
SQL Avancé

Fabien Coelho

Mines Paris – PSL

Janvier 2023

Composé avec LATEX, révision 4420

1 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

https://datacharmer.org/

2 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Valeurs directes

Construction d’une table au vol

construire table constante au vol

SELECT ... UNION SELECT ... UNION ... ∪
VALUES (...), (...), ... justifie le S !
utilisé pour INSERT, expressions ANY/ALL. . .

SELECT 1 AS jour, mois.nom AS mois

FROM (VALUES

('juillet'), ('août'), ('septembre'),

('octobre'), ('novembre'), ('décembre'),

('...'))

AS mois(nom);

jour mois
1 juillet
1 août
1 septembre
1 octobre
1 novembre
1 décembre
1 ...

3 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Séries

Séquence énumérée

combien de vendredi 13 au 20ème siècle ?

quelles valeurs de clés primaires sont inutilisées ?

Génération d’une relation generate_series

génération d’une relation, début, fin et saut

entiers ou TIMESTAMPTZ (bornes) et INTERVAL

Vendredi 13
171SELECT COUNT(*) AS "Vendredi 13"

FROM generate_series(1901,2000) AS year

CROSS JOIN generate_series(1,12) AS month

WHERE EXTRACT(DOW FROM DATE (year || '-' || month || '-13')) = 5;

4 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Requête à côté LATERAL

Dans une jointure

utiliser les valeurs des tuples à sa gauche

nouvelle relation fonction de ce qui précède

utile ? expressions, jointures, aggrégations, fenêtres. . .

-- version avec LATERAL

SELECT i, j

FROM generate_series(0, 3) AS i

CROSS JOIN

LATERAL generate_series(0, i) AS j;

i j
0 0
1 0
1 1
2 0
2 1
2 2
3 0
3 1
3 2
3 3

5 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

UPSERT INSERT ou UPDATE ou DELETE

Fusion de données

insertion ou mise à jour si existe déjà
économise un test et sa latence

différentes syntaxes selon les bases de données. . .
INSERT ... ON CONFLICT ..., MERGE ..., . . .

INSERT ... ON CONFLICT DO NOTHING / UPDATE ...

avec clause WHERE, données initiales EXCLUDED

MERGE INTO ... USING .. ON WHEN ...

permet toutes les opérations

6 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemple INSERT ... ON CONFLICT ...

Données initiales
id name
1 Calvin
2 hbs

INSERT INTO Heroes(name) VALUES ('Calvin')

ON CONFLICT (name) DO NOTHING;

INSERT INTO Heroes VALUES (2, 'Hobbes')

ON CONFLICT (id) DO UPDATE SET name = EXCLUDED.name;

INSERT INTO Heroes VALUES (3, 'Susie')

ON CONFLICT (name) DO NOTHING;

Données finales

id name
1 Calvin
2 Hobbes
3 Susie

7 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemple MERGE

Stock initial
nom qt
Champagne 10
Coteau du Layon 12
Riesling 3

Variations
nom qt
Champagne -3
Riesling -3
Sancerre 6

Stock final
nom qt
Champagne 7
Coteau du Layon 12
Sancerre 6

MERGE INTO Stock AS s

USING LivraisonVente AS lv ON s.nom = lv.nom

WHEN NOT MATCHED AND lv.qt > 0 THEN

INSERT VALUES(lv.nom, lv.qt)

WHEN MATCHED AND s.qt + lv.qt > 0 THEN

UPDATE SET qt = s.qt + lv.qt

WHEN MATCHED THEN

DELETE;

8 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

GROUPING SETS, CUBE, ROLLUP

Aggrégations combinées

aggrégation sur des sous-ensembles de GROUP BY

GROUPING SETS liste de groupes de colonnes
ROLLUP tous les préfixes de colonnes, y compris vide

