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ABSTRACT 

This abstract discusses a model-based architectural approach for improving predictability of performance in embedded 

real-time systems. This approach utilizes automated analysis of task and communication architectures to provide insight 

into schedulability and reliability during design. Automatic generation of a runtime executive that performs task 

dispatching and inter-task communication eliminates manual coding errors and results in a system that satisfies the 

specified execution behavior. The MetaH language and toolset supports this model-based approach. MetaH has been 

used in a demo projects applied to missile guidance systems and spacecraft attitude control. Reduced time and cost 

benefits observed will be discussed as a case study.  

The Society of Automotive Engineers (SAE); Avionics Systems Division (ASD); working group on Avionics 

Architecture Description Language (AADL) is using MetaH as a baseline capability to develop an international standard 

avionics architecture description language.  Space is a domain with similar requirements.  A joint research project is 

being considered in combination with constraint programming technology from Axlog an d systems engineering 

technology from INRIA (Dr. Gerard Le Lann, Proof Based System Engineering) of France which should provide 

additional system engineering capability of interest in the space domain.     
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1.   NEED FOR PREDICTABLE REAL -TIME  SYSTEMS DEVELOPMENT  AND EVOLUTION  

The performance and reliability of time -sensitive systems depends significantly on the execution environment 

(compilers, operating systems, processors, buses, I/O devices). It is often very expensive to rehost such systems when 

computing capacity is exceeded or the hardware becomes obsolete. Embedded real-time software is particularly difficult 

to rehost because of 1) its tailoring and optimization to fit the limited resource footprint of the hardware and 2) the need 

to support specialized device interfaces. Avionics and flight control software adds to the complexity by requiring 

multilevel safety, fault tolerance, modular multiprocessor architectures, and very complex multi-mode system behavior. 
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Because of the complexity of upgrading the software for a new processing environment, one of the most significant 

risks in system development of large real-time systems, especially avionics and flight control systems, is the problem of 

exceeding the computational resources during the software development process and during the operational lifetime of 

the system. Program after program has had to scale back system requirements to fit on the hardware. Integration, 

maintenance, and upgrade costs are driven up since software must be shoehorned into the available resources for as long 

as possible.   

In addition, the execution capacity of many systems is not well understood. The software system design and analysis 

techniques often used provide limited quantitative indication of schedulability bounds and performance limitations early 

in the life cycle. Furthermore, the impact of system changes on available resources, real-time performance, and 

reliability is often not understood. Even small changes can result in unexpected and difficult -to-resolve failures. 

Eventually, these changes exceed the capacity of the system. 

In this age of commercial off -the-shelf (COTS) processors, and with the very rapid increase in power of those 

processors, finding a higher performing processor is often not the problem. Again, the greater difficulty is in moving the 

software onto a new execution platform. 

2.   MODEL -BASED ENGINEERING APPROACH  

Many development projects today use computers to develop and maintain their documents. However, the software 

development process still imitates a manual, paper-intensive process, where developers work on design after reading 

requirements documentation. Similarly, code is produced manually from design documentation. This introduces 

opportunity for errors.  

Even in projects that deploy tools to support detailed design, architectural design typically is expressed as box-and-

arrows charts; accompanying text specifies expected system behavior and system quality attributes such as performance 

and reliability. As detail ed design and implementation approaches, the system is divided into computer software 

configuration items (CSCI) that are developed independently. Less and less architectural context information is 

available. When integration time comes, pieces do not always fit. If the development process has poor interface control, 

they may not fit functionally. If quality attributes such as performance are not well documented and are not analyzed 

repeatedly, system behavior in terms of these quality attributes may not be satisfactory when the system is integrated for 

the first time or upgraded.  

Integrated Project Teams alleviate some of the communication problems in this “Over-The-Wall” approach, but still 

retain the problems inherent in human interpretation and translation of documents. Although evaluations of architecture 

may occur with requirements modeling tools and simulations, the results are reduced again to paper for impact on the 

final system software. Modeling results tend to be disconnected from the next phase and from each other. Multiple 

complex modeling languages are required, one for each system analysis area. Integration of components into a system is 

manual, often difficult, complex, and very expensive. Code generation for system or component analysis is f or 

prototyping; requirements are again specified for human development of a traceable, testable integrated system. 

