SQL Avancé

Fabien

SQL Avancé

Fabien Coelho

Mines Paris — PSL

Janvier 2023

Composé avec IATEX, révision 4420

1/45

Valeurs directes

SQL Avancé . SQL Avancé
- Construction d'une table au vol b
VNS m construire table constante au vol
m SELECT . UNION SELECT UNION ... U Séries
m VALUES (...), (...), justifie le S !
utilisé pour INSERT, expressions ANY/ALL. ..
SELECT 1 AS jour, mois.nom AS mois jour | mois
FROM (VALUES i J;g'f:tet
('juillet'), ('aolt'), ('septembre'), 1 | septembre
('octobre'), ('novembre'), ('décembre'), 1 | octobre
, , 1 | novembre
hoaat)) 1 | décembre
AS mois(nom); 1

3/45

%,
P,
%,g%o

L)

Wion wseS: Q:IE" S
Loan oo ? MQ{‘

https://datacharmer.org/

2/45

Séries

Séquence énumérée

m combien de vendredi 13 au 20&éme siécle ?

m quelles valeurs de clés primaires sont inutilisées ?

Génération d'une relation

generate_series

m génération d'une relation, début, fin et saut
m entiers ou TIMESTAMPTZ (bornes) et INTERVAL

Vendredi 13
SELECT COUNT(*) AS "Vendredi 13" T
FROM generate_series(1901,2000) AS year
CROSS JOIN generate_series(1,12) AS month
WHERE EXTRACT(DOW FROM DATE (year || '-' || month || '-13')) = 5;
4/45

Requéte a coté

LATERAL

SQL A é - =
DAl Dans une jointure

Fabien

LATERAL

SQL Avancé

Fabien

UPSERT

m utiliser les valeurs des tuples a sa gauche
m nouvelle relation fonction de ce qui précede

m utile ? expressions, jointures, aggrégations, fenétres. ..

LATERAL generate_series(0, i) AS j;

i
0
-— version avec LATERAL 1
SELECT i, j :
FROM generate_series(0, 3) AS i 2
CROSS JOIN 2
3
3
3

WNHONFHORO O-.

Exemple INSERT ON CONFLICT

Données initiales

INSERT INTO Heroes(name) VALUES ('Calvin')
ON CONFLICT (name) DO NOTHING;

INSERT INTO Heroes VALUES (2, 'Hobbes')
ON CONFLICT (id) DO UPDATE SET name = EXCLUDED.name;

INSERT INTO Heroes VALUES (3, 'Susie')
ON CONFLICT (name) DO NOTHING;

Données finales

5/45

name

Calvin
hbs

name

W N =

Calvin
Hobbes
Susie

7/45

SQL Avancé

Fabien

UPSERT

SQL Avancé

Fabien

UPSERT

UPSERT

INSERT ou UPDATE ou DELETE

Fusion de données

m insertion ou mise a jour si existe déja
économise un test et sa latence

m différentes syntaxes selon les bases de données. . .
INSERT ... ON CONFLICT ..., MERGE ..., ...

m INSERT ... ON CONFLICT DO NOTHING//UPDATE c..
avec clause WHERE, données initiales EXCLUDED

m MERGE INTO . USING ON WHEN ...
permet toutes les opérations
6/45
Exemple MERGE
Stock initial Variations Stock final
nom qt nom qt nom qt
Champagne 10 Champagne | -3 Champagne 7
Coteau du Layon | 12 Riesling -3 Coteau du Layon | 12
Riesling 3 Sancerre 6 Sancerre 6
MERGE INTO Stock AS s
USING LivraisonVente AS 1lv ON s.nom = lv.nom
WHEN NOT MATCHED AND 1lv.qt > O THEN

INSERT VALUES(1lv.nom, 1lv.qt)

WHEN MATCHED AND s.qt + lv.qt > O THEN
UPDATE SET qt = s.qt + 1lv.qt

WHEN MATCHED THEN
DELETE;

8/45

SQL Avancé

Fabien

Groups

SQL Avancé

Fabien

Groups

GROUPING SETS, CUBE, ROLLUP

Aggrégations combinées

m aggrégation sur des sous-ensembles de GROUP BY
GROUPING SETS liste de groupes de colonnes

