
PIPS: Internal Representation of Fortran and C

Code

Mehdi Amini
Fabien Coelho

Béatrice Creusillet
Serge Guelton
François Irigoin
Pierre Jouvelot
Ronan Keryell

Thi Viet Nga Nguyen
Rémi Triolet
Pierre Villalon

CRI, M&S, MINES ParisTech

August 9, 2017, revision r23412

1

Contents

1 External Data Structures 4
1.1 Vector . 5
1.2 Set of Affine Constraints . 5

2 Entities: Variables, Functions, Operators, Constants, Labels... 6
2.1 Entity . 6
2.2 Type . 7

2.2.1 Area Type . 7
2.2.2 Variable Type . 8
2.2.3 Basic Type . 8
2.2.4 Dimension . 9
2.2.5 C Qualifiers . 9
2.2.6 Functional Type . 9
2.2.7 Parameter Type and Mode 10

2.3 Storage . 10
2.3.1 RAM Storage . 11
2.3.2 Formal Storage . 12

2.4 Value . 12
2.4.1 Symbolic Value . 12
2.4.2 Program Variables . 13
2.4.3 Constant Value . 13

3 Code, Statements and Instructions 13
3.1 Module Code . 13
3.2 Programming Languages . 14
3.3 Callees . 14
3.4 Statement . 15

3.4.1 Mappings from statement to statement 17
3.4.2 Mappings from statement to integer 17
3.4.3 Mappings from statement (task) to its schedule 17

3.5 Instruction . 18
3.5.1 Sequence . 18
3.5.2 Conditional (a.k.a. Test) 18
3.5.3 Switch . 19
3.5.4 DO Loop, Sequential or Parallel 19
3.5.5 While Loop . 20
3.5.6 For loop . 20
3.5.7 Function Call . 20
3.5.8 Control Flow Graph (a.k.a. Unstructured) 20
3.5.9 Control Flow Graph Node 21
3.5.10 Mappings between Statements and Control Nodes 23

3.6 Extensions . 24
3.6.1 Pragma . 24

3.7 Synchronization . 25

2

4 Expressions 25
4.1 Abstract Tree of an Expression: Syntax 25

4.1.1 Reference . 26
4.1.2 Range . 26
4.1.3 Function Call . 26
4.1.4 Cast . 26
4.1.5 Sizeof . 26
4.1.6 Subscript . 27
4.1.7 Application . 27

4.2 Affine Representation of an Expression 27

5 Semantics Analysis 27
5.1 Transformer . 27
5.2 Predicate . 28

6 Consistency 28
6.1 Module consistency . 28
6.2 Program consistency . 29
6.3 Implicit consistency . 29
6.4 NewGen consistency . 29

7 Disk Storage 29

8 Conclusion 29

3

Introduction

This document contains the high-level description of data structures used in
PIPS as internal representations of programs. These data structures are de-
clared using the NewGen Data Definition Language, which insulates them from
a particular programming language. They currently are translated into C or
Common Lisp declarations and basic run-time support routines, such as make,
free. . . A basic understanding of Newgen declarations1 is assumed throughout
this document, but the notation is close enough to standard programming lan-
guage to be interpreted by newcommers. For more information about NewGen
see [4, 5].

This document is part of PIPS documentation and its LATEXversion is lo-
cated in $PIPS_ROOT/src/Documentation/newgen/ri.tex (ri stands for In-
ternal Representation, représentation interne in French). It is used to
generate a PIPS include file called $PIPS_ROOT/include/ri.h. The func-
tions available to manipulate these data structures are grouped in library
$PIPS_ROOT/src/Libs/ri-util. These functions are grouped in files according
to the main type in their signatures. There is no partial order between types
used to build the internal representation, but they are clustered in a (hopefully)
meaningful way.

Some external C data structures, used by the PIPS internal representation,
are described in Section 1. They key data structures entity (variables and
functions), code (instructions) and expression are introduced in Section 2, 3
and 4. The binding of Fortran to these data structures is explained. An addi-
tional data structure, transformer, used for interprocedural analyses but not
by the internal representation, is described in Section 5. The transformer data
structure is used to abstract the store transformations performed by statement
and procedure, as well as preconditions. This domain was part of PIPS initial
main thrust, interprocedural parallelization and analyses, which explain why it
is still declared with the internal representation2. However, separate libraries
(transformers and semantics) contain the corresponding code.

The binding of Fortran to the PIPS internal representation is covered in
greater details in Technical Report EMP-CAII-E105 (in French). The data
structure management tool NewGen is introduced in TR EMP-CRI-A191.

1 External Data Structures

Two external data types appear in PIPS internal representation: Pvecteur and
Psysteme. Other types of C3 Linear Algebra Library also appear in PIPS code:
Pcontrainte, which is a component of Psysteme, Ppolyedre for polyhedra, Psg
for generating systems, Pmatrix for matrices, and Ppolynome, which is used for
expressing program complexity (see complexity in pipsmake-rc documentation)

1If you edit this document, please remember that NewGen declarations introduced by
\domain must fit on one line in the source LATEXfile, although they may be printed on several
lines by LATEX.

2It also used to be the case for domain effect, but its declaration has been moved in
effects.newgen

4

1.1 Vector

External Pvecteur

Type Pvecteur is used to represent affine expressions such as 3I+2 (see also
type normalized in Section 4) or affine constraints such as 3I + J <= 2 or 3I
== J. The representation is sparse and a special dimension, called TCST, is used
for numerical constants. The constraints are used to build systems of equations
and inequalities. Such systems are of type Psysteme.

An object of type Pvecteur is a list of pairs (c, v) where c is a numerical
coefficient and v is a variable. The coefficient is an integer, strictly greater or
lesser than zero, since zero components are not part of a sparse representation.
For objects of type Pvecteur used in PIPS, the variable must be either an
entity (see Section 2) or a special predefined variable TCST. Since module names
are used to prefix names of regular variables, no name conflict with a program
variable called TCST can occur.

Expressions in programs are stored as affine integer expressions, wherever
possible. This affine storage does not preclude the standard storage and simply
is a second representation. The consistency between the two representations is
hard to maintain, especially during program transformations.

The type Pvecteur is imported from our Integer Linear Algebra Library,
also called C3 library because its development was funded by the CNRS C3
program. See ??? for more details about this library and its content.

1.2 Set of Affine Constraints

External Psysteme

Type Psystem is used to store systems of affine equalities and inequalities.
They are used in many areas of PIPS such as semantics analysis, region analy-
sis, dependence testing, code generation. . . They appear here for the semantics
analysis and are used by the predicate type (see Section 5).

Objects of type Psysteme contain six fields:

• a list of equalities,

• the number of equalities,

• a list of inequalities,

• the number of inequalities,

• the dimension of the vector space,

• a basis of the vector space.

Redundant information is stored to accelerate frequent tests and consistency
must be insured carefully.

Like the Pvecteur type, data structure Psysteme is imported from our Inte-
ger Linear Algebra Library. This library contains an extensive set of functions
on Psystems. See ??? for more details.

5

2 Entities: Variables, Functions, Operators,
Constants, Labels...

Data structure entity is a key PIPS data structure. Entities are stored in a
unique3 hash table, the global symbol table. They can be accessed by name.

2.1 Entity

tabulated entity = name:string x type x storage x initial:value x

kind:int

Any named object in a Fortran or C program is represented by an object
of type entity. Such object could be a module (function or subroutine or pro-
gram), a variable, a common, an operator, an intrinsic, a constant, a label, a
type, a derived type (struct, union and enum), a member. . . Field name con-
tains the global name of the object, more or less as it appears in the source
code, but concatenated to a prefix string and a special one-character separator,
MODULE_SEP_STRING. The prefix string is the name of the package defining the
functional scope of the object. The package name may be a module name, the
reserved name TOP-LEVEL for global objects, or some other reserved names for
objects specific to some analysis, e.g. *SEMANTICS* for value names used in the
semantics analysis. Note the use of star, *, to avoid name collision with user
defined name.