In a model -based engineering process the architecture of a system is made explicit and is visible throughout the 

development process. The architecture is the basis for an engineering model that allows for repeated analysis of the 

system from various perspectives, starting early in the life cycle. The architectural model evolves with the system – 

being a key element of the system development. As a result, the impact of changes to a system on system-wide quality 



attributes can be quickly validated through re -analysis, based on the architectural model. System integration is 

performed more smoothly as interface inconsistencies can be identified early, as well as inconsistencies in various 

critical quality attributes of the system. 

This new paradigm is based on the ability to specify a real-time system architecture in terms of software and hardware 

components and their interfaces, the system execution behavior, and its quality attributes. This architectural model is the 

basis for analyzing the system’s properties and automatically building the system.  First the architecture specification is 

used to model and analyze schedulability, reliability (fault handling), and safety/security dependencies. These issues 

must be understood early in time - and safety -critical systems. Once the systems engineer is satisfied with the 

architecture, the components can be developed, reused from another project, or generated in parallel with incremental 

automated integration of the system. The system is easily re-integrated through re-generation from the specification. 

Early integrations may be on a workstation, where behavior and system output can be validated. The final system is 

automatically integrated from the specification and components, hardware and software, on the target platform where 

execution behavior and results can again be validated. 

A major benefit is that the specified architecture and execution behavior are captured, not on paper, in the heads of the 

designers, or in scattered databases, but in one specification that integrates the final system and generates the executive 

that drives its execution. Also, a single architectural specification is used for multiple formal analyses; therefore the 

system is generated compliant, with each of the models used for analysis. 

Changes can be quickly made at the specification level for load balancing, scaling, timing, message passing, shared 

data, new components, adding fault response modes, etc. Since the processor, buses, or other hardware devices are part 

of the architecture specification, they can quickly be changed to any from a user -expandable library. Hardware 

dependencies reside in the specification and toolset rather than the application code, allowing rapid ports to new 

environments. 

3.   METAH, THE MODEL B ASED ARCHITECTURE DE SCRIPTION LANGUAGE  

MetaH is an architecture description language originally intended for use in Avionics applications [Honeywell 98]. 

Specifically, it supports the description, analysis, and generation of task and communication architectures of embedded 

real-time system applications. The MetaH notation allows developers to describe an application in terms of tasks, task 

communication, operational modes, and composition of tasks in terms of software components, hardware, and mapping 

of the software system onto the hardware [Binns 93]. Software components themselves may have been developed by 

hand or by domain-specific application generators such as SimuLink. The notation currently emphasizes support for 

processing of continuous data streams such as continuous control applications, with limited support for discrete event 

systems.   

The MetaH toolset provides  

• a graphical editor to create and maintain architectural models  

• a suite of analysis tools including a schedulability analysis tool based on Generalized Rate Monotonic Analysis 
(GRMA); a reliability analysis tool to determine the probability of failure of a system subjected to randomly arriving 
faults in terms of a stochastic finite state reliability model; and a safety analysis tool to investigate the potential of 
impact between system components of different safety levels  

• a generation and build capability that includes a code generator for all task dispatch and communication code in form 
of a MetaH executive; a system builder that combines user-supplied components with the generated task and 



communication calls; and the runtime kernel, i.e., real-time operating system, supporting the execution of the 
application 

One key to successful embedded systems is a layered runtime architecture that supports partitioning. The major driver 

for partitioning is the dramatic reduction in initial and upgrade validation and verification (V&V) effort that can be 

achieved. Partitioning methods have been fielded and their use is spreading rapidly for civil aviation. The use of 

partitioning methods to reduce certification effort is recognized in the Radio Technical Commission for Aeronautics 

(RTCA) DO-178B standard, in several Aeronautical Radio, Inc. (ARINC) standards, and by the U.S. Federal Aviation 

Administration (FAA) and European Joint Aviation Authorities (JAA). 

