Pips Database Manager
Private Data Structures

Fabien Coelho
October 3, 2024

1 Internal Pipsdbm Database Structures

This file contains the description of new database structures used internally by
pipsdbm. The idea is to improve pipsdbm performances by providing an under-
lying fast hash-table-based implementation instead of the list used externally
by pipsdbm API, since lists do not scale up well with the number of modules.

Conceptually, the pipsdbm database manages resources. However, resources
are owned by a module and have a kind (from the pipsmake point of view),
and they together form the unique resource identification. After discussing it
for a while among PIPS designers, it was decided that pipsdbm should know
about this subclassification of resources, and this is taken into account by these
private pipsdbm data structures.

All domain private to pipsdbm have name prefixed by db_.

1.1 TUser Resources

The exact nature of a resource as defined by a user of the library is not known
by pipsdbm API. So all pointers to user resources, e.g. CODE or CALLERS, are
typed as void *, i.e. db_void in Newgen declarations.

external db_void

1.2 Named Objects

The key for the resource descriptor management is a string. However they are
not managed by functions, which need a full newgen domain. Hence this small
tabulated domain associates a unique object to a string. It can be used for both
owners, i.e. module names, and resource type, i.e. strings. For instance, all
occurences of the string "foo" are reduced to one.

tabulated db_symbol = name:string

1.3 An Internal Resource Descriptor for PIPS

A resource descriptor, known here as db_resource, contains several fields, simi-
lar to the fields of data structure resource defined in database. First a pointer
called pointer to the resource in memory. This pointer is associated to a logical



time, time, and maybe a file time, file_time, to check for possibly externally
modified files when PIPS is used interactively or is coupled to other tools using
the PIPS workspace files. Each resource has a status, called db_status. It may
be loaded and the pointer field db_pointer actually points to the resource data
structure in memory, or unloaded, stored (the pointer may point to the name
of the resource?), or being required by pipsmake but not yet produced. For
optimization, a resource can also be loaded and stored at the same time. Note
that a key information, whether the resource is up-to-date or not, is not stored
here as it depends on the rules managed by pipsmake at a higher level.

db_status = loaded:unit + stored:unit + required:unit + loaded_and_stored:unit

db_resource = pointer:db_void x db_status x time:int x file_time:int

Note the differences with the domain resource and status. The fields
name and owner_name are gone because they are used as access keys. The field
db_status is more complex than the field status and it does not contain a
pointer to the user data structure. This pointer is moved up into db_resource.

Note that objects of type db_resource are internal to pipsdbm. However,
they are used under the name res_id to manage the make_cache of pipsdbm.

1.4 Resource Mappings

The PIPS resource descriptors are stored and retrieved internally with a two-
level mapping scheme. The first one uses the owner name, a.k.a. the module
name, and the second one the resource kind name. Note that module and
resource names are both managed as db_symbol.

The owner name is used to reach all resources associated to a given module:

db_resources = db_symbol -> db_owned_resources

Then the different resources can be accessed thanks to their resource kind
names:

db_owned_resources = db_symbol -> db_resource



	Internal Pipsdbm Database Structures
	User Resources
	Named Objects
	An Internal Resource Descriptor for PIPS
	Resource Mappings