ROLLUP tous les préfixes de colonnes, y compris vide
CUBE tous les sous-ensembles de colonnes

m équivalent a UNION, valeurs non gardées remplacées par NULL

Cumuls par pays et par langues

SELECT pays, langue, SUM(pop) AS pop
FROM PaysLanguePopulation
GROUP BY GROUPING SETS
((pays), (langue), ())
ORDER BY pays, langue;

9/45
pays langue pop
Allemagne 81.5
Autriche 8.7
Belgique 11.2
France 66.1
Italie 60.8
Pays-Bas 16.9
Suisse 7.4

Allemand 95.5
Francais 71.9
Italien 61.3
Néerlandais 23.9
252.6

11/45

SQL Avancé

Fabien

Groups

SQL Avancé

Fabien

Groups

Exemple GROUPING SETS

CREATE TABLE PaysLanguePopulation(
id SERIAL PRIMARY KEY,
pays TEXT NOT NULL,
langue TEXT NOT NULL,
pop NUMERIC NOT NULL,
UNIQUE (pays, langue)

QOu avec UNION

SELECT pays AS pays, NULL AS langue,
SUM(pop) AS pop

FROM PaysLanguePopulation

GROUP BY pays -- premier groupe

UNION

SELECT NULL, langue, SUM(pop)

FROM PaysLanguePopulation

GROUP BY langue -- second groupe

UNION

SELECT NULL, NULL, SUM(pop)

FROM PaysLanguePopulation

-- dernier groupe

ORDER BY pays, langue;

pays langue pop
Allemagne | Allemand 81.5
Autriche Allemand 8.7
Belgique Allemand 0.1
Belgique Francais 4.1
Belgique Néerlandais 7.0
France Frangais 66.1
Italie Italien 60.8
Pays-Bas Néerlandais | 16.9
Suisse Allemand 5.2
Suisse Francais 1.7
Suisse Italien 0.5
10/45
moins performant

pays langue pop

Allemagne 81.5

Autriche 8.7

Belgique 11.2
France 66.1

Italie 60.8

Pays-Bas 16.9

Suisse 7.4

Allemand 95.5

Francais 71.9

Italien 61.3

Néerlandais 23.9

252.6

12/45

SQL Avancé

Fabien

Groups

SQL Avancé

Fabien

WINDOW

Exemple ROLLUP

SELECT pays, langue,

SUM(pop) AS pop
FROM PaysLanguePopulation
GROUP BY ROLLUP(pays, langue)
-- équivalent & GROUPING SETS

-- ((pays, langue), (pays), ()

ORDER BY langue, pays
LIMIT 12;

Fonctions de fenétrage

pays langue pop
Allemagne | Allemand 81.5
Autriche Allemand 8.7
Belgique Allemand 0.1
Suisse Allemand 5.2
Belgique Francais 4.1
France Francais 66.1
Suisse Francais 1.7
Italie Italien 60.8
Suisse Italien 0.5
Belgique Néerlandais 7.0
Pays-Bas Néerlandais | 16.9
Allemagne 81.5
13/45

window functions

m acces aux tuples voisins dans SELECT

un peu comme GROUP BY, mais sans le regroupement

® numérotation selon un tri, une partition, les deux. . .

aggrégation usuelles
fonctions spécifiques
filtrage clause

fenétre clause

nommage pour réutilisation, clause

fonctions et clauses

COUNT SUM. ..

RANK LAG...

FILTER (WHERE ...)

OVER (...)

WINDOW ... AS (...)
15 /45

SQL Avancé

Fabien

Groups

Exemple CUBE

SELECT pays, langue,

SUM(pop) AS pop
FROM PaysLanguePopulation
GROUP BY CUBE(pays, langue)
-- équivalent a GROUPING SETS
-- ((pays, langue),
-- (pays), (langue), ()
ORDER BY pays, langue
LIMIT 13;

Aggrégations partielles

pays langue pop
Allemagne | Allemand 815
Allemagne 815
Autriche Allemand 8.7
Autriche 8.7
Belgique Allemand 0.1
Belgique Francais 4.1
Belgique Néerlandais 7.0
Belgique 11.2
France Francais 66.1
France 66.1
Italie Italien 60.8
Italie 60.8
Pays-Bas Néerlandais | 16.9

14 /45

FILTER

SQL Avancé
Syntaxe
Fabien

WINDOW

m AGG(...) FILTER (WHERE ...

m applique une aggrégation sur certains tuples seulement

-- nombre de films avant et aprés 1950

SELECT

COUNT(*) FILTER(WHERE année < 1950) AS "avant",

COUNT(*) FILTER(WHERE année >=

COUNT (*) AS "total"
FROM films;

1950) AS "apres",

avant | apres

total

12

16/45

SQL Avancé

Fabien

WINDOW

SQL Avancé

Fabien

WINDOW

Numérotation selon un tri

SQL Avancé
Syntaxe

m RANK() OVER (ORDER BY ...)

