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This paper presents a new technique to map automatically DSP application,represented by a sequence of loop nests, onto a SPMD distributed memory ma-chine. This technique is based on formalizations of the architectural, applicativeand mapping models by constraints. The result is (1) a �ne grain a�ne sched-ule of computations, (2) their distribution onto processors and (3) a memoryallocation. Computations are distributed in a block-cyclic way on processors.Communications are overlapped with computations when possible. The mem-ory model is precise: Only the amount of memory useful to the computations isallocated.The general mapping problem (data and computation onto processors) hasbeen proved to be NP-complete [36, 37]. While data dependence constraints canbe translated into linear inequations and then solved by classical linear pro-gramming algorithms, resource constraints require non linear expressions. Solv-ing directly both constraints is still out of the scope of any general algorithmsand necessitates the combination of integer programming and search [24]. Fol-lowing the same idea of combining constraints solving and nondeterminism, ourtechnique uses a CCLP [19, 53] approach. Unlike conventional constraint solversbased on black box algorithms, CCLP languages use an incomplete constraintsolvers over a �nite domains algebra. The two main advantages of using suchalgorithm are �rst to enhance compositionality features [52, 31] and secondly too�er basic control structures for expressing new constraints [52].Our approach takes as input the speci�cation of di�erent models such as: thetarget machine, the communication cost, the application, the partitioning, thedata alignment, the memory allocation and the scheduling models. Then, theCCLP assets enable to handle linear and non linear expressions and to yield,through the concurrent propagation of the constraints over all the models to so-lutions, satisfying the global problem. The solution outlook depends on multiplecriteria as memory allocation or latency.The article is organized as follows. Firstly, the characteristics of the targetmachine and DSP applications are presented. Secondly, our constraint formal-ization of the problem is exposed: Especially, the partitioning, scheduling andmemory models are detailed. Thirdly, the concurrent resolution programmingtechnique is presented, followed by our prototype results. Finally, a comparisonwith other approaches is described before concluding.1 Architectural and Applicative featuresThis section presents an overview of the architectural and application featuresthat characterize our general mapping problem formulation.1.1 Architectural featuresThe target machine is an abstract SPMD distributed memory machine. Themapping is constrained by machine resources:



Number of processors. The application is mapped on all processors. How-ever, criteria like memory allocation or communication minimization mayenforce the use of fewer processors.Local memory size. Because there is no global memory, the amount of mem-ory necessary to execute a set of computations, mapped onto a processor ata given moment, must �t the available processor memory.Processor rate. The latency criteria (amount of time between one input andthe corresponding output) can be �xed to a maximum value.Overlap of computations and communications. The partitioning model takesadvantage of this property to overlap communications with computations.1.2 Applicative featuresIn this section the DSP applicative features are described. These features havebeen investigated for several years at Thomson-CSF by A. Demeure.The application is a sequence of loop nests in a single-assignment formIt describes an acyclic graph of tasks. Each loop nest includes a procedurecall that reads one or several multidimensional data arrays and updates onedi�erent array. Array accesses are a�ne functions of loop indices with even-tual modulo. Figure 1 presents a global view of PA application [8]. Figure 2details the �rst PA loop nest.Parallelism. Since the application is in a single-assignment form, each loopnest is full-parallel. Furthermore, the loops are perfectly nested.Procedures can be seen as black boxes where computational dependencies areencapsulated. Procedures are DSP library calls, such as Fast Fourier Trans-form. Our approach schedules the application at this procedural level.Arrays have one in�nite dimension, due to the real time constraint. Thecomputational recurrence extraction from the application puts forward acyclic schedule of a �nite amount of computations. Then, classical paral-lelization techniques can be used.DSP applications manipulate array references that can be represented byRead and Write regions [50, 12]. Read and Write regions represent, with a�neconstraints [13], the set of array elements read and written by the procedure.Figure 2 gives the FFT read and write regions. As procedures are generally DSPlibrary calls, these regions should be allocated fully in the local memory duringthe procedure computation.2 Constraint FormalizationOur technique uses a multi-model approach [32] to describe the general mappingproblem. Due to space limitation, only the partitioning, scheduling and memorymodels are presented here. But the communication, latency, architectural andapplicative models obviously inuence the resolution.