To sum up, an entity name is unique whithin an application and known
internally by its global name. It is made of a local name and a module name.
The local name contains the user source name.

Several other tricks are used to store information in local names. To
spot main modules which cannot be distinguished from subroutines by the
typing information, their local names are prefixed by a constant charac-
ter, MAIN_PREFIX. Local names of labels also are prefixed by one character,
LABEL_PREFIX. Two special label entities are used and defined by two special
names: EMPTY_LABEL_NAME, which is used for statements with no label (see
Function empty label p()), and RETURN_LABEL_NAME which is used to define
the unique return point of a module. Every RETURN statement is translated into
a jump to this artificial return point. In the same way, PIPS-specific prefixes
and separators are used to dsitinguish special entities such as struct, union,
enum and their members. Finally, the scope information also is stored in the
local name.

As expected, field type specifies the type of the object (see Section 2.2), field
storage defines the memory allocation class (see Section 2.3) for the object (e.g.
dynamic, static,...).

The last field, initial, contains the initial value of the object, if it is
known. A value can be anything that makes sense. For instance, the value of a
module is its code4. When the value is unknown, it is stored as unknown, not
as undefined.

3Retrospectively, choosing a unique symbol table was a mistake because it does not scale
well for medium or large size programs. However, having only one symbol table provides a
uniform access to information about entities, whether they are global, local or meta variables.

4The field code does not lead to the code internal representation. The PIPS database must
be queried for resource DBR CODE.

6

Functions mostly dealing with entities are grouped in ri-util/entity.c

and ri-util/variable.c for entities used to represent program variables.
Functions using list to encode a small set of entities are grouped in
ri-util/arguments.c.

Note the tabulated attribute. It means that NewGen keeps track implicitly
of all entities allocated. All entities (and objects of other tabulated types) are
accessible through a huge hash table using their names as keys.

entity int = entity->int

This domain is used to map entities towards integer. Any interpretation of
this integer is possible. It could be the value of a scalar integer variable, the
offset of a variable in a common, the lengths of commons, etc.

entity to entity = entity->entity

This domain maps an entity to another entity.

2.2 Type

Type = statement:unit + area + variable + functional +

varargs:type + unknown:unit + void:qualifier* + struct:entity*

+ union:entity* + enum:entity*

Obviously, type type is used to represent the type of an entity. This type
is defined as union to cover the needs of different kinds of entities. Member
statement is used for statement labels, since a label points towards a statement.
Member area is used for commons. Additional areas are defined as implicit
common: the static and the dynamic areas associated to a module, as well as
the stack and heap areas. Their specific names are defined in ri-util.h. The
static dynamic areas contain variables of static sizes. The stack and heap areas
contain variables of sizes known at run-time and variables dynamically allocated
(e.g. malloc).

Member variable is used for all variables and symbolic constants. It also is
used for formal parameters and for results of functions. Member functional is
used for modules which are functions, subroutines and main programs. Member
varargs is used to declare intrinsics with varying number of arguments such as
MAX. Member void is used to declare the functional types of subroutines and
programs.

2.2.1 Area Type

Area = size:int x layout:entity*

Type area is used to represent storage sections for variables such as com-
mons or static or dynamic areas. Areas for Fortran commons are global objects
in the current implementation. The package name used in the corresponding
entity name must be TOP-LEVEL in Fortran, but this is not explictly enforced.
Dynamic commons defined by the Fortran standard are not implemented, as is
the case with most Fortran 77 compiler. Dynamic commons cannot be statically
identified because a dynamic binding is used.

Field size is the amount of memory space expressed in bytes, or according
to the Fortran standard in character storage unit (X3.9-1978, § 2.13), which

7

is required to allocate the area in memory. This space is the largest5 space
encountered in all modules of a program. At some stages, PIPS used to enforce
a unique size for all declarations of a common, but this is not true in the current
version which only emits a warning.

Field layout is the list of all variables declared allocated in the area. These
variables may have been declared in different modules, where the common itself
is declared. They may have been declared explicitly in a COMMON decla-
ration or implicitly through EQUIVALENCE declarations. Their names are
non-ambiguous because PIPS entity names include a package name as prefix.
Their offsets in the common are stored in Type storage (see Section 2.3.1).

As long as no program transformation has been applied, the textual order
for common declarations is preserved in the layout list. This can be used to
regenerate declarations close to the programmer declarations. Note that equiv-
alenced variables appear after all variables explictly declared in a common6. It
is possible to detect the first implicit variable by checking that the increasing
offsets of variables is suddenly no longer increasing. The first variable whose
offset is less than or equal to the previous offset is the first variable declared in
the common through an EQUIVALENCE statement. All variables declared in the
same module and appearing beyond this one also have been declared with an
EQUIVALENCE statement.

To provide the best possible user-friendliness, remember that programmer
declarations are in fact stored as a huge string which is used by prettyprinter
as long as it is consistent with the code.

2.2.2 Variable Type

Variable = basic x dimensions:dimension* x qualifiers:qualifier*

Type variable represents the type of usual non-functional variables. Field
basic is the underlying scalar type, e.g. REAL*8 or INTEGER*4. Field
dimensions is a list of lower and upper bound pairs. Scalar variables are of
dimension 0 and have an empty dimension list.

Each dimension is an expression, which is not always numerically expressed
or known. Constant parameter can be used to build symbolic constant expres-
sions. Formal parameters can be used to specify the dimensions of other formal
parameters. A special predefined constant entity is used for arrays with no de-
fined dimension which often are declared in libraries such as (DIMENSION T(*)).
Its name is ’*D*’7.

2.2.3 Basic Type

Basic = int:int + float:int + logical:int + overloaded:unit

+ complex:int + string:value + bit:symbolic + pointer:type +

derived:entity + typedef:entity

5It may even be larger than the space required in any module if some typing information
is given after the common declaration and results in smaller variables in the common. For
instance variables implicitly REAL could be redeclared CHARACTER*1.

6This is not true for the *dynamic* area used to allocate stack variables. The bug should
be fixed... soon.

7In ri-util, the unbounded dimension name is UNBOUNDED-DIMENSION.

8

Type basic is used to store basic type information such has REAL in Fortran
or int in C. Each member includes a precision information, which can be used
to derive the number of bytes or bits required to store one scalar object of this
type. The precision information is numerically known for most basic types but
not for overloaded, string, bit, derived, pointer. Note that for some C int

types, the information int:int must be fixed as the int type includes signed
and unsigned specifiers as well as the char type.

For Fortran, note that no default type is provided. Untyped object are
given the current default type when they are first encountered. They only can
be typed explictly if they still have their default type when the type declara-
tion is encountered. PIPS parser is implemented in such a way that IMPLICIT
statements should appear as early as possible in a module declarations.

It is not clear if mapping Fortran character strings on string:value is the
right choice. It might be better to represent them as 1-D array of one character.

2.2.4 Dimension

Dimension = lower:expression x upper:expression x

qualifiers:qualifier*

Type dimension is used to represent intervals, with a lower and an upper
bounds. These bounds may not be numerically known at compile time when
they are used to define formal or varying length arrays.

The default lower bound is 1 in Fortran. The lower bound is always 0 in C.
The qualifiers are used in C only. They are related to the upper expression.

2.2.5 C Qualifiers

The type qualifiers are defined in the C standard and used to build declarators
(Section 6.7.6). The keyword static is not a type qualifier according to the
standard grammar rules. It can only appear in dimensions of formal array
parameters when declaring a function (Section 6.7.6.2). But to simplify the
implementation, we decided to consider it a type qualifier, static dimension.

Qualifiers local, global, constant and private are there for handling
OpenCL 1.X codes, to designate whether a pointer or array is allocated in the
thread local stack or the GPU global memory. This could probably be managed
through areas, although the implication are not clear. The prettyprinter ignores
this by default.