SELECT =*,

RANK() OVER (ORDER BY

FROM Notes
ORDER BY 1id;

SELECT =*,

RANK() OVER (ORDER BY
RANK() OVER (ORDER BY
RANK() OVER (ORDER BY

AS r3
FROM Notes
ORDER BY 1id;

val DESC)

val ASC, id ASC) AS r2,
val DESC, id DESC)

Fabien

Calculer la valeur médiane (le tuple médian)

délais d’attente

nom delais
calvin 8
mum 13
dad 7
suzy 10
hobbes | 123450

id | val | rank
1 10 5
2 15 2
3 17 1
4 13 4
5 15 2 WINDOW
val ASC) AS ri, id | val | r1 | r2|r3
1 10 1 1 5
2 15 3 3 3
3 17 5 5 1
4 13 2 2 4
5 15 3 4 2
17 /45
SQL Avancé
Fabien
attente moyenne
round
24697.6
tuple médian WINDOW
nom | delais
suzy 10
19/45

Regroupement selon une partition

m AVG(...) OVER (PARTITION BY ...)

m a comprendre comme un GROUP BY

SELECT eleve, cours, note,

—-— moyenne par cours ;’e"_e K/‘l’”'s "Oltg 12""2’; 1‘;"2
usie aths . .

AVG(note) OVER (PARTITION BY cours) Susic Physics 18 | 1325 | 185

AS avce, Hobbes | Physics 19 | 13.25 | 17.5

-- moyenne par éléve Hobbes | Maths 16 | 12.25 | 17.5
AVG(note) OVER (PARTITION BY eleve) Calvin | Physics | 11 | 13.25 | 10.5
AS Calvin Maths 10 | 12.25 | 105

ave Moe Physics 5| 1325 | 45

FROM Notations Moe Maths 4 | 12.25 45

ORDER BY ave DESC, note DESC;

18/45

Aggrégations sur groupes ordonnés

m AGG(...) WITHIN GROUP (ORDER BY ...)

m Fonctions mode percentile_cont percentile_disc

SELECT *

FROM AttentePatients

WHERE delais = (
-- calcule l'attente médiane
SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY delais)
FROM AttentePatients

);

20/45

SQL Avancé

Fabien

WINDOW

SQL Avancé

Fabien

WINDOW

Générer une somme partielle

id | quand montant | description sum
1 | 2005-02-01 00:00:00 1000.00 | versement initial | 1000.00
2 | 2005-05-09 00:00:00 -100.00 | tirage 900.00
3 | 2005-05-11 00:00:00 -450.00 | sous-tirage 450.00
4 | 2006-01-01 00:00:00 200.00 | ouf 650.00
5 | 2006-12-23 00:00:00 -700.00 | joyeux noel -50.00
6 | 2007-02-28 00:00:00 123.45 | des sous ! 73.45

Avec une fenétre

21/45

window

m AGG(...) OVER (ORDER BY ...)

SELECT id, quand, montant, description,
SUM(montant) OVER (ORDER BY id ASC)

FROM CompteCheque;

id | quand montant | description sum
1 | 2005-02-01 00:00:00 1000.00 | versement initial | 1000.00
2 | 2005-05-09 00:00:00 -100.00 | tirage 900.00
3 | 2005-05-11 00:00:00 -450.00 | sous-tirage 450.00
4 | 2006-01-01 00:00:00 200.00 | ouf 650.00
5 | 2006-12-23 00:00:00 -700.00 | joyeux noel -50.00
6 | 2007-02-28 00:00:00 123.45 | des sous ! 73.45

23/45

SQL Avancé

Fabien

WINDOW

SQL Avancé

Fabien

WINDOW

Jointure sur opérateur <

m associe tous les précédents a chaque opération

2

m complexité en n°... plus ou moins inutilisable

-— jointure speciale...