doall r,ccall FFT(r,c)enddodoall r,f,vcall BeamForming(r,f,v)enddodoall r,f,vcall Energy(r,f,v)enddodoall r,vcall ShortIntegration(r,v)enddodoall r,vcall AzimutStabilization(r,v)enddodoall r,vcall LongIntegration(r,v)enddoFig. 1. Panoramic Analysis application

do r=0,infinitydo c=0,511c Read Region:c SENSOR(c,512*r:512*r+511)c Write Region:c TABFFT(c,0:255,r)call FFTDbl(SENSOR(c,512*r:512*r+511),TABFFT(c,0:255,r))enddoenddo Fig. 2. FFT Loop nest2.1 Partitioning ModelThe partitioning model is designed to map computations onto the target ma-chine. Since DSP applications are sequences of parallel loop nests, the partition-ing problem results in loop nest by loop nest partitioning.The multidimensional iteration domain (I) is partitioned, and computations arenot replicated:I = n[i=1Parti; 8j; 1 � j 6= i < n; Parti\Partj = ;The application parallelism degree, memory location requirement and time schedul-ing parameters are controlled by the partitioning. The iteration domain is de-composed over 3 vector parameters: x; y; z. Block, cyclic and block-cyclic distri-butions are possible.8i 2 I; 8<: i = LPx+ Ly + z8z; 0 � L�1z < 1; 8y; 0 � P�1y < 1det(L) 6= 0; det(P ) 6= 0P and L are diagonal square integer matrices. Except for the in�nite dimension,the 3 parameters can be assigned independently to Processor p, Cyclic recurrencec or Local memory l. The �nite resource constraints imply: x = c for the in�nitedimension. The case where (x; y; z) = (c; p; l) implies that max(l) = Qi Lii isthe number of local iterations executed by one processor at each cycle c (eachlocal iteration execute a procedure call). max(p) = Qi Pii gives the maximum



number of processors and max(c) the maximum number of synchronizations(cycles) necessary for the loop nest completion.Due to DSP application features, the array access functions use at most perarray dimension one external loop index and one internal loop index which scansthe read or write region. Since read and write regions are not partitionable, onlythe external loop nest is partitioned. So, partitioning matrices are diagonal (withan eventual permutation). Figure 4 presents the PA loop nest partitioning. Itexpresses that 1 iteration r (L11) and 64 (L22) iterations h (see Figures 1,2) aremapped on each of the 8 (P11 � P22) processors.2.2 Scheduling ModelThe scheduling model is designed to associate to each computational block alogical execution event on a processor. The resulting schedule can be viewed asa succession of loop transformations. In general, it is not possible to �nd auto-matically the transformation set to apply such that the �nal schedule is optimal.So, the a�ne scheduling approach, used in systolic arrays and parallelizationtechniques [23, 22, 15, 16, 17], is chosen and applied to our context.The partitioning model states that elementary computations having to bescheduled (called block hereafter) are the set of L pipelined local iterationsmapped onto p at cycle c. Since the programming model is SPMD, p does notneed to appear in the schedule formulation. Thus, it only depends on vector cwhich fully describes the block of l iterations to perform. We choose the a�neschedule class of events to search as:dk(ck) = N(�k � ck + �k) + kVariables are indexed by the loop nest number k. dk is the scheduling functionof the kth-loop nest. �k and �k are the scheduling a�ne parameters. �k is a linevector, and �k is scalar. N is the number of loop nests. It is used in the formulaewith the o�set +k in order to avoid the execution at the same date of twocomputations belonging to di�erent loop nests.In the same way, two computational blocks of a single loop nest cannot beexecuted at the same date. Let cki and ckj with i < j be two cyclic componentsof the partitioned loop nest Nk. Then, the execution period of Cycle cki mustbe greater than the execution time of all cycles ckj . Hence, Constraints: �ki >Pj>i �kj max(ckj ) with �kn � 1 must be veri�ed.As an example of additional constraints that link the partitioning and schedul-ing models, the data ow dependencies express that a piece of data of loop nestNr cannot be read before being updated by Nw. These dependencies betweentwo cycles cw of loop nest Nw and cr of Nr imply that:8(cw; cr) Dependence(cw; cr)) dw(cw) + 1 � dr(cr) (1)dw (respectively dr) is the scheduling associated to Nr (resp. Nw).