The layered runtime architecture facilitates portability in the following ways. Auto generation allows for tailoring of the 

MetaH executive. The MetaH kernel is portable through use of Ada95 and IEEE POSIX (portable operating interface 

standard) application programming interface (API). Timing protection enforces timing constraints at runtime. Their 

enforcement ensures validity of analysis results; i.e., a misbehaving process cannot encroach on the resources granted to 

another process. Applications are restricted from use of operating systems functions that are key to maintaining integrity 

established through the MetaH executive and kernel. Memory protection assures the safety of one component from 

misbehavior of other components by preventing access to private memory spaces. 

4.  POSSIBLE EXTENSION FOR FEASIBILITY A NALYSIS 

The MetaH toolset provides a capability to automatically load balance processors, buses across modes of operations for 

processes that are not specified to execute on a specific processor.  However, a constraint programming approach 

provides a more flexible approach for feasibility analysis and selection of best alternatives.   Instead of experimenting 

with values and simulating an important search space, the designer needs a more powerful expression and solving 

approach.  This objective requires solving simultaneously several related problems such as mapping the tasks set to 

physical processors (which is NP-hard), as well as satisfying feasibility conditions of scheduling policies. In the case of 

the timeliness property, these conditions model the satisfaction of real-time constraints based on Higher Priority First 

(HPF) or Earliest Deadline First (EDF) policies. Hence, finding a feasible solution satisfying real-time constraints and 

processing elements resources generally requires problem-solving techniques. Stemming from Logic Programming, 

Integer and Mathematical Programming, Constraint Programming (CP) [Jaffar & Lassez 87] approaches are recognized 

to be powerful tools to cope with difficult and large combinatorial problems. The efficiency of the approach to model 

and solve mapping problems has already exhibited significant results in the Digital Signal Processing area, despite the 

numerous non-linear constraints [Guettier 97]. Following the same approach, CP provides various ways to model 

complex, dynamic, real-time systems in order to propose automatically design choices and architectural size. The global 

problem design can be expressed using several constraint-based models. Composed with mathematical variables and 

algebraic constraints, models represent invariants of sub-problems like schedulability conditions or processor allocation. 

Relations between models are conjunctions of constraints that maintain the consistency of the global solution. Using CP 

techniques, models are derived into concurrent search spaces. Each time the solving progress in one of the search space, 

the partial solution is propagated to other ones using models relations. Therefore, by maintaining arc-consistency, the 

CP system cuts other search spaces such that a global solution can be reach faster. 

The workload distribution of the tasks set can mathematically be represented using set partitioning constraints: 
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Where T (n=card(T)) is the set of tasks, and each iS is a subset of T associated to the ith
  processor of the system (℘ is 

the set of available processors). The first constraint states that all the tasks are completely distributed, while the second 

one states that tasks cannot be replicated. 

Preemptive scheduling policies fit very well coarse grain task scheduling, with periodic/sporadic activation periods, 

satisfying timeliness property. On a practical viewpoint, when deadlines are assimilated to periods, modeling 

schedulability using CP techniques is fairly simple and is sufficient to illustrate our global solving approach. To tackle 

more complex assumptions (when deadlines are different from periods), a CP approach can take advantage of a convex 

schedulable domain for EDF, opposed to the HPF, for which the domain can not be easily expressed. Let us consider a 

periodic non-concrete traffic T, represented by a set of n periodic and sporadic tasks it  . An activation period (Ti) (equal 

to its deadline) and a worst -case execution time (Ci) are assimilated to each task. The well-known Liu&Layland 

necessary condition for scheduling a worst-case execution of the tasks using EDF or HPF can be given using the 

workload: 

1 HPF EDF, with feasible is 
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The associated prototype is developed upon Sicstus Prolog that encapsulates the state-of-the art in constraint 

propagation algorithms. Those algorithms are equivalent to logical proof methods, but where predicates can be 

constraints interpreted in a mathematical algebra. Thus, the proof algorithm can interplay between a logical reasoning 

using Horn clauses and arithmetic reasoning. This leads to more important proof domain, a better management of the 

combinatory and a higher efficiency, resulting from important search pruning and constraints propagation. 

The prototype has been experimented on spatial platform, aircraft avionic and autonomous undersea vehicles and has 

provided interesting results. Future works will extend this approach to more complex feasibility conditions, related to 

distributed scheduling problems with a-periodic activation laws, under real-time and reliability constraints. 