CUBE tous les sous-ensembles de colonnes

équivalent à UNION, valeurs non gardées remplacées par NULL

9 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemple GROUPING SETS

CREATE TABLE PaysLanguePopulation(

id SERIAL PRIMARY KEY,

pays TEXT NOT NULL,

langue TEXT NOT NULL,

pop NUMERIC NOT NULL,

UNIQUE (pays, langue)

);

pays langue pop
Allemagne Allemand 81.5
Autriche Allemand 8.7
Belgique Allemand 0.1
Belgique Français 4.1
Belgique Néerlandais 7.0
France Français 66.1
Italie Italien 60.8
Pays-Bas Néerlandais 16.9
Suisse Allemand 5.2
Suisse Français 1.7
Suisse Italien 0.5

10 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Cumuls par pays et par langues

SELECT pays, langue, SUM(pop) AS pop

FROM PaysLanguePopulation

GROUP BY GROUPING SETS

((pays), (langue), ())

ORDER BY pays, langue;

pays langue pop
Allemagne 81.5
Autriche 8.7
Belgique 11.2
France 66.1
Italie 60.8
Pays-Bas 16.9
Suisse 7.4

Allemand 95.5
Français 71.9
Italien 61.3
Néerlandais 23.9

252.6

11 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Ou avec UNION moins performant

SELECT pays AS pays, NULL AS langue,

SUM(pop) AS pop

FROM PaysLanguePopulation

GROUP BY pays -- premier groupe

UNION

SELECT NULL, langue, SUM(pop)

FROM PaysLanguePopulation

GROUP BY langue -- second groupe

UNION

SELECT NULL, NULL, SUM(pop)

FROM PaysLanguePopulation

-- dernier groupe

ORDER BY pays, langue;

pays langue pop
Allemagne 81.5
Autriche 8.7
Belgique 11.2
France 66.1
Italie 60.8
Pays-Bas 16.9
Suisse 7.4

Allemand 95.5
Français 71.9
Italien 61.3
Néerlandais 23.9

252.6

12 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemple ROLLUP

SELECT pays, langue,

SUM(pop) AS pop

FROM PaysLanguePopulation

GROUP BY ROLLUP(pays, langue)

-- équivalent à GROUPING SETS

-- ((pays, langue), (pays), ())

ORDER BY langue, pays

LIMIT 12;

pays langue pop
Allemagne Allemand 81.5
Autriche Allemand 8.7
Belgique Allemand 0.1
Suisse Allemand 5.2
Belgique Français 4.1
France Français 66.1
Suisse Français 1.7
Italie Italien 60.8
Suisse Italien 0.5
Belgique Néerlandais 7.0
Pays-Bas Néerlandais 16.9
Allemagne 81.5

13 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemple CUBE

SELECT pays, langue,

SUM(pop) AS pop

FROM PaysLanguePopulation

GROUP BY CUBE(pays, langue)

-- équivalent à GROUPING SETS

-- ((pays, langue),

-- (pays), (langue), ())

ORDER BY pays, langue

LIMIT 13;

pays langue pop
Allemagne Allemand 81.5
Allemagne 81.5
Autriche Allemand 8.7
Autriche 8.7
Belgique Allemand 0.1
Belgique Français 4.1
Belgique Néerlandais 7.0
Belgique 11.2
France Français 66.1
France 66.1
Italie Italien 60.8
Italie 60.8
Pays-Bas Néerlandais 16.9

14 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Fonctions de fenêtrage window functions

Principe

accès aux tuples voisins dans SELECT
un peu comme GROUP BY, mais sans le regroupement

numérotation selon un tri, une partition, les deux. . .

Syntaxe fonctions et clauses

aggrégation usuelles COUNT SUM. . .

fonctions spécifiques RANK LAG. . .

filtrage clause FILTER (WHERE ...)

fenêtre clause OVER (...)

nommage pour réutilisation, clause WINDOW ... AS (...)