Note that these dependencies are computed between iterations of di�erentloop nests. Data ow dependencies are approximated by their convex hull rep-resentation. However, this approximation lets us to obtain the same set of validschedules as with the exact representation without any loss. Due to DSP appli-cation characteristics, this representation can remain symbolic. This improvesthe constraints propagation, since no costly algorithm is needed to solve thedependence test.2.3 Memory modelThe memory model ensures the application executability under a memory con-straint. A capacitive memory model is used. It evaluates the memory requiredfor each computational block mapped onto a processor by analyzing the datadependencies. An allocation function can be extracted straightforwardly fromthe memory allocation result when the schedule is known after the optimizationphase.The number of data blocks needed to execute the computational block is com-puted. Due to the partitioning model all computational blocks have the samesimple structure and the same size. Data dependencies are used to determine thedata block life time. A data block is alive from its creation date (correspondingto its allocation) to its last use date. For each computational block, the scheduleand data dependencies give the maximum life time of a data block and the num-ber of data block creations during one cycle. This gives the required memorycapacity per computational block and cycle. The addition of the di�erent com-putational block memory requirements give the amount of memory necessary tothe complete application execution.The memory is organized in segments of identical data blocks, one per loopnest. This eliminates the problems of memory fragmentation and the eventualneed of block relocation. Data duplications due to input sets of references over-lap between successive iterations are eliminated by using partial data block de-compositions. Only new partial data blocks are kept and fused to others. Thisre�nement is powerful enough to handle any multidimensional read overlaps andproved very e�cient on the studied DSP applications.3 ResolutionConstraint logic programming is a generalization of logic programming whereuni�cation is replaced by constraint solving over several computation domains.These domains include linear rational arithmetics, boolean algebra, Presburgerarithmetics and �nite domains [20]. More recently the introduction of the notionof constraint entailment, stemming from the Ask & Tell paradigm of concurrentprogramming [46], enhanced the CCLP framework with synchronism mecha-nisms. This new class of CCLP (see �g. 3) languages [42, 52] o�ers control struc-tures enabling in one hand a better interleaving of the goals of several modelsand on another hand a new way to de�ne non-primitive constraints.



Tell: Satisfaction mechanism P; T h(S) j= (9)cAsk: Entailment mechanism P; T h(S) j= (8)(�! c)where P is a CCLP program, T h(S) a theory of the S algebra, � a guard and c aconstraint.CCLP program: Set of logic rules of the form fA a c jA1; :::; Akgwhere a, c et fAig represent respectively a set of constraints of type ask, of constraintsof type tell and logical atoms.Fig. 3. CCLP programs and its two basic mechanismsThe cardinality operator #(l; u; [c1; :::; cn) [51], the constructive disjunctionoperator 5(c1; :::; cn) [31], the entailment and the conditional propagation op-erators are some examples of new connectives of CCLP languages. From anoperational standpoint, they are based on constraint solving, constraint entail-ment and arithmetic reasoning. Going in deeper details on CCLP is out of thescope of this paper but we have used these new capabilities to extend our CCLPlanguages Meta(F) [11] in order to solve e�ciently polynomial constraints over�nite domain variables.Thanks to their unique combination of constraint-solving, nondeterminism,and relational form, CCLP languages have been shown to be very e�ective insolving complex and heterogeneous problems [53, 30] comparable in e�ciency tospecialized algorithms. In the two next sections we show how we can handle andsolve our mapping problem using such kind of new language.3.1 How does CCLP handle our global mapping problem ?The mapping models such as partitioning and scheduling are represented withmathematical variables and a�ne constraints. Non-linear constraints link the dif-ferent models and generally are composed with complex and polynomial terms.For example, constraint (2) links partitioning and architecture models. The num-ber of processors required by the partitioning must be smaller than the numberof processors available.NumberOfProcessors � maxk(�ni=1(P ki;i)) (2)The latency, resources and data-ow dependencies constraints (1) are globalconstraints.The e�ective CCLP expressions of the global mapping problem has requiredan in-depth collaboration between CCLP and Parallelism specialists. The �negrain models, issued from parallelization techniques, induce a CCLP modelmostly based on the expression of sets of procedure calls, data blocks and depen-dency relationships. Those sets are represented as intension rather than extensionmodels.