Qualifier = const:unit + restrict:unit + volatile:unit

+ register:unit + auto:unit + thread:unit + asm:string +

static_dimension:unit + local:unit + global:unit + constant:unit

+ private:unit

2.2.6 Functional Type

Functional = parameters:parameter* x result:type

Type functional is used for objects representing the explicit syntactic type
of a module, function, subroutine or main program. It also is used for Fortran
operators and intrinsics. Even constants have a functional type because they

9

are seen as 0-ary functions. This reduces the amount of coding because many
Fortran constructs can be handled as (pseudo) function calls. Effects on global
variables are not taken into account for typing. Field parameters contains
the type of each formal parameter, and the in/out information. Field result

contains the result type. Type void is used for subroutines and main programs.
There is no provision to represent functions or subroutines with varying

number of formal parameters. This facility is not supported by Fortran for
programmer-defined modules, but it is used for intrinsics such as MIN0 which
expects a list of integer parameters, and for Fortran primitives8 such as WRITE
which is highly polymorphic.

Intrinsics are statically declared in libraries bootstrap/bootstrap.c and
effects/intrinsics.c. There is a predicate to recognize intrinsics entities.

2.2.7 Parameter Type and Mode

Parameter = type x mode x dummy

Objects of type parameter represents type and inout information for formal
parameters. The dummy field is used to store a dummy9 parameter entity in
C (and Fortran) function declarations, which may be different from the formal
parameter name. It is required by declaration such as:

typedef int foo(int a, double x[a*a]);

When no information about a dummy parameter is available, as in
void foo(int), an unknown dummy is used.

Dummy = unknown:unit + identifier:entity

Mode = value:unit + reference:unit

Type mode is used to carry parameter passing information for formal param-
eters. Member value is used for calling by value. Member reference is used
for calling by reference. Fortran uses calls by reference, and C calls by value.

2.3 Storage

Storage = return:entity + ram + formal + rom:unit

Type storage is used to specify where an entity is stored. There are many
storage spaces, but they do not have to exist physically in the machine. Some
of them would not appear in a simple compiler.

Member return is appropriate for Fortran and C functions. The value re-
turned by a function is locally stored in a variable whose name is the function
name. This variable can be used explictly by the Fortran programmer like any
other variable in statements and expressions. In C, it is only set through the re-
turn statement. The entity accessible thru the return field is the corresponding
function.

8Fortran primitives are encoded like intrinsics and called intrinsics in PIPS.
9Also known as formal parameter, opposed to AN effective parameter.

10

Member ram is only used for variables having an address in some memory
space. The memory space may be linked to a module or to a common. Those
may be accessed thru the ram field.

Member formal is the special space for formal parameters. Of course, they
do not have their own address.

Member rom is used for all entities whose value cannot change. This set of
entities includes modules, labels, intrinsic operators, symbolic values (defined
by Fortran PARAMETER statement or by the semantics analysis or by the region
analyses), numerical constant,...

2.3.1 RAM Storage

Ram = function:entity x section:entity x offset:int x

shared:entity*

Type ram contains all information required to locate a variable in memory
and to guess what its scope is. Member function contains the module in which
a variable is declared. In Fortran, a variable scope is a module. Variables with
the same name and with the same offset in the same common are two different
variables. They are aliased but they are different. They have different global
names (see Section 2.1).

Member section contains the area in which the variable is stored. It is
an entity of type area (see Section 2.2.1). For each Fortran module, there is
one area for each declared common10. For C and Fortran modules, several
specific areas called *STATIC*, *DYNAMIC*, *STACK* and *HEAP* used for local
variables. Fortran static variables are explicitly declared in a SAVE statement or
implicitly made static by a DATA statement11 unless they are explicitly declared
in a COMMON because PIPS sets all commons as static. In other words, Fortran
dynamic commons are not handled by PIPS12. By default, variables can be
stack allocated and are called dynamic variables. When their memory footprint
is numerically known at compile time, they are allocated in the *DYNAMIC*

area. If not, they are allocated in the *STACK* area. In C, memory space can
be allocated in the *HEAP* area.

Member offset is the variable address in its area. Addresses are allocated
according to the declaration or occurence order. Increasing values starting at 0
are used. The memory unit is defined by Fortran standard and is one byte for
PIPS.

Member shared contains a list of variables, which are statically aliased with
variable whose storage is described. Static aliasing is generated by EQUIVALENCE

statements and by multiple declarations of the same common in different pro-
cedures. Dynamic aliasing created at call sites is not taken into account. De-
pendence tests, use-def chain computations, semantics analysis, region analysis,
and other algorithms primarily based on variable names must check aliases.

10Note that a module may have effects on variables beyond its scope via procedure calls
and common variables.

11See Fortran standard Section (8-11) about SAVE and Section (9-1) about DATA.
12The decision not to handle dynamic commons was based on two remarks: (1) no Fortran

compiler in 1988 handled dynamic commons and (2) dynamic commons are not lexically
scoped which make static analyses very difficult or even impossible.

11

2.3.2 Formal Storage

Formal = function:entity x offset:int

Type formal defines the module related to a formal parameter through the
function member and the rank of this parameter in the formal parameter list.
The first parameter has rank 1, not 0.

2.4 Value

Value = code + symbolic + constant + intrinsic:unit +

unknown:unit + expression + reference

Type value is used to store initial values of all kinds of entities, as long as
something makes sense as initial value. Member code is used for modules. Mem-
ber symbolic is used for symbolic constants, declared in Fortran by keyword
PARAMETER. Member constant is used for numerical and litteral constants13.
Their values always are stored in their entity names14, but integer constants
which are more important for automatic parallelization and code optimization
also are stored in binary representation. Member intrinsic is used for entities
which are language-defined, such as Fortran intrinsics, operators, IO instruc-
tions,... Member unknown is used for entities with no initial values. For instance,
areas might not have any initial values because there is no sensible information
to use as initial value. Also, variables which are not statically initialized by a
DATA statement, (probably) have an unknown initial value.

Additional value kinds would be necessary to encode the initial value of an
area, if the overloading of the unknown kind becomes a problem. Pierre Jouvelot
suggested to give COMMON themselves as initial value since a common represents
an address.

For C variables, the initial value can be defined by any kind of expression,
hence the expression member.

To analyze C code, location entities are used to represent the address of
a field in a data structure or the address of a specific array element. The
initial value of a location entity is a store independent points-to reference that
may represent either a field or an array element. It could be included in an
expression, but a specific reference field is used to recognize a location entity,
since field kind of an entity cannot be used because it cannot encode more than
64 kinds of entities.

2.4.1 Symbolic Value

Symbolic = expression x constant

Type symbolic is used to represent the declared value of a symbolic con-
stant defined by a Fortran PARAMETER or a Pascal CONST declaration. Member
expression contains the hopefully constant expression which is statically eval-
uated by the compiler to find the numerical initial value. This value is stored
in member constant. Member expression is used to restore user-friendly dec-
larations but has no other known use.

13It might also be used for variables which are initialized by a DATA statement. To be
checked.

14Their local name is the external representation of their value as defined by the language.

12

2.4.2 Program Variables

Program variables are entities with specific fields, but they must also be de-
clared.

Fortran variables are only declared in the declaration field of data structure
code.

A C variable is supposed to be declared in one declaration statement, in its
own block and in the declaration field of code. These three declarations have
to be kept consistent, which is a pain, but each of the declarations is useful
at a different time: prettyprint of source code, block exit, and function exit
respectively. The consistency check is not part of Newgen.

2.4.3 Constant Value

Constant = int + float:float + logical:int + litteral:unit +

call:entity + unknown:unit

Type constant is used to represent the numerical or non-numerical value of
constant entities. Integer entities are directly flagged with their int value, as
well as floating point and logical entities, otherwise if possible the constant is
represented as an entity, possibly itself if the constant is within the value of
an entity, and finally if no entity can be thought of a litteral is chosen.