4.   MISSILE CASE STUDY  

This case study describes a pilot application of the MetaH technology by the U.S. Army AMCOM SED laboratory to 

missile guidance systems. An existing missile guidance system, implemented in Jovial, was reengineered to run on a 

new hardware platform and to fit into a generic missile reference architecture [McConnell 96]. As part of the 

reengineering effort the system was modularized and translated into Ada95. The task architecture consisting of 12-16 

concurrent tasks was represented as a MetaH model and the implementation generated automatically from the MetaH 

model and the Ada95 coded application components. The resulting system consisted of 12,000 source lines of 

application component code, 3000 lines of MetaH executive generated from the MetaH model, and 3000 lines of code 

representing MetaH kernel services. The engineers doing the reengineering work made a conservative estimate of effort 

required to reengineer the system into a pure Ada95 implementation and validated the estimate with the prime 

contractor who implemented the missile.  Based on the results, we estimated a 40% savings on the total re-engineering 

effort.  Most of the savings came in the building and debugging of the real-time environment simulation and the real-

time missile flight code.  Because the processing environment, dual 80960 processors, was very tight for both the 

missile code and the environment simulation code, we used extensively the scheduling analysis to break up the 



simulation into rates that would meet the flight requirements but also be schedulable across the dual processors.  The 

automated integration of components allowed rapid re-integration as we developed in an iterative fashion with more and 

more capability in each proven design.  Iterations on the architecture were easily expressed and the system auto re-

integrated by generation of the middleware and glue code.  The capability to get timing data from the executing system 

and to run on both non-real-time and real-time environments with the same flight behavior was also very valuable for 

system tuning.  Estimates from the missile prime were that we saved 66% of the effort based on their experience in 

similar activities.  

After the initial port into Ada95 and MetaH, the application was ported several more times to new hardware platforms 

as processor technology evolution continued its fast pace. These ports included multiple ports to single and dual 

processor implementations of the initial target hardware, as well as new processors, compilers, and O/S. In these 

successive ports the executables performed correctly, timing and ordering preserved, on each target environment the 

first time we could execute on the new environment.   This capability to port to a new target not only the application 

code but also its time sensitive qualities demonstrates an ability to do software first development and then port or evolve 

at significantly lower risk to new hardware.    Our porting time was 1/10 of the expected time on average for Ada95 

ports and increased the savings for the overall project  (if a final port had been necessary)  from 40% to 50%.   POSIX 

ports would be more complex given the far greater variation of services provided in POSIX compliant O/Ss.  Custom 

ports can also be complex since MetaH middleware generation must be mapped to custom O/S calls.  However, once a 

port is working, rebuilding and tuning on the execution platform is very rapid.  Glue code is rebuilt to the timing and 

architectural requirements in the MetaH specification.  The MetaH Architectural Specification Language (ADL) is 

highly tunable for software and hardware architectural variation.   MetaH hardware ports become part of the component 

library for future use.  

SUMMARY  

In this paper we have examined a highly predictable, flexible, approach based on model-based engineering for the 

development and evolution embedded real-time systems. This approach came from the avionics and flight control 

domain and is useful in the space domain.  This approach leverages architectural modeling of real-time aspects of a 

system by supporting analysis of schedulability, performance, and reliability. The approach also supports automatic 

generation of runtime executives specific to the application, and system build of the complete system from developer-

supplied components and the generated executive.   

We have demonstrated the practicality of this approach in the context of MetaH, a real -time system architecture 

description language and supporting toolset for analysis and generation. A U.S. Army AMCOM case study has 

demonstrated the benefits of deploying such technology to existing systems. These benefits include system analysis and 

validation of non-functional properties, such as timing and performance, early in the life cycle; separation of concerns 

regarding functionality of the application and the real-time behavior in terms of task dispatching and communication; 

and automatic generation of executive code from the model against commercial and standard runtime environments, 

such as IEEE POSIX conformant real-time operating systems or language runtime systems such as Ada95. This has 

resulted in a major reduction in cost for system development, evolution and for porting embedded applications to new 

hardware configurations and platforms. 
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