In some cases, this task was impossible to perform directly and the proposedmodels have to be recasted in a set of expressible constraints representing anapproximation of the model. For instance, the dependency relationships betweenblocks of computation cannot be stated in the original constraint (1) due to the8(cw; cr). The constraint has been implemented as constraint (3):8(cws ; crs) dw(cws ) + 1 � dr(crs) (3)where (cws ; crs) are the vertex components of the convex hull of the depen-dencies, that have been computed symbolically. Hence, the scope of this 8 isrestricted to the number of vertices.3.2 How does CCLP solve our global mapping problem ?While storing the di�erent constraints, the CCLP system builds a solution-spaceon a model-per-model basis. Each model solution space is pruned when con-straints are propagated from other models. Once all models have been built intothe system, non-linear constraints linking the di�erent models still have to bemet. Solutions must be looked for in a resulting overall search space using aspeci�c global search.This search relies (1) on the semantic of the variables of each model andtheir importance w.r.t. other models and (2) the goal to achieve (i.e. resourceminimization under latency constraint, latency minimization under resource con-straint).Each variable takes part in a global cross-model composite solving, suchthat only relevant information is exchanged between models. The global searchlooks for partial solutions in the di�erent concurrent models. For instance, theset of scheduling variables (�i; �i) and partitioning matrices Pi; Li are partiallyinstantiated by inter-model constraints during the resolution. Model-speci�c ormore global heuristics are used to improve the resolution:e.g. schedule choicesare driven by computing the shortest path in the data-ow graph.Based over models semantic and speci�c heuristics, the global mapping prob-lems is solved through CCLP using complex composition schemes.If dedicated algorithms are used, the composition of the di�erent functionsonly is possible by sequential solving according to the functional programmingparadigm. It restricts the composition facilities and has a too high complexity.Traditional generic solvers, as Simplex, are designed to solve only linear con-straints in a convex rational context. The Simplex category algorithms does notsupport models cooperation.Integer programming allows to recast complex non-linear constraints usingboolean variables. Therefore, links between models are represented using booleanvariables which restricts partial information exchanges between models.4 ResultsThis section illustrates our prototype results. The user speci�es the target ma-chine and the option criteria. In this example, the optimizing cost function is the



memory size minimization. The target machine has 8 processors. The latencyconstraint is set to 4:108 processor clock cycles and the memory is unbounded.Figure 4 describes the partitioning and schedule of PA. The loop nest parallelismand locality are expressed with the diagonal matrices P and L .
4.1 Partitioning
The partitioning characteristics follow. (1) Only �nite dimensions are mappedonto the 8 processors. This solution satis�es the latency constraints. (2) Thewrite region of the second loop nest is identical to the read region of the third loopnest. So the system fuses these loop nests in order to reduce memory allocation.(3) The access analysis of the second and third loop nests presents read regionoverlaps between successive iteration execution. This overlap is detected. Thesystem parallelizes according to another dimension to avoid data replication.
Partitionning FFT Beam Forming; BroadBand Sht Integ Azimut Long IntegEnergyParallelism; P = � 1 00 8�  1 0 00 1 00 0 8! � 1 00 8� � 1 00 8� �1 00 8� � 1 00 8�Locality; L = �1 00 64�  1 0 00 128 00 0 25! � 1 00 16� � 1 00 16� � 1 00 16� �1 00 16�Scheduling FFT Beam Forming; BroadBand Sht Integ Azimut Long IntegEnergy� �61�  611! � 61� �481 � � 481 � � 3841 �� 0 1 2 45 46 383Fig. 4. Partitioning and Scheduling matrices for Panoramic Analysis



4.2 ScheduleAccording to the di�erent partitions, only thetime dimension is globally scheduled. From the� and � scheduling parameters in Figure 4, theschedule can be expressed using the regular ex-pression:(((FFT; [BF;E]; BB)8; SI; SA)8; LI)1Computational dependencies between itera-tions are satis�ed. The system provides a �negrain schedule at the procedural level using thedependence graph shortest-path. This enablesthe use of data as soon as possible, avoids bu�erallocations, and produces output results at theearliest. On the right hand side, the correspond-ing loop nest is represented.