For instance, a constant entity such as 123.45 has ”123.45” as entity name
and its initial value is a constant of type litteral because its value is carried
by its name.

A floating point variable statically initialized, as in a DATA statement, with
123.45 has an initial value of type constant and of kind call, since 123.45 is a
nullary function.

Logical constants are functions but they are also represented by integer 0
and 1. The int kind of constant is used as for integer variables.

Other values of other types, such as real and character strings, given by ex-
pressions in PARAMETER statements, are not cached in constant and are tracked
as unknown value (see value object). These values can be obtained by evalu-
ating the associated expression in symbolic.

3 Code, Statements and Instructions

3.1 Module Code

Code = declarations:entity* x decls text:string x

initializations:sequence x externs:entity* x language

Type code is not used to stored module bodies. The effective code body
must be retrieved from the PIPS database through a call to pipsdbm (see [6]).
There is no direct link between the symbol table and the pieces of code in
order to make these data structures independent with respect to NewGen. The
pieces of code can be stored and retrieved without storing and retrieving the
symbol table. However, note that the symbol table, which is unique for a whole
program, must be loaded before any piece of code can be loaded.

13

Type code only is used for declarations. Member declarations contains
a list of entities in the module scope. Local variables, formal parameters and
commons are in this list. It also may contain symbolic constants, operators and
intrinsics declared or referenced in the module.

The order of variables in list declarations must be compatible with the
language constraints. In general, variables or entities used in another variable
or entity declaration must appear first. For instance, in Fortran, if array B is
used to declare array A as A(B(1)), array B must appear first in declarations.
The parsers reproduce the source order. If source code is legal, all the constraints
should be met. But if code is generated by a PIPS phase, it is up to this piece
of code and not up to the prettyprinters to obey the languague order rules.
Prettyprinters may emit a user warning or a user error.

In Fortran, member decls_text is a copy of the declaration text. This text
starts with comments placed before the module declaration and ends with the
comment related to the first executable statement of the module (i.e. one too
many comment is included). This text is used by default by the prettyprinter,
as long as it is available, to preserve the user layout of declarations. Because
of Fortran syntax, declarations are almost impossible to regenerate. When the
module is deeply transformed or synthesized, the field decls_text is destroyed
and set to the empty string15 to force declaration generation.

In Fortran, member initializations contains static initialization derived
from the DATA statements. They are represented as a sequence of calls to a
pseudo static initialization function. In C, member initializations is not
used for functions, but it is used for pointers to functions when they are initial-
ized within declarations. Since pointers and arrays of pointers to functions have
code for value, their initial values cannot be specified directly as expression
in value as is done for other kinds of variables.

Member externs contains variables declared within the scope but not allo-
cated there. They must be provided by some other module at link time.

It is sometimes useful to regenerate declarations because lazy Fortran users
include every single common in every procedure.

3.2 Programming Languages

The source code can be written in three languages, Fortran, Fortran95, or C.

Language = fortran:unit + c:unit + fortran95:unit +

unknown:unit

3.3 Callees

Callees = callees:string*

Type callees is a list of string. It was given the name callees by mistaken
a variable for a type. It is used to store the global (?) names of subroutines
and functions directly called from a piece of code. Such objects are initialized
by the parser.

It is a tiny part of the call graph which is stored as a tree of strings rather
than a tree of entities (it probaly was quicker to implement initially). The call

15A symbolic constant should be used instead of the C empty string constant ””.

14

graph is stored implictly, using pipsdbm. A list callees is associated to each
module and can be retrieved through a call to pipsdbm.

A set of such variables, callers16, callees, all, is used by Pipsmake
to schedule interprocedural analyses[6]. Pipsmake and Pipsdbm are strongly
string-oriented and not entity-oriented, because it is easier to deal with disk
storage and ASCII files. Some C functions in library ri-util have either a
string or an entity type for an entity formal parameter. The NewGen hash-
table for entities makes both functionally equivalent, but strings are often more
of a pain to handle.

3.4 Statement

Statement = label:entity x number:int x ordering:int x

comments:string x instruction x declarations:entity* x

decls_text:string x extensions x synchronization

Type statement is used as a container of instructions. Methods for state-
ments are in Library ri-util/statement.c. Member label is an entity of
kind label. Such entities can be recognized by their names. See Section 2.1 for
more details about name structures and handling of statements with no labels
and return points. Note that statements containing a block or unstructured
instruction should not have a label, as you might find out when using the pret-
typrinter.

Member number contains an external number which is not used by PIPS.
This number may be used as a statement identifier for debugging purposes or
for user interaction because PIPS components try to propagate it as much as
possible when new code is derived. For instance, several parallel loops derived
by loop distribution have the same statement number, inherited from the initial
sequential loop. Desugared statements like computed GOTOs generate several
simpler statements with a unique number.

The default value is STATEMENT_NUMBER_UNDEFINED17. This number could
theoretically be set explictly by the user18. In fact it is set by the parser. The
parser uses an executable statement count from the source file. Only executable
Fortran statements and FORMAT statements are stored as statement and only
them are used to define statement numbers. Statement number one is the first
line of the first executable statement and thus cannot be used to retrieve the
text in the source file with a standard text editor. This number is theoretically
never changed by PIPS once it has been initialized by the parser. Once the
code has been transformed, statement numbers may not appear in increasing
order, statement number may be duplicated, for instance, after loop unrolling,
and statement number may not exist at all, for instance for fully synthesized
statements.

Note that parser messages are labelled by physical line numbers, as defined
by the PIPS preprocessor and parser. These numbers may be impacted by the
language.

16Obviously, callers are of type callees...
17The prettyprinter is not too strict and take any non-positive value as an undefined state-

ment number.
18Columns 73 to 80 are discarded for executable statements.

15

Member ordering is a 32-bit unique statement internal identifier. It is made
out of two 16-bit fields: the most-significant field is a control number and the
least-significant one is a statement number within a structured code piece. Two
statements are textually comparable if their control numbers are equal. If they
are comparable, their textual order is given by the least significant 16 bits.

The ordering structure is linked to the Hierarchical Control Flow Graph
(HCFG) used by PIPS. See Section 3.5.8 for information about the HCFG.
It is fully managed by PIPS, with no user control, and systematically re-
computed when the code structure is modified. It is used to compute
the lexical ordering of statements, to label a statement with information
such as effects, regions,...through hash tables on disk, to label nodes of
the dependence graph with statements by reference,... Its default value is
STATEMENT_ORDERING_UNDEFINED.

A special hash table is used for each module to convert ordering into
statement. This redundant table is not part of the internal representation.
It must be recomputed regularly when the code structure is changed (see func-
tion module_reorder()). It must be reloaded or recomputed when a different
module is analyzed because only one copy of this hash-table is available within
PIPS. It must also updated when the internal representation is modified because
some statements are added and/or removed.

Member ordering is not computed for all statements reachable through
the NewGen internal representation. Specifically, statements which are not
reachable forwards or backwards through the control flow graph only us-
ing the entry point of an unstructured are not ordered. For instance, label
free statements following a GO TO statements may have or not an order-
ing. Statements can be walked in at least two different ways. C macros
such as CONTROL_MAP uses the control flow graph, whereas NewGen iterators
gen_recurse, gen_multi_recurse, are more systematic, using both the entry
and exit controls of unstructured. Note that fully unreachable statements, which
cannot be reached backwards or forwards from the entry or the exit control of
an unstructured are fully lost by the controlizer.

Member comments contains the comments associated to the statement in
the source program. This string19 is used by the prettyprinter. Comments are
associated to the next executable statement. For statements with no comments,
this member receives a special value, empty_comments20, which can be tested
with predicate empty_comments_p(). Comments associated to statements that
may disappear during processing, such as CONTINUE, RETURN and GO TO,
may disappear too.

Member instruction contains the instruction itself.
Note that if the instruction of the statement is in fact a sequence of other

19To avoid problems with static buffers, a list of strings should have been used to store
comments.

