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Genesis of HoTT

Observation (Hofmann & Streicher): in intensional Martin-Löf’s
Type Theory, (X ,=X ) has a groupoid structure.

In 2005, Voevodsky and Awodey independently realized that
MLTT was the language of choice for formalizing homotopy
theory.
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Synthetic Homotopy Theory

I Spaces are represented by types:
X is a space ` X : Type

I Points of a space are its inhabitants:
a is a point of X ` a : X

I Paths are witnesses of equality:
p is a path from a to b in X ` p : a =X b

I Homotopies are witnesses of equality between paths:
q is an homotopy between paths p and p′ in X

` q : p =a=X b p′

I etc.
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Mismatches with usual Type Theory

I Equality is not a proposition (possibly proof irrelevant)
anymore

` X : Typei ` a : X ` b : X
` a =X b : Typei

I Singleton elimination (strong elimination for =) would make
the above change useless.

I Uniqueness of Identity Proofs (UIP or K) is inconsistent
with the HoTT interpretation.

⇒ The typing rules of equality (and in general: inductive types
with indices) have to be restricted, which invalidates singleton
elimination.
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Univalence axiom
Univalence is a principle that allows to prove that 2 given
spaces are homotopically equivalent.

It can be viewed as a strong form of extensionality (see later).
Remember:

I Functional extensionality:

f = g iff ∀x . f (x) = g(x)

I Propositional extensionality:

A = B iff A→ B ∧ B → A

I Reasoning up to isomorphism (in Type Theory, no principle
lets us discriminate between isomorphic types):

A = B iff ∃f g. f ◦ g = 1 ∧ g ◦ f = 1
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Univalence: weak equivalences

Captures the notion of homotopy equivalent spaces.

f : A→ B is a weak equivalence (between A and B) is a
structure of:

I An inverse of f
g : B → A

I g is the inverse of f :

r : Πa :A.g(f (a)) =A a
s: Πb :B. f (g(b)) =B b

I a coherence condition:

Πa :A. f (r(a)) =f (g(f (a)))=f (a) s(f (a))
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Univalence axiom

[Notation: A ' B is a couple of a f : A→ B and a proof that f is
a weak equivalence.]

I Simplified statement: (A = B) ' (A ' B)
(equality between types is weakly equivalent to weak
equivalence)

I More precisely: the obvious function A = B → A ' B is a
weak equivalence.
In particular, we have: A ' B → A = B.

Univalence contradicts UIP: there are 2 weak equivalences
between bool and bool (identity and negation).
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hoqtop : an implementation of HoTT

Github repository HoTT/coq and its companion standard library
HoTT/HoTT.

Features:
I Option -indices-matter disables singleton elimination

and puts equality at the Type level.
I Universe polymorphism.
I Univalence is assumed.
I Higher Inductive Types (HITs).
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HoTT as a foundational formalism

Questions:
I Can we encode all of the theorems of the “standard”

foundation in HoTT (maybe by assuming further consistent
axioms) ?

I How can we reconcile UIP and univalence ?
I Are the extra features of HoTT of pratical interest for

general use?
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Homotopy Level

Classification of types according to their “dimension”:
I Contractible types (level −2):

Contr(X ) := Σc :X .Πa :X .a = c

I Type X has level n + 1 if a =X b has level n for all a,b.

(Note: not all types need to have an h-level!)

Levels of particular interest:
I (-1): propositions

(proof-irrelevance, at most one connected and contractible
component)

I (0): sets, setoids
(UIP holds for sets)

I (1): groupoids
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Degenerated forms of univalence

Remember: A ' B is
I f : A → B
I g : B → A
I r : ∀a.g(f (a)) =A a

I s : ∀b.f (g(b)) =B b

I ∀a.f (r(a)) = s(f (a))

When A and B are propositions , A ' B amounts to
(A→ B)× (B → A).

I We have propositional extensionality.

When A and B are sets, A ' B amounts to an isomorphism
I We have reasoning up to isomorphism.

Univalence + interval (see HITs, later) implies functional
extensionality.
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Covering all “set”-level maths

I The Set class of types is closed under usual type-theoretic
constructions (0, 1, 2, Σ, Π, W -types)

I So, we recover set-level maths by constraining all
manipulated types to be sets.
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What have we gained ?