SELECT cc.id, cc.quand, cc.montant, cc.description,

SUM(run.montant)
FROM CompteCheque AS cc

JOIN CompteCheque AS run ON run.id<=cc.id

GROUP BY cc.id, cc.quand, cc.montant, cc.description

ORDER BY cc.id ASC;

Générer une moyenne mobile

22/45

m AGG(...) OVER (ORDER BY ROWS ...)
m description de la fenétre des valeurs a prendre

m ajustement automatique au début et a la fin

SELECT =*,
AVG(qt) OVER (ORDER BY yr
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
AS ma
FROM oilprod
ORDER BY yr ASC;

yr qt ma
1980 | 3.1 | 3.6
1981 | 4.2 | 4.2
1982 | 5.3 | 5.2
1983 | 6.2 | 6.2
1984 | 7.1 | 7.1
1985 | 7.9 | 7.7
1986 | 8.1 | 8.1
1987 | 8.3 | 8.1
1988 | 7.8 | 7.9
1989 | 7.6 | 7.7

24 /45

Requéte récursive et fermeture transitive Exemple moyenne inférieure a la moyenne WITH

SQL Avancé SQL Avancé
Fabien Nommage d'une requéte temporaire WITH Fabien m réutilisation locale d'une sous-requéte nommée. . .
m sorte de vue locale a une requéte, de sous-requéte WITH auteur_moy(auteur,moy) AS (
m calcul indépendant, stockage dans une table temporaire SELECT nom, AVG(durée)
g o FROM Films JOIN Personnes USING (pid)
m utilisation a la suite immédiate
) GROUP BY nom)
m peut inclure INSERT, UPDATE, DELETE SELECT auteur, moy
T m attention, barriere d'optimisation : implémentation matérialisée o FROM auteur_moy
WHERE moy < (SELECT AVG(moy) FROM auteur_moy)
Calcul itératif WITH RECURSIVE ORDER BY auteur;
e R)) auteur | moy
m calcul fermeture transitive : arrét quand ajout vide Allen | 01:42:00
Ozu 01:37:00
25 /45 26 /45
Fermeture transitive WITH RECURSIVE Exemple WITH RECURSIVE
Sl s el (s WITH RECURSIVE Ascend(enfant,parent,degre)
Fabien Fabien AS (
m table EnfantDe des ascendants directs —— 4nitialisation
m calcul des ascendants et leur degré SELECT enfant, parent, 1 enfant | parent d
EnfantDe FROM EnfantDe Calvin Dad 1
m stockage table Ascendant enfant | parent UNION Calvin | Mum 1
Calvi Dad —— it8 ; Grann Great Grann 1
CREATE TABLE Ascendant(C:l\\;:: M?Jm vterations Mum g Grand Pa g 1
enfant TEXT NOT NULL, Granny | Great Granny SELECT ed.enfant, a.parent, 1+a.degre Mum Granny 1
o parent TEXT NOT NULL, Mum | Grand Pa - FROM Ascend AS a Calvin | Grand Pa 2
degre INTEGER NOT NULL, Mum Granny JOIN EnfantDe AS ed ON (ed.parent=a.enfant) :;Wm Granny 2
) um Great Granny | 2
PRIMARY KEY(enfant,parent) Calvin Great Granny | 3
Y -- stocke le résultat dans Ascendant

INSERT INTO Ascendant(enfant, parent, degre)
SELECT enfant, parent, degre
FROM Ascend;

27 /45 28 /45

SQL Avancé

Fabien

WITH

SQL Avancé

Fabien

WITH

Contraintes WITH RECURSIVE

WITH RECURSIVE démarrage
SELECT simple, contenu initial

UNION avec l'incrément d'itération

SELECT sur la table elle-méme
qui ne doit apparaitre qu'une fois !

m calcul fermeture transitive :
implémentation par une boucle sur une table temporaire

29 /45
Plus longues séquences de températures croissantes
http://tapoueh.org/
date temp
o . 2021-01-01 | -0.5
m variations journaliéres 2021-01-02 0.9
LAG(..., 1) OVER (ORDER BY ...) 2021-01-03 | 2.0
2021-01-04 | 4.4
m longueur des séquences croissantes 2021-01-05 | -0.5
2021-01-06 | -1.0
WITH RECURSIVE 2021-01-07 | -11
m sélection des plus longues MAX 2021-01-08 | 05
2021-01-09 | -0.8
2021-01-10 | 18
31/45