15 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Aggrégations partielles FILTER

Syntaxe

AGG(...) FILTER (WHERE ...)

applique une aggrégation sur certains tuples seulement

-- nombre de films avant et après 1950

SELECT

COUNT(*) FILTER(WHERE année < 1950) AS "avant",

COUNT(*) FILTER(WHERE année >= 1950) AS "après",

COUNT(*) AS "total"

FROM films;
avant après total

5 7 12

16 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Numérotation selon un tri

Syntaxe

RANK() OVER (ORDER BY ...)

SELECT *,

RANK() OVER (ORDER BY val DESC)

FROM Notes

ORDER BY id;

id val rank
1 10 5
2 15 2
3 17 1
4 13 4
5 15 2

SELECT *,

RANK() OVER (ORDER BY val ASC) AS r1,

RANK() OVER (ORDER BY val ASC, id ASC) AS r2,

RANK() OVER (ORDER BY val DESC, id DESC)

AS r3

FROM Notes

ORDER BY id;

id val r1 r2 r3
1 10 1 1 5
2 15 3 3 3
3 17 5 5 1
4 13 2 2 4
5 15 3 4 2

17 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Regroupement selon une partition

Syntaxe

AVG(...) OVER (PARTITION BY ...)

à comprendre comme un GROUP BY

SELECT eleve, cours, note,

-- moyenne par cours

AVG(note) OVER (PARTITION BY cours)

AS avc,

-- moyenne par élève

AVG(note) OVER (PARTITION BY eleve)

AS ave

FROM Notations

ORDER BY ave DESC, note DESC;

eleve cours note avc ave
Susie Maths 19 12.25 18.5
Susie Physics 18 13.25 18.5
Hobbes Physics 19 13.25 17.5
Hobbes Maths 16 12.25 17.5
Calvin Physics 11 13.25 10.5
Calvin Maths 10 12.25 10.5
Moe Physics 5 13.25 4.5
Moe Maths 4 12.25 4.5

18 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Calculer la valeur médiane (le tuple médian)

délais d’attente
nom delais
calvin 8
mum 13
dad 7
suzy 10
hobbes 123450

attente moyenne
round

24697.6

tuple médian
nom delais
suzy 10

19 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Aggrégations sur groupes ordonnés

Syntaxe

AGG(...) WITHIN GROUP (ORDER BY ...)

Fonctions mode percentile_cont percentile_disc

SELECT *

FROM AttentePatients

WHERE delais = (

-- calcule l'attente médiane

SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY delais)

FROM AttentePatients

);

20 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Générer une somme partielle

id quand montant description sum
1 2005-02-01 00:00:00 1000.00 versement initial 1000.00
2 2005-05-09 00:00:00 -100.00 tirage 900.00
3 2005-05-11 00:00:00 -450.00 sous-tirage 450.00
4 2006-01-01 00:00:00 200.00 ouf 650.00
5 2006-12-23 00:00:00 -700.00 joyeux noel -50.00
6 2007-02-28 00:00:00 123.45 des sous ! 73.45

21 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Jointure sur opérateur ≤

Principe

associe tous les précédents à chaque opération

complexité en n2. . . plus ou moins inutilisable

-- jointure speciale...

SELECT cc.id, cc.quand, cc.montant, cc.description,

SUM(run.montant)

FROM CompteCheque AS cc

JOIN CompteCheque AS run ON run.id<=cc.id

GROUP BY cc.id, cc.quand, cc.montant, cc.description

ORDER BY cc.id ASC;

22 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Avec une fenêtre window

Syntaxe

AGG(...) OVER (ORDER BY ...)