20This special value used to be string undefined, but its name carried less semantics.
Empty comments could be defined either as NULL, or the null length string, ””, or as the
Newgen special value, string undefined. The NULL string was not chosen because it is not
specific enough and because it is not compatible with the UNIX string library. The null length
string is compatible with the string library, but sharing would have to be carefully considered.
To avoid many allocations and desallocations of one byte areas, and many storage related
bugs, the Newgen solution was chosen, although it is not compatible with the UNIX library
and although Newgen does not provide such a library. Objects of type string are not 100 %
equivalent to objects of type char * and guards for string undefined must be added.

16

statements (see 3.5 and ??), the label, number, ordering, and comment should
be empty. If some information of this kind is needed, it should be attached to
the first statement of the sequence or to a CONTINUE (for an empty sequence)
instead.

Member declarations is used in C to declare local variables. If the instruc-
tion is a block, the declarations are local to the block. If the instruction is a
CONTINUE, or better if the predicate declaration_statement_pholds true, then
the declared variables are declared till the end of the current block. The variables
declared in a CONTINUE statement are also declared at the directly enclosing
block level. They are also declared in the symbol table, in the declarations

field of code. The prettyprinter only takes into account the CONTINUE or declara-
tion statements. So implicitly declared variables and functions, such as functions
returning an int in C, only appear at the block level. Other statements, that
are neither a block nor a declaration statement, cannot have declarations. This
is not enforced by Newgen. To sum up, a C program variable is declared three
times in C: in the declaration field of code, in the block enclosing its declaration
and in a declaration statement.

Note that local variables declared in a loop as loop_locals are local to the
loop body. This seems redundant with statement_declarations, but making
it obsolete would require a refactoring of the use-def chains, dependence graph
and parallelization algorithms. Also, the semantics is slightly different and there
are rationals21 to preserve this local field in loops. Among them, the last value
may escape the loop, the first value may be imported.

Member decls text can be used to keep track to the exact text used to
declare variables. This field is not currently used.

Member extensions is used to add various features such as pragmas or
future extensions to the statements.

3.4.1 Mappings from statement to statement

persistant statement to statement = persistant statement ->

persistant statement

Type persistant statement to statement is used for example in
use_def_elimination() to store the eventual statement father of a statement.
The persistant pragma is needed to avoid freeing the statements when the map-
ping is freed. See NewGen documentation in [5].

3.4.2 Mappings from statement to integer

persistant statement to int = persistant statement -> int

Type persistant statement to int is used for instance to associate line
number to a statement.

3.4.3 Mappings from statement (task) to its schedule

persistant statement to cluster = statement:int -> number:int

21FI: I do not remember them all and I do not know where it is explained.

17

Type persistant statement to cluster is used in HBDSC to store the
cluster where a statement is scheduled. It corresponds to sigma defined in [?]

3.5 Instruction

Instruction = sequence + test + loop + whileloop + goto:statement

+ call + unstructured + multitest + forloop + expression

Type instruction is used to represent the command associated to a state-
ment. An instruction can either be a sequence, a test, a loop, parallel or se-
quential, an unconditional branch (goto) pointing to the branch target, an
elementary command (call) or a whole control flow graph.

Elementary commands are used for Fortran statements and intrinsics and
operators. There are call’s for assignments, subroutine calls, input-outputs,
returns, stops, modulos, the overloaded +, and so on. This is detailed in Sec-
tion 3.5.7.

The code of a module is either in a user-defined form or in so-called
controlized form. In the former case, no unstructured instruction is al-
lowed and explicit goto’s are used. In the later case, goto’s are forbidden and
abstracted by unstructered. of course, a fully-structured code does not con-
tain either goto or unstructured22. The user-defined form only is used by
the parser and some pretty-printers. The pretty-printers are able to restore
Fortran-77 goto’s from the unstructured. More on this in Section 3.5.8.

Several PIPS contributors have asked for a while construct. In addition, a
statement in C can be any expression, not only call expression, so we have to
add expression to instruction.

3.5.1 Sequence

Sequence = statements:statement*

Type sequence is self-explanatory. This is the standard sequence construc-
tor. The empty sequence is used to represent an instruction with no effect, a
NOP. See empty statement p().

Note that the statement owning the sequence cannot have information such
as comment, etc. on it. See ??

3.5.2 Conditional (a.k.a. Test)

Test = condition:expression x true:statement x false:statement

Type test is used to represent conditional statements. Field condition

must contain a boolean23 expression to evaluate. Fields true and false contain
the statement to execute if the test evaluates to true or false.

If the false branch is empty, an empty statement is inserted. It
might be an empty sequence or a CONTINUE statement or... (see Function

22PIPS does not contain a control restructurer but it is interfaced to Toolpack.
23Note that expressions are untyped in PIPS internal representation. They are kept in an

overloaded form because typing does not matter for parallelization. An new pass would be
required to insert the conversion operators. Besides, fully typed Fortran operators would have
to be added.

18

empty statement p). Of course, an empty statement must have an empty label
(see Section 2.1).

Fortran control instructions, but DO loops with no internal exits, are decom-
posed into combinations of such test instructions and other PIPS instructions
by the parser, which may add goto statements, and by the controlizer.

3.5.3 Switch

Multitest = controller:expression x body:statement

This is not really used in PIPS. Right now in C, the switch/case are re-
placed by if and goto.

3.5.4 DO Loop, Sequential or Parallel

Loop = index:entity x range x body:statement x label:entity x

execution x locals:entity*

Type loop is used to represent Fortran DO loops or Pascal FOR loops. It
is also used to represent C for loops, when their semantics is compatible with
Fortran DO loops. Field index points to the loop index, an entity. Field range

contains the lower and upper bounds, as well as the step. Field body points
to the loop body, a unique statement which usually is a sequence. Field label

is used for Fortran labelled DO loops. It is the label of the last statement in
the loop body. In C, this field contains a redundant pointer to the label of
the statement containing the loop. It has no semantics, but makes C loops
easy to designate in a Fortran-compatible mode to apply loop transformations.
Field execution specifies if the loop should be executed sequentially or con-
currently. Entities in the local field are loop-private variables. They can be
stack-allocated on body entrance and deallocated on exit. The read and write
effects on these variables are not visible from outside the loop body. They can
be privatized and their effects can be ignored when running the loop in parallel
if each processor gets a private copy of each of them.

This field should be factored out in the statement type in order to declare
variables local to a block, as in C. However, the two levels, statement and
instruction, would make coding more difficult.

Execution = sequential:unit + parallel:unit

Type execution is used to specify if a loop must be executed sequentially
(sequential or if it may be executed concurrently (parallel). The parser only
recognizes sequential loops.

Range = lower:expression x upper:expression x

increment:expression

Type range is used to store the loop bounds and step. The three fields
are used to store the lower bound (lower), the upper bound (upper) and
the step expression (increment). The lower and upper bound are included,
ie lower¡=i¡=upper and not lower¡=i¡upper.

Expressions of type range can be used in other context. For instance, For-
tran 90 triplet construct is a range. See Section ?? for details about expressions.
For loops, other ranges are not expected in bound and step expressions.

19

3.5.5 While Loop

Whileloop = condition:expression x body:statement x label:entity

x evaluation

Evaluation = before:unit + after:unit

Here is a while loop. It is not the while domain because it would interfere
with C keywords. The content is similar to the loop domain. Possible parallel
while loops are considered unimportant, hence no execution part was added. No
locals are attached, because this should be rather done at the statement level,
not within the instruction itself.