SQL Avancé

Fabien

WITH

SQL Avancé

Fabien

WITH

WITH avec INSERT UPDATE DELETE

m retour des tuples ajoutés, modifiés ou effacés RETURNING
WITH archived AS (
DELETE FROM Invoice
WHERE paid AND sent < CURRENT_DATE - INTERVAL '1 month'
RETURNING *
)
INSERT INTO Archive
SELECT * FROM archived;

WITH changed AS (
UPDATE stuff
SET something = 'changed'
WHERE condition
RETURNING *

)

SELECT * FROM changed;

30/45

WITH RECURSIVE
Delta AS (-- day-on-day temperature delta
SELECT LAG(date, 1) OVER (ORDER BY date) AS dstart,
date AS dend,
temp - LAG(temp, 1) OVER (ORDER BY date) AS inc
FROM Temperature),

RisingTemp AS (-- increasing temperature sequences
SELECT dstart, dend, 1 AS cnt
FROM Delta
WHERE inc >= 0

UNION

SELECT p.dstart, d.dend, p.cnt + 1
FROM RisingTemp AS p
JOIN Delta AS d ON (p.dend = d.dstart)
WHERE d.inc >= 0)

-- keep longest sequences found

SELECT dstart, MAX(cnt) AS cnt

FROM RisingTemp

GROUP BY dstart

ORDER BY cnt DESC, dstart ASC LIMIT 5;

32/45

SQL Avancé

Fabien

WITH

SQL Avancé

Fabien

JSON

Conclusion WITH et RECURSIVE

Options associées

m NOT MATERIALIZED vs MATERIALIZED précalcul ou non
m SEARCH BREADTH vs DEPTH ... ordre d'énumération
m CYCLE ... détection de cycles, construction de chemin

SQL est Turing complet

m http://blog.coelho.net/tags.html#Turing-ref
m WITH RECURSIVE + MAX(..) OVER + CROSS JOIN

Support JSON

Implémentation Postgres

33/45

types JSON (texte), JSONB (binaire, pré-parsé)
opérateurs nombreux, quelques exemples
m J @ D: Jcontient D
mJ -> 2, J-> 'a' acceés indexé liste ou objets vers JSON
m J ? t: clé dans 'object ?
fonctions nombreuses JSON_* JSONB_*, quelques exemples

m TO_JSON conversion vers JSON
m JSON_INSERT insertion dans une structure
m JSON_PRETTY prettyprinter

aggrégations JSON_AGG JSONB_AGG JSON_OBJECT_AGG JSONB_OBJECT_AGG
relations JSON_ARRAY_ELEMENTS JSON_EACH ...
JSON path langage d’extraction, filtrage pour JSON

35/45

SQL Avancé

Fabien

JSON

SQL Avancé

Fabien

JSON

Support JSON

JSON dans une base de donnée relationnelle

m représentation hiérarchique d'objects, listes, valeurs. . .
m issue (natif) de JavaScript, RFC 8259
m modele objet des applications, tres flexible, non relationnel
m traltés comme une valeur unique, indexable, manipulable
m compromis pour limiter la complexité du modele relationnel
m intégré au standard SQL:2016 (ISO/IEC 9075:2016)

m impl. partielles : IBM DB2, Oracle DB, Microsoft SQL Server, Postgres

m base de données uniquement JSON : MongoDB, Couchbase, CouchDB

{
"personnage": "Calvin",
"age": 6,
"auteur": "Bill Watterson"
} 34/45
Exemples JSON tableau
SELECT i,
JSON ! ["dim" s "Tun" s "mar" s "mer" s "jeu" s "yen" R "sam"] ' —> i AS jO'I.lI'
FROM generate_series(-1, 7) as 1i;
i | jour
-1 | "sam
0 dim
1 "lun”
2 | "mar
3 | "mer
4 'jeu"”
5 "ven'
6 sam
7
SELECT v FROM json_array_elements('["one", 2, truel') as v; v
"one’
2
true
3645