SELECT id, quand, montant, description,

SUM(montant) OVER (ORDER BY id ASC)

FROM CompteCheque;

id quand montant description sum
1 2005-02-01 00:00:00 1000.00 versement initial 1000.00
2 2005-05-09 00:00:00 -100.00 tirage 900.00
3 2005-05-11 00:00:00 -450.00 sous-tirage 450.00
4 2006-01-01 00:00:00 200.00 ouf 650.00
5 2006-12-23 00:00:00 -700.00 joyeux noel -50.00
6 2007-02-28 00:00:00 123.45 des sous ! 73.45

23 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Générer une moyenne mobile

Syntaxe

AGG(...) OVER (ORDER BY ... ROWS ...)

description de la fenêtre des valeurs à prendre

ajustement automatique au début et à la fin

SELECT *,

AVG(qt) OVER (ORDER BY yr

ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)

AS ma

FROM oilprod

ORDER BY yr ASC;

yr qt ma
1980 3.1 3.6
1981 4.2 4.2
1982 5.3 5.2
1983 6.2 6.2
1984 7.1 7.1
1985 7.9 7.7
1986 8.1 8.1
1987 8.3 8.1
1988 7.8 7.9
1989 7.6 7.7

24 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Requête récursive et fermeture transitive

Nommage d’une requête temporaire WITH

sorte de vue locale à une requête, de sous-requête

calcul indépendant, stockage dans une table temporaire

utilisation à la suite immédiate

peut inclure INSERT, UPDATE, DELETE

attention, barrière d’optimisation : implémentation matérialisée

Calcul itératif WITH RECURSIVE

calcul fermeture transitive : arrêt quand ajout vide

25 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemple moyenne inférieure à la moyenne WITH

réutilisation locale d’une sous-requête nommée. . .

WITH auteur_moy(auteur,moy) AS (

SELECT nom, AVG(durée)

FROM Films JOIN Personnes USING (pid)

GROUP BY nom)

SELECT auteur, moy

FROM auteur_moy

WHERE moy < (SELECT AVG(moy) FROM auteur_moy)

ORDER BY auteur;
auteur moy
Allen 01:42:00
Ozu 01:37:00

26 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Fermeture transitive WITH RECURSIVE

table EnfantDe des ascendants directs

calcul des ascendants et leur degré

stockage table Ascendant

CREATE TABLE Ascendant(

enfant TEXT NOT NULL,

parent TEXT NOT NULL,

degre INTEGER NOT NULL,

PRIMARY KEY(enfant,parent)

);

EnfantDe
enfant parent
Calvin Dad
Calvin Mum
Granny Great Granny
Mum Grand Pa
Mum Granny

27 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemple WITH RECURSIVE

WITH RECURSIVE Ascend(enfant,parent,degre)

AS (

-- initialisation

SELECT enfant, parent, 1

FROM EnfantDe

UNION

-- itérations

SELECT ed.enfant, a.parent, 1+a.degre

FROM Ascend AS a

JOIN EnfantDe AS ed ON (ed.parent=a.enfant)

)

-- stocke le résultat dans Ascendant

INSERT INTO Ascendant(enfant, parent, degre)

SELECT enfant, parent, degre

FROM Ascend;

enfant parent d
Calvin Dad 1
Calvin Mum 1
Granny Great Granny 1
Mum Grand Pa 1
Mum Granny 1
Calvin Grand Pa 2
Calvin Granny 2
Mum Great Granny 2
Calvin Great Granny 3

28 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Contraintes WITH RECURSIVE

WITH RECURSIVE démarrage

SELECT simple, contenu initial

UNION avec l’incrément d’itération

SELECT sur la table elle-même
qui ne doit apparâıtre qu’une fois !

calcul fermeture transitive :
implémentation par une boucle sur une table temporaire

29 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

WITH avec INSERT UPDATE DELETE

Retours

retour des tuples ajoutés, modifiés ou effacés RETURNING ...

WITH archived AS (

DELETE FROM Invoice

WHERE paid AND sent < CURRENT_DATE - INTERVAL '1 month'

RETURNING *

)

INSERT INTO Archive

SELECT * FROM archived;

WITH changed AS (

UPDATE stuff

SET something = 'changed'

WHERE condition

RETURNING *

)

SELECT * FROM changed;

30 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Plus longues séquences de températures croissantes

http://tapoueh.org/

variations journalières
LAG(..., 1) OVER (ORDER BY ...)

longueur des séquences croissantes
WITH RECURSIVE

sélection des plus longues MAX

date temp
2021-01-01 -0.5
2021-01-02 0.9
2021-01-03 2.0
2021-01-04 4.4
2021-01-05 -0.5
2021-01-06 -1.0
2021-01-07 -1.1
2021-01-08 0.5
2021-01-09 -0.8
2021-01-10 1.8

31 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

. . .