Relevant mathematics:
I A formal clarification of the distinction between Σ and ∃.
I Already familiar for educated Coq users.

Reasoning up to isomorphism:
I neg leads to a proof of bool = bool

J(λX .bool→ X → X , neg, and) = λb b′.neg(and(b, neg(b′)))

I Transport of structures:
e.g. monoid signature: ΣX :Type. Σ1 :X . X → X → X .

(More to come with HITs).
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HoTT Book

Explain all this to regular mathematicians.

Freely downloadable from
http://homotopytypetheory.org/book/
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Models

Two non-constructive models of HoTT:
I Geometric realization (Warren)

a =X b is f : [0; 1]→ X (continuous, with f (0) = a,
f (1) = b)

I Simplicial sets (Voevodsky)
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Simplicials Set in Set Theory

Decomposition of a space in points, edges, surfaces, etc.
I a sequence of sets (Xn)n∈N
I face maps: dn

i : Xn → Xn−1 (for 0 ≤ i ≤ n)
di access the face of lower dimension that does not contain
the i-th point.

I face map conditions: dj ◦ di = di ◦ dj+1 (when i ≤ j)
I degeneracy maps: sn

i : Xn → Xn+1 (for 0 ≤ i < n) si is the
degenerated simplex where the i-th point has been
repeated.

I degeneracy map conditions...
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Kan completions

I Kan completions: any “horn” can be completed and filled.
I Model based on Kan complexes.

Effectivity issue with dependent product: needs decidability of
degeneracies.
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Simplicial Set in Type Theory

I Following the set-theoretical definition would be awkward
(rewriting)

Semi-simplicial types:
I X0 : Type
I X1 : X0 → X0 → Type
I X2 : Πa0 :X0.Πa1 :X0.Πa2 :X0.X1(a0,a1)→ X1(a0,a2)→

X1(a1,a2)→ Type
I etc.

Face maps are not needed (faces are defined up to definitional
equality).

Hard to define the general case! (Herbelin)
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Setoid model

A 1-truncated semi-simplicial type:
I A couple (X0,X1) as before,
I equipped with level 0 completion and filling, and level 1

completion
is equivalent to a setoid:

I a type and a relation
I a proof that the relation is an equivalence

Generalizes (better) to higher dimensions: 2-truncated SST
correspond to groupoids.

In the above setoid model:
I (degenerated) univalence holds,
I the universe of setoids is a groupoid.
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Need for a new primitive

Kraus has shown that Typen is not of hlevel n.

In Coquand’s model, Typen has exactly hlevel n + 1.

So, we cannot build a non-set type in Type0.

23 / 29



HITs

A generalization of ususal inductive types:
I Possibility to give path constructors (not only point

constructors).
I Elimination (pattern-matching) is restricted to ensure the

preservation of equality.
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Example: Circle

Inductive S1 :=
base : S1

with paths :=
loop : base=base.

Besides the above formation/introduction rules, the eliminator
(match) has the following type:

fun P f g c =>
match c return (P c) with
| base => f
| loop => g
end

: forall (P:S1->Type) (f:P base),
transp P loop f = f -> forall c:S1, P c

Using univalence, one can prove (base = base) = Z.
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Example: Interval

Inductive Interval :=
left | right

with paths :=
segment : left=right.

Using this definition and univalence, one can derive functional
extensionality.
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Example: Suspension

Inductive Susp (X : Type) : Type :=
| north : Susp X
| south : Susp X

with paths :=
| merid (x:X) : north = south.

Definition S2 := Susp S1.
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Impact on set-level maths

They should form a good way to represent quotients (once the
computational interpretation of univalence is solved).

Inductive Z_2Z :=
O | S (_:Z_2Z)

with paths :=
mod2 : O = S (S O).

A similar definition

Inductive Z_2Z’ :=
O | S (_:Z_2Z’)

with paths :=
mod2 n : n = S (S n).

would produce a non-set, so truncation would be required.
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Conclusions

Despite apparent contradiction with popular axioms (UIP),
HoTT can be seen as a new foundation for mathematics.

Univalence and HITs may have a positive impact on the way
everyday maths can be expressed.
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