3.5.6 For loop

Forloop = initialization:expression x condition:expression x

increment:expression x body:statement

3.5.7 Function Call

Call = function:entity x arguments:expression*

Type call is used to represent Fortran commands as well as user-defined
function and subroutine calls in a pseudo-functional way. These pseudo-
functions with side effects are very important for the PIPS internal repre-
sentation since constants, operators such as + and *, intrinsics like MOD or
SIN, and basic Fortran statements such as assignment =,READ, WRITE, PAUSE,

OPEN, CLOSE, RETURN, CALL, FORMAT, and so on... are all encoded in the
same way, like user-defined function calls. The number of arguments depends
on the pseudo-function: 0 for constants, 1 or 2 for operators, and so on. For-
tran keywords, operators and intrinsics are known as predefined functions. This
unification of language and user defined functions is useful to reduce the size of
the datastructure definition as well as the code required for many algorithms.

Type function points towards the entity associated with the called function.
Subtype arguments is a list of expression objects which represent the actual
arguments for the function.

3.5.8 Control Flow Graph (a.k.a. Unstructured)

Unstructured = entry:control x exit:control

Domain unstructured is used to represent unstructured parts of the code
in a structured manner which as a unique statement. The entry node of the
underlying CFG is in field control, and the unique exit node is in field exit.
The exit node should not be modified by users of the unstructured24. See
Figure 2. Note that the exit node may not be reachable, for instance because
the program does not terminate. For instance node C7 could very well be the
exit node. Note also that node C6 is not forward reachable. Like C7, C6
is reachable using the predecessors field in control. Nodes unconnected to

24FI: I do not understand why...

20

either the entry or the exit control in unstructured like C*, C9 and C10 are
lost by the controlizer but they can be seen in the user_view representations
of the program.

An unstructured object can be walked by function gen_multi_recurse

and nodes C1 to C7 are visited, because the entry and exit nodes are used
to perform a transitive closure. It can be walked by macro CONTROL_MAP and
nodes C1 to C6 are visited because the undirected transitive closure starts at the
entry node C1. This macro is used to compute the ordering and, if they exist,
nodes such as C6 and C7 are ordered. Nodes C1 to C5 only could be visited
by performing a forward transitive closure on the entry node. Transformation
unspaghettify, which is optionally included in the controlizer (property
UNSPAGHETTIFY_IN_CONTROLIZER), eliminates spurious nodes such as C6 and
C7 and makes all walks equal, but for the visiting order. Note that a fourth
kind of walk is implemented by the prettyprinter. It can bump into nodes
not visited by CONTROL_MAP.

The hierarchical structure is induced by the recursive nature of statements.
Each control node points towards a statement which can also contain an un-
structured area of the code as well as structured part. Unstructured parts of
the code can thus be contained as much as possible as well as be recursively
decomposed.

For instance, the two DO loops in:

DO 200 I = 1, N

100 CONTINUE

DO 300 J = 1, M

T(J) = T(J) + X

300 CONTINUE

IF(X.GT.T(I)) GO TO 100

200 CONTINUE

are preserved as DO loops in spite of the GO TO statement (see Figure 1).

3.5.9 Control Flow Graph Node

Control = statement x predecessors:control* x successors:control*

Domain control is the type of nodes used to implement the CFG implied by
an unstructured instruction (see Domain unstructured, Section 3.5.8). Each
control node points towards a statement which can represent an arbitrary large
piece of structured code. GOTO statements are eliminated and represented by
arcs. Nodes are doubly linked. Each node points towards its successors (at most
2) and towards its predecessors. The hierarchical nature of domain statement

is used to hide local branches from higher and lower level pieces of code. The
whole unstructured area of the code is seen as a unique atomic statement from
above, and is entirely ignored from under. This explains the mutual recursion
between control and statement (via instruction).

All statements but tests and the exit node only have one successor. The
first successor of test is the successor when the test condition is evaluated to
true. And the other way round for the second one. The exit node (see domain
unstructured) has no successor. The entry node as well as all other nodes may
have an unlimited number of precedessors.

21

x DO 200

xIF

x 100 CONTINUE

x DO 300

x T(J) = T(J) + X

�
�
�
�
�
�
��

B
B
B
B
B
B
BB

� �
��� @

@@R�

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Figure 1: Hierarchical Control Flow Graph

22

Unstructured Entry Exit

S1

S2

S4

S5

C1

C3

C2

C6

C5
C4

S3 S6

Control

Statement

S6

S7

S8 S9 S10

C6

C7

C8

C9 C10

Figure 2: Control Flow Graph

The value of the exit node when it is not reachable is unclear. This is a
minor problem since PIPS isn’t supposed to deal with faulty programs.

Note that the two successors of a test can be identical since the two branches
of a test can contain a GOTO to the same label. Hence, a node can have
two identical predecessors. The lists of predecessors and successors cannot be
handled like sets, in general. Use check_control_coherency() to make sure
that the predecessor and successor lists can be interpreted as a multiset of arcs.

All reachable nodes of a CFG can be visited in a meaningless order us-
ing the CONTROL_MAP macro. Look for an example in library control be-
cause an auxiliary data structure, a block list, must be declared and freed.
They can also be visited with gen_recurse(), in a meaningless order, but re-
gardless of their reachability. Two more macros, FORWARD_CONTROL_MAP and
BACKWARD_CONTROL_MAP are available for ordered walks.

Note that the data structure used for the CFG is obsolete. A generic struc-
ture for oriented graphs, graph, should be used instead so as to pool basic graph
functions, e.g. search for strongly connected components.

3.5.10 Mappings between Statements and Control Nodes

Controlmap = persistant statement->control

persistant statement to control = persistant statement ->

persistant control

Used for example in use_def_elimination() to store the eventual control
father of a statement in order to travel on the control graph associated to a

23

statement. The persistance is needed to avoid freeing the control graph when
the mapping is freed.

3.6 Extensions

Extensions = extension*

Extensions are used to extend in a not too much intrusive way the internal
representation of the code.

extension = pragma + unknown:unit

Extensions can be used to add pragmas to statements. Well, right now an
extension can only be of type pragma but it could be something else too some
days.

3.6.1 Pragma

pragma = string + expression*

Pragmas fields are used to attach #pragma to statements.
Pragmas can be represented as a string or as a list of expressions. The

expression list is the most suitable way for pragma representation. Indeed using
expressions, clasical transformations may work by side effect on pragmas too
(such as variable renaming or anything else). The string representation is also
provided because it is a way of handling unknown type of pragmas by simply
carrying its text as it is in the source code.

The following type of pragmas are handeled as expressions:

OpenMP pragma Pips can represent OpenMP pragma as an expression,
more precisely as a function call (see Section 3.5.7). The following omp clauses
are supported:

• parallel is internally considered as function call with no parameter.

• for is internally considered as function call with no parameter.

• private is internally considered as function call that takes at least one
parameter.

• reduction is internally considered as function call that takes at least two
parameters. The first one is the reduction operator and the folowing ones
are the variables that are reduced using this operator. Note that the
reduction function call need a specific prettyprinter because of the : used
between the opertor and the variables.

• omp is internally considered as function call with no parameter.

Then, describing a pragma as an expression is done by listing the clauses used
in it. For example #pragma omp prallel private(x,y) will be represented by
the following list:

• omp function call.

24

• parallel function call.

• private function call with two arguments: x and y.

Note that the #pragma is automatically generated by the prettyprinter and does
not need to be represented in the pragma extension.

3.7 Synchronization

Synchronization = none:unit + spawn:entity + barrier:unit +

single:bool + critical:reference

4 Expressions

Expression = syntax x normalized

Obviously, type expression is used to store expressions. Field syntax con-
tains the syntactic description of the expression, as it appears in the source code.
Note that parentheses may nevertheless be missing in PIPS printouts. Although
they are taken into account to build the internal representation, they are not
encoded and it is not possible to distinguish between redundant parentheses and
omitted ones. Field normalized indirectly contains a secondary representation
of affine integer expressions stored as Pvecteur (see Section 1.1).

If field normalized is set to value normalized undefined, this implies that
the PIPS function used to detect affine expressions and sub-expressions has not
been called. This does not imply that the expression is not affine.

The normalized field is redundant with the syntax field. There is no consis-
tency check available. When new expressions are derived from old expressions,
all normalized fields should be reset. Else some normalized expressions end
up with non-normalized sub-expressions, and with a non-consistent normalized
form.