WITH RECURSIVE

Delta AS (-- day-on-day temperature delta

SELECT LAG(date, 1) OVER (ORDER BY date) AS dstart,

date AS dend,

temp - LAG(temp, 1) OVER (ORDER BY date) AS inc

FROM Temperature),

RisingTemp AS (-- increasing temperature sequences

SELECT dstart, dend, 1 AS cnt

FROM Delta

WHERE inc >= 0

UNION

SELECT p.dstart, d.dend, p.cnt + 1

FROM RisingTemp AS p

JOIN Delta AS d ON (p.dend = d.dstart)

WHERE d.inc >= 0)

-- keep longest sequences found

SELECT dstart, MAX(cnt) AS cnt

FROM RisingTemp

GROUP BY dstart

ORDER BY cnt DESC, dstart ASC LIMIT 5;

32 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Conclusion WITH et RECURSIVE

Options associées

NOT MATERIALIZED vs MATERIALIZED précalcul ou non

SEARCH BREADTH vs DEPTH . . . ordre d’énumération

CYCLE . . . détection de cycles, construction de chemin

SQL est Turing complet

http://blog.coelho.net/tags.html#Turing-ref

WITH RECURSIVE + MAX(..) OVER + CROSS JOIN

33 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Support JSON

JSON dans une base de donnée relationnelle

représentation hiérarchique d’objects, listes, valeurs. . .

issue (natif) de JavaScript, RFC 8259
modèle objet des applications, très flexible, non relationnel
trâıtés comme une valeur unique, indexable, manipulable

compromis pour limiter la complexité du modèle relationnel

intégré au standard SQL:2016 (ISO/IEC 9075:2016)

impl. partielles : IBM DB2, Oracle DB, Microsoft SQL Server, Postgres

base de données uniquement JSON : MongoDB, Couchbase, CouchDB

{

"personnage": "Calvin",

"age": 6,

"auteur": "Bill Watterson"

} 34 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Support JSON

Implémentation Postgres

types JSON (texte), JSONB (binaire, pré-parsé)

opérateurs nombreux, quelques exemples

J @> D : J contient D
J -> 2, J -> 'a' accès indexé liste ou objets vers JSON
J ? t : clé dans l’object ?

fonctions nombreuses JSON_* JSONB_*, quelques exemples

TO_JSON conversion vers JSON
JSON_INSERT insertion dans une structure
JSON_PRETTY prettyprinter

aggrégations JSON_AGG JSONB_AGG JSON_OBJECT_AGG JSONB_OBJECT_AGG

relations JSON_ARRAY_ELEMENTS JSON_EACH ...

JSON path langage d’extraction, filtrage pour JSON
35 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemples JSON tableau

SELECT i,

JSON '["dim","lun","mar","mer","jeu","ven","sam"]' -> i AS jour

FROM generate_series(-1, 7) as i;

i jour
-1 ”sam”
0 ”dim”
1 ”lun”
2 ”mar”
3 ”mer”
4 ”jeu”
5 ”ven”
6 ”sam”
7

SELECT v FROM json_array_elements('["one", 2, true]') as v; v
”one”
2
true

36 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemples JSON aggrégation

Jour
jid jnom
1 lundi
2 mardi
3 mercredi
4 jeudi
5 vendredi
6 samedi
7 dimanche

SELECT JSON_AGG(jnom) AS jours FROM Jour;

jours
[”lundi”, ”mardi”, ”mercredi”, ”jeudi”, ”vendredi”, ”samedi”, ”dimanche”]

37 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemples JSON objet

CREATE TABLE IF NOT EXISTS Book(

title TEXT NOT NULL,

toc JSONB NOT NULL

);

