p·Q)∗

−−−→
RE

p←−
R′

(>P p·P)∗

←−−−
RE

if q>P P

Modulo on left is not allowed !
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Critical pairs modulo

u
p,P←−
R′

s
p·q−→
RE

v with q ∈ P

Again, position q should not be lost in u,
which might happen if R′ were a modulo step.

E-steps below p can be allowed
provided they do not occur strictly above q.
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Abstract Positional Fringe Rewriting with (R,E)

A fringe of s
p,P
−−→

R
t is a set Q of dis. pos. of P s.t.

v
p,P←−
R

(≥P p·Q)∗

←−−→
E

u
p·q−→
RE

w with q ∈ P implies q 6>P Q.

Maximal positions in P form a non-trivial fringe.
We use P f for an arbitrary fringe

Abstract Positional Fringe Rewriting:

p,P−→
R f

E

:=
(≥Pp·P f )∗

←−−→
E

p,P−→
R

Fringe rewriting satisfies a variant of Ara:
p,P
←−−

Rf
E

q>PPp

−−→
RE

⊆
(≥p)∗

−−→
RE

(≥p)∗

←−−
RE
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Normal APR with NARS (R,S,E), E symmetric

(i) Simplification is Church-Rosser below any p:

s
(≥P p)∗

←−→
SE

t iff s
(≥P p)∗

−−−→
SE

(≥P p)∗

←−−→
E

(≥P p)∗

←−−−
SE

t

(ii) �:= (−→RS
∪−→S) is E-terminating

(iii) Normal rewriting at p≥P q is defined as:

s
(p,q)
−−→
RSE↓

t := s = s↓q
SE

p
−−−→

RSE

u !−→
SE

u↓q
SE
= t

normal rewriting at p : take q = Λ



Critical patterns for normal rewriting

Rewrite peak
v

p,P←−
R f

SE

u
p·q−→
RSE

w s.t. q ∈ P and u = u↓p
SE

Equational cliff

v
p,P←→
E

u
p·q−→
RSE

w s.t. q ∈ P\{Λ}

Simplification cliff
v

p,P←−
S

u
p·q−→
RSE

w s.t. q ∈ P\{Λ} and u = u↓q
SE

Simplification peak
v

p,P←−
R f

SE

u
p·q−→
SE

w s.t. q ∈ P \ {≥PP f}



Church-Rosser theorem for NARSes

Definition
E-joinability:

v↓SE

∗
−−−→
RSE∪SE

s ∗←→
E

t
∗

←−−−
SE∪RSE

w↓SE

Fringe-E-joinability at p:
v↓SE

∗
−−−→
RSE∪SE

s ∗←→
E

t
∗

←−−−
SE∪RSE

p←−
R f

SE

w↓SE

Theorem (CR NARSes)
A NARS (R,S,E) satisfying (a,b,c) whose
critical simplification peaks are fringe-E-joinable
is CR iff its critical rewrite peaks, equational and
simplification cliffs are E-joinable.
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Proof

By rewriting local peaks in conversions,
interpreted by a multiset of binary words over
the alphabet of terms, and compared in the
ordering ((�E)lex)mul .

Elementary steps contribute to proofs with one
or two words:
u−→RSE

v with uv
u−→SE

v with vu
u←→E v with uv and vu

New: the measure on proofs does not use
(� ∪B)E
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Plain first-order rewriting with R

Definition
Given l → r ,g → d ∈ R and p ∈ FPos(l) s.t.
l |p = g has mgu σ,
rσ Λ←− lσ = (l [g]p)σ

p−→(l [d ])σ is a critical peak
of g → d onto l → d at position p.

Theorem (Knuth and Bendix, 1969)
A terminating rewrite system R is
Church-Rosser iff its critical peaks are joinable.



First-order rewriting modulo with (R,E)

Definition
Given l → r ,g → d ∈ R, p ∈ FPos(l), σ a most
general E-unifier of the equation l |p = g, then

rσ Λ←− lσ
(≥P p)∗

←−→
E

(l [g]p)σ
p−→ (l [d ])σ, is an

E-critical peak of g → d onto l → d at p.

Definition
Given an equation l = r ∈ E , a rule g → d ∈ R
and a position p ∈ FPos(l) \ {Λ} s.t. l |p = g is
unifiable, l [g]→ l [d ] is an E-extension of g → d
onto l = r at p.



First-order rewriting modulo with (R,E)

Theorem (Jouannaud and Kirchner, 1986)
Assume R is E-terminating and closed under
E-extensions. Then R is CR modulo E iff its
E-critical peaks are E-joinable.

New: no need for finite E-congruence classes !
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Normal first-order rewriting (R,S,E)

Definition
Given l → r ∈ R, g → d ∈ S and
p ∈ FPos(g) \ {Λ} s.t. l and g|p are
SE-unifiable, then g[l ]p↓→ g[r ]p↓ is a
S-extension of l → r at p.

Definition
Given rules l → r ∈ R and g → d ∈ S, and a
position p ∈ FPos(l) s.t. σ is a most general
E-unifier of l |p = g, then {(l [d ]q)σ↓→ (rσ)↓ is a
simplification pair of g → d onto l → r at q.



Normal first-order rewriting (R,S,E)

Theorem
Assume that RSE ∪ SE is E-terminating, S is CR
modulo E, and (R,S,E) is closed under
(normalized) E-extensions, S-extensions and
simplification pairs. Then, normal rewriting is
CR iff its SE-critical pairs are E-joinable.

Here, we need finite complete sets of most
general unifiers for both E and SE . For an
example, E is AC and S is ZI.
Application: Commutative group theory,
Polynomials over a commutative ring.



Nipkow’s Higher-order rewriting at simple types

E is α-conversion
S = {β, η−1}
R is a set of base type higher-order rules in
β-long normal form which lhs are patterns
E-unification: plain unification up to variable
renaming of bound variables
SE-unification: higher-order unification
Termination of Rβη−1 ∪ {βη−1} modulo α-conv
see [Jouannaud, Rubio, TOCL to appear]
S is CR modulo α-conversion



Nipkow’s higher-order rewriting at simple types

E-extensions: none
S-extensions: none since rules are at a base
type and only strict subterm of β is an
abstraction
Simplification peaks: none, since lefthand
sides are normalized and subterms @(X , x)
are on the fringe in pattern instances.

Theorem
Assume Rβη ∪ βη−1 terminates. Then
higher-order rewriting is Church-Rosser iff its
higher-order critical pairs are joinable.



Higher-order rewriting at simple types with βη

The difference is that η is now oriented as a
reduction, its lefthand side being λx@(u, x) with
x 6∈ Var(u).

But the subterm @(u, x) contains the bound
variable x , hence cannot unify with a lefthand
side of rule.

We therefore get the same result as before.



Higher-order rewriting at higher types with βη or βη−1

We may have (finitely many) β-extensions for
each rule in R, each extension decreasing the
type of the rule.

Let o : ∗,a : o,b : o and
R := {λx : o.a→ λx : o.b}.

Then, the β-extension is a→ b.



Higher-order rewriting modulo AC

Higher-unification of patterns in presence of
associativity and commutativity has complete
sets of general unifiers [Boudet, Contejean].

The general result applies to this case as well.



Conclusion

A clean, flexible framework
for all forms of rewriting

obtained
via novel notions of

abstract positional rewriting
and

fringe rewriting

THANKS
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