Expressions synthesized by program transformations, such as partial eval-
uation or loop interchange, should all have their normalized field set to
normalized undefined.

4.1 Abstract Tree of an Expression: Syntax

Syntax = reference + range + call + cast + sizeofexpression +

subscript + application + va_arg:sizeofexpression*

Type syntax is used to represent expressions as they are defined in the
program source code. A syntax object is either a reference object pointing
towards an array element25, or a call to a function26, or a range as in loop
definitions27 and array declarations.

25Scalar variables are represented as 0-dimensional arrays.
26All operators and commands, including assignment, are encoded as functions. This ex-

plains why the call type is defined in the Instruction section.
27This explains why type range is defined in the Instruction section.

25

New kinds of syntax are added to handle the C language. They are cast,
sizeof, subscripting array and function application expressions. The subscript-
ing array expression is an extension of the reference expression, which includes
other more complicated array objects such as pointer, function, structure or
union member... The same extension is made to call expression, named func-
tion application, because the called function is not necessarily an entity but can
be any expression that denotes the address of a function.

The field va_arg is added only to cope with the call va_arg(e,t) where
e is an expression and t is a type. The domain sizeofexpression is reused,
in spite of its name, because it combines types and expressions. The number
of arguments is left unspecified as well their respective kinds so as not to add
yet another domain in the internal representation for such a peculiar case of C
syntax.

4.1.1 Reference

Reference = variable:entity x indices:expression*

Preference = persistant reference

Type reference is used to represent references to array elements28. Field
variable points towards an entity representing the used or defined program
variable. Field indices contains a list of subscript expressions29.

4.1.2 Range

See Section 3.5.4.

4.1.3 Function Call

All operators, including assignment, are represented as function calls with side
effect. See Section 3.5.7.

4.1.4 Cast

This is used to represent expressions in C such as:

1 ␣␣(type)␣e;

Cast = type x expression

4.1.5 Sizeof

This is used to represent expressions such as:

1 ␣␣ s izeof (e);
␣␣ s izeof (type);

28Scalar variables are represented as 0-dimensional arrays. Scalar references are special
references with an empty subscript expression list. Note that arrays may also be references
with an empty subscript expression list, e.g. as actual argument of a subroutine or function.

29The consistency of the array dimension and the list length is not checked, but in the
parser. That is, there is no independent consistency checker.

26

Since it can be applied on a type, it cannot be represented in the RI as a classical
function call to a sizeof() operator.

Sizeofexpression = type + expression

4.1.6 Subscript

In C, pointer expressions can be subscripted, not only arrays, so there is a
subscript expression:

Subscript = array:expression x indices:expression*

4.1.7 Application

Since in C not only functions can be called but also any function pointers, there
is a need to represent these function calls:

Application = function:expression x arguments:expression*

4.2 Affine Representation of an Expression

Normalized = linear:Pvecteur + complex:unit

Type normalized is used to check if an expression is an affine integer expres-
sion using only integer scalar variables (Field linear) or not (Field complex30).

Field complex is used if the expression is not affine, e.g. I*J+4, or if it
is affine but contains references to non integer scalar variables, e.g. T(I-1) +

T(I) + T(I+1).
The normalized field does not exist if the expression has not yet been ex-

amined. This is an exception to NewGen data structures used in PIPS because
empty pointers, normalized_undefined must be used. This may cause prob-
lems when using the NewGen gen_defined_p() consistency checker.

A C Macro, NORMALIZE_EXPRESSION is used to perform the normalization
only if required. This macro and the underlying function is fragile. It only can
be applied to fully normalized or fully non-normalized epxressions.

The normalize union may not be general enough. In some cases it would be
useful to be able to encode pseudo-affine operators such as /, mod, min or max
with inequalities.

5 Semantics Analysis

5.1 Transformer

Transformer = arguments:entity* x relation:predicate

Type transformer defines a relationship between two stores, i.e. two mem-
ory states, associated to two control points (i.e. two statements). This relation
is limited by default to integer scalar variables in the dynamic scope of a mod-
ule: global and static integer scalar variables are taken into account. Note that

30This does not mean that the expression is complex in the mathematical sense.

27

the data structure does not enforce the integer and scalar conditions and that
some properties can be set to process also boolean, string and floating point
scalar variables.

Variables in the list arguments are variables whose values may have changed
between the two control points. Two values are denoted for each variable in the
arguments list, the initial value and the final value. The initial values are
pure values, i.e. entities specific to the semantics library. The final values are
identified with the variable entities, in order to decrease the total number of
pure values. Variables that do not appear in the arguments list must have the
same initial and final values, by definition. This unique value is considered a
final value and no value entity is allocated.

Intermediate and temporary values are also represented by entities and used
internally. They are never used or displayed in prettyprinted files.

The relationship between the initial and final store is abstracted by a set of
affine equations and inequations on the values.

Two kinds of transformers are used in PIPS. The first kind is linked to a
statement or an expression, possibly with side effects, and is an abstraction of the
corresponding command, limited to integer scalar variables and to other scalar
variables according to properties. Such transformers are called transformers.
The second kind of transformer, also associated to a statement, abstracts the
relationship between the initial store of a module or of a whole program and the
store just before the execution of this statement. Such a transformer si called a
precondition.

Transformers and preconditions are computed by semantics analyses, either
intra- or inter-procedurally.

5.2 Predicate

Predicate = system:Psysteme

Type predicate defines a relationship between values of integer variables
and other integer entities such as PHI variables (see Section 1.2 for external data
type Psysteme). Its meaning depends on its use. It may be an invariant pred-
icate, always true before a statement execution (precondition), or a predicate
linking two different points of a program (transformer). It may also define an
array region (see effects.newgen).

6 Consistency

Numerous predicates should be met by consistent module and program repre-
sentations.

6.1 Module consistency

Each variable always must be referenced with the same number of subscript
expressions, its declared dimension, or with no subscript expressions at all (e.g.
formal parameter).

No consistency check is available, beyond usual NewGen tests (see Section ??
and Reference [5]).

28

6.2 Program consistency

PIPS handles constant call graphs. It expects to find every callee in a piece of
code. If library routines are used, stubs must be added.

Interprocedural consistency can be checked with the Flinter analysis (see
[8]).

6.3 Implicit consistency

All links are not declared explictly in the internal representation, if only to break
cycles between data structures. For instance, the code associated to a module
is not obtained thru a pointer dereferencing but thru an explicit request to the
PIPS database manager.

6.4 NewGen consistency

NewGen provides two generic consistency checkers, gen_consistent_p() which
performs a dynamic type checking, and gen_defined_p() which is slightly
stricted because undefined values (i.e. NIL pointers) are mostly prohibited.

These two type checkers are very useful when implementing program trans-
formations.

It is possible to apply them systematically to all PIPS persitent objects by
setting the proper debugging level for PIPSDBM (see [9]).

7 Disk Storage

The implicit global symbol table31 of Section ?? is stored on or loaded from
disk as a whole. It must be stored last and read first because other NewGen
data structures contain pointers to it (every field of type entity is suchj a
pointer). Pointers to entity are converted into global entity names on disk. The
symbol table always is large because it contains at least all Fortran operators
and intrinsics. It is stored in file Entities in the current workspace. See [6] for
more information.

8 Conclusion

The PIPS internal representation is a relatively small set of data structures,
which has very slowly increased since the project inception. Various mappings
have been added. It was not possible to declare them with NewGen in 1988 and
quite a few implicit mappings exist.

NewGen data types can be walked with two generic iterators,
gen_recurse() and gen_multi_recurse(). These two iterators have been
added to NewGen. They are not systematically used.

31This is implied by the tabulated attribute.