INSERT INTO Book(title, toc) VALUES

('The Christmas Murder Game',

'{ "title": "The Christmas Murder Game",

"contents": [

{"n": 1, "title": "Chapter One"},

{"n": 2, "title": "Chapter Two"},

{"n": 3, "title": "Chapter Three"},

{"n": 43, "title": "Chapter Forty-Three"}

]

}')

;

38 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemples JSON objet

SELECT

title AS "titre",

-- titres des première et dernière parties du contenu

toc -> 'contents' -> 0 -> 'title' AS "début",

toc -> 'contents' -> -1 -> 'title' AS "fin"

FROM Book;

titre début fin
Tintin et les Picaros
PostgreSQL Documentation ”Preface” ”Bibliography”
Systèmes d’information ”Introduction” ”Révisions”
The Christmas Murder Game ”Chapter One” ”Chapter Forty-Three”

39 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Extensions Postgres

Extensions

regroupement cohérent d’objets liés à une extension
fonctions, opérateurs, aggrégations, casts, tables. . .

installation/désinstallation automatisée, gestion des versions. . .

CREATE EXTENSION intagg;

pgxn : PostgreSQL eXtension Network https://pgxn.org

répertoire d’extensions, description standardisée, tags. . .

40 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemples d’extensions disponibles

pgmp entiers et rationels POW(MPZ '2', 1024)

units gestion d’unités SI UNIT '3.6 km/hour'

semver gestion de versions SEMVER '1.2.3-beta'

pgsphere coordonnées sphériques SPOINT '(0d, 90d)'

safeupdate requiert une clause WHERE sur DELETE UPDATE

UPDATE Mesure SET valeur = 10.0; -- Error!

cron tâches périodiques dans Postgres

dirtyread accès aux tuples cachés par le MVCC

orafce compatibilité avec Oracle

tuplock verrouillage de tuples

41 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemples d’utilisations d’extensions

Extension pgmp

Nombre de Mersenne si 2n − 1 est premier

SELECT

n AS "M",

probab_prime((MPZ '1' << n) - 1, 10) AS prime

FROM generate_series(606, 609) AS n;

M prime
606 0
607 1
608 0
609 0

42 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Exemples d’utilisations d’extensions

Extension pg_sphere

distance entre deux coordonnées sphériques <->

nom coord (radians)
New-York (4.99164166070378 , 0.712094334813686)
Paris (0.0401425727958696 , 0.853466004225227)
Sydney (2.63893782901543 , -0.575958653158129)
Tokyo (2.43997029428807 , 0.623082542961976)

SELECT v1.nom, v2.nom,

ROUND((v1.coord <-> v2.coord) * 6371) AS "km"

FROM Ville AS v1 CROSS JOIN Ville AS v2

WHERE v1.nom < v2.nom

ORDER BY 3 DESC, 1, 2;

nom nom km
Paris Sydney 16896
New-York Sydney 15950
New-York Tokyo 10835
Paris Tokyo 9713
Sydney Tokyo 7731
New-York Paris 5826

43 / 45

SQL Avancé

Fabien

VALUES

Séries

LATERAL

UPSERT

Groups

WINDOW

WITH

JSON

EXTENSION

Conclusion

Conclusion

Autres sujets

PREPARE EXECUTE préparation des requêtes répétées

INHERITS héritage entre tables, relationnel-objet

FOREIGN DATA WRAPPER accès à une autre DB
Oracle, MySQL, MS SQL Server. . . Amazon S3, LDAP, Twitter. . .

Bibliographie

Documentation Postgres https://www.postgresql.org/docs/current/

Planet PostgreSQL https://planet.postgresql.org/

SQL Hacks, Tips & Tools for Digging into Your Data
Andrew Cumming & Gordon Russel, O’Reilly Hacks Series

44 / 45

SQL Avancé

Fabien Coelho

Mines Paris – PSL

Janvier 2023

Composé avec LATEX, révision 4420

45 / 45

