
PIPS: Mechanism for the Automatic Consistency

Management and Phase Activation (pipsmake)

François Irigoin
Pierre Jouvelot
Rémi Triolet

CAI, École des mines de Paris

October 3, 2024

Introduction

The interprocedural and interactive nature of PIPS make necessary the man-
agement of pieces of information linked to a particular module and phase, i.e.
an analysis or a transformation. These pieces of information, called resources,
may be reused by future phases as long as they are consistent, else they must
be recomputed. This is true for any compiler but worse when interprocedural
analyses and transformations since inter-module dependencies are created.

The consistency management and recomputation of these pieces of informa-
tion, i.e. resources, could have been spread out in each of the transformations
and analyses of PIPS. It seemed much better to centralize in one library the
management of dependencies between phases and the maintenance of the co-
herence between different pieces of information, i.e. resources.

The pipsmake library offers two principal entry points: make and apply. The
first one is used to request a particular piece of information in a consistent state,
without having to worry about the calculation of all the different resources which
are necessary for its calculation. The second one is used to apply a particular
compiler pass, also known as a rule. A rule includes not only the name of the
pass, but also the list of resources necessary for the execution of the pass and
the list of resources generated by the pass. A resource is linked to a module and
to a kind: for instance the CODE of function foo.

When a given resource must be found or recomputed, the set of rules are
scanned to find out which rule produces the resource, and which secondary
resources are necessary to compute the requested resource.

When several rules allow the calculation of a particular resource, an activa-
tion mechanism is used to define the default rule. This is indispensible to be
able to treat the recursive calls produced by the successive manifestation of rules
without having to request too much information concerning user partameters.

1



By default, the first rule producing a particular resource is considered ac-
tivated. When several rules are available to produce the same resource, this
resource must be the only one produced by this rule. In this manner it is
coherent to activate rules dynamically.

A set of rules and particular resources may be statically defined in a file
named pipsmake.rc. The library pipsmake contains the modules which per-
form the reading of such a file to initialize a a set of rules in memory and to
write to disc a set of rules in a format compatible with their future read.

This is automatically made possible by certain interactive PIPS interfaces,
on condition that the available alternative rules as well as the resource they
produce have an alias name.

We present successively the structures of the data used to store in memory
a set of derivation rules, virtual resources and real resources.

1 Set of derivation rules

Makefile = rules:rule* x active phases:string*

The domaine makefile is used by the high-level driver to describe between
the different Pips phases. A Makefile is a list of rules (rule), each rule de-
scribing one of the Pips phases. In other words, the Makefile gives the list of
phases active at the present instant active phases. Remember that each type
of resource may possibly be produced by different phases, but that only one phase
is usable at any given instant.

Note, the new fonctionalities for multiple resource production imply an am-
biguity concerning the notion of active rule; active nature of the active rules
being possible for a subset of rules which they produce (in particular in the case
of patially cyclical rules).

2 Definition of a particular rule

Rule = phase:string x required:virtual resource* x produced:virtual resource*

x preserved:virtual resource* x modified:virtual resource* x pre transformation:virtual resource*

x post transformation:virtual resource*

The domain rule permits the description of the actions of the phases of
Pips on the resources managed by pips-db. Each phase requires that certain
resources by available disponibles (required), it begins by executing potential
transformations (pre transformation), then produces one or several resources
(produced), and modifies others (modified). The difference between the re-
sources produced and and those modified permit the driver to successively man-
ifest the phases on the correct order. Post processing phases are stored in
post transformation

The transformation phases act on the code of the modules, which generally
implies that the information which describe this module are lost. Yet, certain

2



among them do transformations which are so minor that certain descriptions
are preserved (preserved). This is notably the case of the privatization which
all these descriptions preserved. Here is a list of the Pips phases.

parser syntaxic and calculation analysis of the control graph,

linker editing of links,

proper-effects calculation of the proper effects of the instructions,

cumulated-effects calculation of the cumulated effects of the instructions,

usedef calculation of the used-def chains and the def-use chains,

privatizer variable privatization ,

dgkennedy calculation of the dependency graph with the niveaux de Kennedy,

dgwolfe calculation of the dependency graph with the vecteurs de direction de
Wolfe,

3 Definition of a Virtual Resource

The virtual resources are the variables which may be instantiated in a real
resource or in a list of real resources.

Virtual resource = name:string x owner

The domain virtual resource permits the designation of a resource read or
modifie’d by a phase descibing precicely in addition to the nature of the resource
(datum) if the resource accessed is that which is attatched to the module, a
program, to the modules accessed by the module to which the phase is apples or
that which called it (owner). Here is the list of all the resources which Pips may
be able to calculate.

source file source of a module Fortran; result of the initialization;

code module code with structured control graph; result of the control and parsing
action;

entities program entites; resultat of the initialisation, of the parser and the
linker;

callees modules callede directely by a module; result of the linker;

proper-effects proper effect of the instructions for a module; the term propre
signifies that thg effets of the instruction blocs produced (loops, tests, ...)
are not taken into account; result of proper-effects;

cumulated-effects cumulated effect of the instructions for a module; the term
cumulé signifies that the effects of the instruction blocs prodiced (loops,
tests, ...) are taken into account; result ofe cumulated-effects;

3



sdfi summary data flow information of a module; it is an abstract of the cumlu-
lated effets of the module’s instruction bloc; produce an abstraction of the
effets consist of the elimination of the effets of the local variables of the
module and, in th ecase of tables, the globalization of each effect erasing
the expressions of indices in the process; the result of cumulated-effects;

chains use-def and def-use chains of a module; result of usedef;

dgkennedy dependancy graph with the niveaux de Kennedy;

dgwolfe dependancy graph with the dependance direction vectors (Wolfe);

Owner = { program , module , main , callees , callers , all , select

, compilation_unit }

The domain owner permits the precise description of the virtual dependency
rule concerning which modules are attached, the ressources read, written, pro-
duced or preserved. This could be the module itself (module), the modules called
by the module to which the phase is applied (callees) or which it calls caller),
or all the modules of the programme in question(all). The program (program)
itself in fact caracterizes a particular workspace an so indirecty the set of mod-
ules no which we wish to perform work. The name of a pogram is generally not
automatically derived from the code source because we can easily wish to derive
several versions of the same sequential original code and give a different name
to each different version.

This supplementary attribute of the dependancies allows the top-level driver
to manage multiple calls made necessary by the interprocedural nature of Pips
and the elimination of the auto-recursion of the database manager.

select is a fake owner, to be used to select (or activate) rules from other
pipsmake rules. Should only be used with the bang rules?

4 Real Resources

The real resources correspond to a particular set of data produced by a module
or a particular program by a particular phase. The virtual resources take their
value among these real resources, but these derivation rules of pipsmake are still
generic and therefore still defined in terms of de virtual resources.

Real resource = resource name:string x owner name:string

The domain real resource is a private domain for pipsmake which serves
to enable the manifestation of a set of virtual resources for a given program and
a module.

4