29

Annexe: NewGen Declarations – ri.newgen –

-- --

-- --

--

-- WARNING

--

-- THIS FILE HAS BEEN AUTOMATICALLY GENERATED

--

-- DO NOT MODIFY IT

--

-- --

-- --

-- Imported domains

-- ----------------

-- External domains

-- ----------------

external Pvecteur ;

external Psysteme ;

-- Domains

-- -------

application = function:expression x arguments:expression* ;

area = size:int x layout:entity* ;

basic = int:int + float:int + logical:int + overloaded:unit + complex:int + string:value + bit:symbolic + pointer:type + derived:entity + typedef:entity ;

callees = callees:string* ;

call = function:entity x arguments:expression* ;

cast = type x expression ;

code = declarations:entity* x decls_text:string x initializations:sequence x externs:entity* x language ;

constant = int + float:float + logical:int + litteral:unit + call:entity + unknown:unit ;

controlmap = persistant statement->control ;

control = statement x predecessors:control* x successors:control* ;

dimension = lower:expression x upper:expression x qualifiers:qualifier* ;

dummy = unknown:unit + identifier:entity ;

entity_int = entity->int ;

entity_to_entity = entity->entity ;

evaluation = before:unit + after:unit ;

execution = sequential:unit + parallel:unit ;

expression = syntax x normalized ;

extension = pragma + unknown:unit ;

extensions = extension* ;

forloop = initialization:expression x condition:expression x increment:expression x body:statement ;

formal = function:entity x offset:int ;

functional = parameters:parameter* x result:type ;

instruction = sequence + test + loop + whileloop + goto:statement + call + unstructured + multitest + forloop + expression ;

language = fortran:unit + c:unit + fortran95:unit + unknown:unit ;

loop = index:entity x range x body:statement x label:entity x execution x locals:entity* ;

mode = value:unit + reference:unit ;

30

multitest = controller:expression x body:statement ;

normalized = linear:Pvecteur + complex:unit ;

parameter = type x mode x dummy ;

persistant_statement_to_cluster = statement:int -> number:int ;

persistant_statement_to_control = persistant statement -> persistant control ;

persistant_statement_to_int = persistant statement -> int ;

persistant_statement_to_statement = persistant statement -> persistant statement ;

pragma = string + expression* ;

predicate = system:Psysteme ;

preference = persistant reference ;

qualifier = const:unit + restrict:unit + volatile:unit + register:unit + auto:unit + thread:unit + asm:string + static_dimension:unit + local:unit + global:unit + constant:unit + private:unit ;

ram = function:entity x section:entity x offset:int x shared:entity* ;

range = lower:expression x upper:expression x increment:expression ;

reference = variable:entity x indices:expression* ;

sequence = statements:statement* ;

sizeofexpression = type + expression ;

statement = label:entity x number:int x ordering:int x comments:string x instruction x declarations:entity* x decls_text:string x extensions x synchronization ;

storage = return:entity + ram + formal + rom:unit ;

subscript = array:expression x indices:expression* ;

symbolic = expression x constant ;

synchronization = none:unit + spawn:entity + barrier:unit + single:bool + critical:reference ;

syntax = reference + range + call + cast + sizeofexpression + subscript + application + va_arg:sizeofexpression* ;

tabulated entity = name:string x type x storage x initial:value x kind:int ;

test = condition:expression x true:statement x false:statement ;

transformer = arguments:entity* x relation:predicate ;

type = statement:unit + area + variable + functional + varargs:type + unknown:unit + void:qualifier* + struct:entity* + union:entity* + enum:entity* ;

unstructured = entry:control x exit:control ;

value = code + symbolic + constant + intrinsic:unit + unknown:unit + expression + reference ;

variable = basic x dimensions:dimension* x qualifiers:qualifier* ;

whileloop = condition:expression x body:statement x label:entity x evaluation ;

31

References

[1] B. Baron, Construction flexible et cohérente pour la compilation inter-
procédurale, Rapport interne EMP-CRI-E157, juillet 1991

[2] A. J. Bernstein, Analysis of Programs for Parallel Processing, IEEE Trans-
actions on Electronic Computers, Vol. 15, n. 5, pp. 757-763, Oct. 1966.

[3] B. Creusillet, Analyses de régions de tableaux et applications, Thèse de Doc-
teurat, École des mines de Paris, Décembre 1996

[4] P. Jouvelot, R. Triolet, NewGen: A Language Independent Program Gener-
ator, Rapport Interne CAII 191, 1989 4

[5] P. Jouvelot, R. Triolet, NewGen User Manual, Rapport Interne CAII ???,
1990 4, 17, 28

[6] R. Triolet, PIPSMAKE and PIPSDBM: Motivations et fonctionalités, Rap-
port Interne CAII TR E/133 13, 15, 29

[7] R. Triolet, Contribution à la parallélisation automatique de programmes For-
tran comportant des appels de procédures, Thèse de Docteur-Ingénieur, Uni-
versité Pierre et Marie Curie, décembre 1984.

[8] R. Triolet, F. Irigoin, PIPS High-Level Software Interface: Pipsmake Docu-
mentation PIPS 29

[9] L. Zhou, F. Irigoin, Properties: Low Level Tuning of PIPS, PIPS Documen-
tation 29

32

Index

sizeof, 26

Aliasing, 11

Application, 27

Area, 7

Assignment, 18, 20

Basic, 8

C, 14

Call, 20

Call Graph, 14

Callees, 14

Cast, 26

Character, 8

Code, 13

Common, 7

Complex, 8

Constant, 13

Control, 21

Control Flow Graph, 20

CONTROL MAP, 16

Control Node, 21

DATA, 13

Declarations, 13

Decls text, 13

Dimension, 9

DO, 19

Entity, 6

Equivalence, 11

Execution, 19

Expression, 25

Forloop, 20

Formal, 12

Fortran, 14

Function, 6

Functional, 9

gen multi recurse, 16

gen recurse, 16

GO TO, 20

HCFG, 20

IF, 18

Instruction, 16, 18

Integer, 8

Intrinsic, 6, 20

Label, 6, 7

Logical, 8

Loop, 19

Mode, 10

Normalized, 27

Overloaded, 8

Parallel Loop, 19

PARAMETER, 13

Parameter, 10

Precondition, 27, 28

Predicate, 28

Private, 19

Psysteme, 5

Pvecteur, 5, 25

Qualifier, 9

RAM, 11

Range, 19

Real, 8

Reference, 26

RETURN, 20

Sequence, 16, 18

Sequential Loop, 19

Sizeof, 26

Statement, 15, 16

Storage, 10

Subroutine, 6

Subscript, 27

switch, 19

Symbolic, 12

Syntax, 25

Test, 18

Transformer, 27, 28

Type, 7

Unstructured, 20

Value, 12

Variable, 6, 8

While, 20

33

	External Data Structures
	Vector
	Set of Affine Constraints

	Entities: Variables, Functions, Operators, Constants, Labels...
	Entity
	Type
	Area Type
	Variable Type
	Basic Type
	Dimension
	C Qualifiers
	Functional Type
	Parameter Type and Mode

	Storage
	RAM Storage
	Formal Storage

	Value
	Symbolic Value
	Program Variables
	Constant Value

	Code, Statements and Instructions
	Module Code
	Programming Languages
	Callees
	Statement
	Mappings from statement to statement
	Mappings from statement to integer
	Mappings from statement (task) to its schedule

	Instruction
	Sequence
	Conditional (a.k.a. Test)
	Switch
	DO Loop, Sequential or Parallel
	While Loop
	For loop
	Function Call
	Control Flow Graph (a.k.a. Unstructured)
	Control Flow Graph Node
	Mappings between Statements and Control Nodes

	Extensions
	Pragma

	Synchronization

	Expressions
	Abstract Tree of an Expression: Syntax
	Reference
	Range
	Function Call
	Cast
	Sizeof
	Subscript
	Application

	Affine Representation of an Expression

	Semantics Analysis
	Transformer
	Predicate

	Consistency
	Module consistency
	Program consistency
	Implicit consistency
	NewGen consistency

	Disk Storage
	Conclusion