Exemples JSON aggrégation Exemples JSON objet

Sat Avance SQLAVNE . CREATE TABLE IF NOT EXISTS Book(
IFetiitem Jour IFetiftam title TEXT NOT NULL,
Jid | jnom toc JSONB NOT NULL
1 | lundi)
2 | mardi ’
i mﬂfmdi INSERT INTO Book(title, toc) VALUES
5 Jeud' di ('The Christmas Murder Game',
venaredi
6 | samedi '{ "title": "The Christmas Murder Game",
7 | dimanche "contents": [
"n": 1, "title": "Chapter One"},
JSON SELECT JSON_AGG(jnom) AS jours FROM Jour; JSON "n": 2, "title": "Chapter Two"Z,
{"n": 3, "title": "Chapter Three"},
Jours "n": 43, "title": "Chapter Forty-Three"}
["lundi”, "mardi”, "mercredi”, " jeudi”, "vendredi”, "samedi”, "dimanche”]]
13D
37/45 38/45
Exemples JSON objet Extensions Postgres
SQL Avancé SQL Avancé
Fabien Fabien

SELECT :
title AS "titre", ExtenSIons

-- titres des premiére et derniére parties du contenu
toc -> 'contents' -> 0 -> 'title' AS "début",
toc —> 'contents' -> -1 -> 'title' AS "fin"

FROM Book; m installation/désinstallation automatisée, gestion des versions. . .

CREATE EXTENSION intagg;

m regroupement cohérent d'objets liés a une extension
fonctions, opérateurs, aggrégations, casts, tables. . .

Json 'tlifr:im <t Picaros acbut fin m pgxn : PostgreSQL eXtension Network https://pgxn.org
PostgreSQL Documentation | "Preface” " Bibliography" SEEEEN répertoire d’'extensions, description standardisée, tags. ..
Systémes d’information " Introduction” " Révisions”
The Christmas Murder Game | "Chapter One” | " Chapter Forty-Three"

39/45 40/45

SQL Avancé

Fabien

EXTENSION

SQL Avancé

Fabien

EXTENSION

Exemples d’extensions disponibles

pgmp entiers et rationels

units gestion d'unités SI

semver gestion de versions

pgsphere coordonnées sphériques

requiert une clause WHERE sur DELETE UPDATE
UPDATE Mesure SET valeur = 10.0;

safeupdate

cron taches périodiques dans Postgres

dirtyread acceés aux tuples cachés par le MVCC
orafce compatibilité avec Oracle

tuplock verrouillage de tuples

Exemples d'utilisations d'extensions

Extension pg_sphere

Exemples d'utilisations d’'extensions

SQL Avancé
POW(MPZ '2', 1024) Fabien
UNIT '3.6 km/hour' .
Extension pgmp
SEMVER '1.2.3-beta'
SPOINT '(0d, 90d)' m Nombre de Mersenne si 2" — 1 est premier
SELECT M | prime
-= Error! 606 0
n AS ||Ml| s 1
probab_prime((MPZ '1' << n) - 1, 10) AS prime 28; 0
FROM generate_series(606, 609) AS n; 609 0
EXTENSION
41/45 42 /45

Conclusion

SQL Avancé 5
Autres sujets

Fabien
m PREPARE EXECUTE préparation des requétes répétées

m distance entre deux coordonnées sphériques <> _ _ _
m INHERITS héritage entre tables, relationnel-objet
nom coord (radians) m FOREIGN DATA WRAPPER acces a une autre DB
New-York | (4.99164166070378 , 0.712094334813686) :
Paris (0.0401425727058696 , 0.853466004225227) Oracle, MySQL, MS SQL Server... Amazon S3, LDAP, Twitter. ..
Sydney (2.63893782901543 , -0.575958653158129)
Tokyo (2.43997029428807 , 0.623082542961976) Blbllographle
nom nom km
SELECT vl.nom, v2.nom, Paris Sydney | 16896 m Documentation Postgres https://www.postgresql.org/docs/current/
ROUND((v1.coord <-> v2.coord) * 6371) AS "km" New-York | Sydney | 15950
FROM Ville AS v1 CROSS JOIN Ville AS v2 Elev.v—York $otyo 18??3 Conclusion m Planet POSth’ESQL https://planet.postgresql.org/
aris OKyO 5 - o o
WHERE v1.nom < v2.nom Sydney Tokyo | 7731 m SQL Hacks, Tips & Tools for Digging into Your Data
ORDER BY 3 DESC, 1, 2; New-York | Paris 5826 Andrew Cumming & Gordon Russel, O'Reilly Hacks Series

43/45 44 /45

Fabien Coelho

Mines Paris — PSL

Janvier 2023

Composé avec IATEX, révision 4420

45 /45