do ili=0,infinitydo isa=0,7do ibb=0,7FFT(ibb)BeamFormingEnergy(ibb)BroadBand(ibb)enddoShortInteg(isa)StabAzimut(isa)enddoLongInteg(ili)enddoEight iterations of Tasks FFT,BF-E,BB (executed every �11 = 6 steps) areperformed before one iteration of SI,SA (executed every 48 = 6*8 steps). Thelast task LongInteg cannot be executed before 8 iterations of the precedent ones.So it is executed every 384 (=8*48) steps.4.3 Comparison with manual mappingsManual mappings of DSP applications are performed in di�erent ways. In gen-eral, user-friendly interfaces provided by manufacturers o�er some help for coarsegrain parallelism. The application is scheduled at the task level and not at theprocedural level. Thus, load balancing is more di�cult to obtain.While it is hard for a human being to instantiate the di�erent models sat-isfying all constraints, we have compared our solution to two di�erent manualsolutions. The �rst one is based on loop transformation techniques. The secondone uses the maximization of the processor usage as only economic function.Our result is equivalent to the one suggested by parallelization techniques. It isbetter than the second one which requires more memory allocation.4.4 Towards global optimizationBetween two successive solutions, the system takes important decisions to opti-mize the mapping. The optimization trace is shown in Figure 5.The �rst solution is obtained in a few minutes while this optimization iscompleted in ten minutes on a SPARC-10 Workstation. These times have to becompared with human being inquiries to comprehend and map the application.



Row 0 represents the original set of constraints: a largeinitial memory size, 8 processors, and a quite restrictedlatency. Solution 1 gives a bad partitioning of the fusedloop nests Beam Forming-Energy, and produces an allo-cation with data replication. Solutions 2 and 3 are mixed:parallelism is set on di�erent dimensions. Solution 4 mapsparallelism on the appropriated dimension, thus mini-mizes data replication. Finally, the system �nds that tak-ing 4 processors still satisfy the latency constraint andreduces memory cost.
Memory Optimizationsol. Nb Memory Latencynumb. proc. Kwords Mcycl.0 8 10000.0 4001 8 1358.5 1752 8 1057.7 1753 8 907.3 1754 8 832.1 1755 4 832.0 350Fig. 5. Optimizing the memory size5 Related WorkMapping applications onto parallel machines addresses issues such as scheduling[10], parallelization [1], loop transformations [29, 4, 38], parallel languages [35, 28,3], integer linear programming and machine architecture. A lot of work has beendone to optimize a few criteria such as data and/or computation distribution[40, 21, 34, 7, 43], parallelism detection, minimization of communications [18, 2,41, 5], processor network usage. This section focuses on the most relevant work.Although manual loop transformation techniques are attractive and give goodresults, it is not possible to �nd automatically the transformation set to applyfor obtaining the optimal schedule [33, 9]. However restructuring the applicationsuch that the parallelism and data locality are maximized is yet a relevant ob-jective. Many studies [9, 41, 48] present interesting approaches. Thereafter, thecompiler is in charge of mapping physically the optimized application of the tar-get machine. Compared to our approach, there is no real time and architecturalconstraints (number of processors and memory resources) to take into accountduring the parallelization phase.Similar techniques are used in systolic arrays [16, 17, 14] and parallelization[23, 22, 26] communities to compute a�ne schedules. In the systolic community,these techniques are applied on a single loop nest with complex internal depen-dencies. The other approaches dealing with complete applications, do not havethe same architectural and application constraints. The parallelism grain is atthe instruction level, there is no real time constraint and the target machine isgenerally virtual.DSP application features are taken into account in [45]. This approach isbased on task fusion, but for a sequential result. Mapping statically DSP appli-cation with speci�c signal requirements [27, 49] have been widely investigated.The representative Ptolemy framework [39, 47, 44] brings some solution butat a coarse grain level. Most of the resolution schemes are based on dedicatedalgorithms [6].Our approach is the �rst one to propose an optimal a�ne schedule of acomplete application with a �ne grain parallelism (at the procedural level) andits mapping onto a architecture under resource and real time constraints.
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