
PIPS: Use-Def Chains and Dependence Graph

François Irigoin
Pierre Jouvelot
Rémi Triolet
Yi-Qing Yang

CRI, MINES ParisTech

May 16, 2024

The dependence graph specific data structures, as well as auxiliary data
structures used to compute it, are described in this report. The graph itself is a
generic graph defined in Newgengraph.tex/. It is specialized into a dependence
graph by using specific arc and vertex labels. The standard use-def, def-use
and def-def chains are encoded with this data structure, as well as non-standard
use-use chains useful for cache and locality management. The dependence graph
data structure is used in libraries chains which computes the use-def chains,
ricedg which refines the use-def chains into a dependence graph using vari-
ous dependence tests1, and rice which uses the dependence graph to compute
strongly connected components according to the Allen&Kennedy algorithm [1].

The genericity is not supported explicitly by NewGen[2, 3]. Although the arc
and vertex labels are NewGen objects, they are seen as external types when used
in C code. Specific procedures are specified in calls to gen_init_external (see
initialize_newgen in Library top-level). C modules using these labels must
use explicit casts to convert the generic labels into dependence graph labels.

Auxiliary data structures are used to compute the strongly connected com-
ponents (SCC) of the dependence graph. The SCC routines are not as generic
as could be hoped. They take into account the graph hierarchy implied by the
dependence levels of the Allen & Kennedy parallelization algorithm [1]. This
explains why the SCC related data structures are declared here and not with
graph data structure.

Several functions compute or print a dependence graph. See the PipsMake
manual for the list of user-callable functions. Advanced users have access to
more functions through the PIPS properties.

It is not possible to save efficiently the internal representation of a depen-
dence graph onto disk. The dependence graph structure contains pointers to
memory effects and indirectly to memory references included in code statements.
These references which are part of the code data structure do not have names
and would have to be duplicated in the dependence graph file. Because of the
evaluation mechanism used by PipsMake manual, it is not possible to reuse
a parallelized code from one PIPS session to the next one. The parallelized

1The dependence tests used were not all designed at Rice university but the dependence
levels defined at Rice are used.

1



code depends on the dependence graph, and the dependence graph cannot be
retrived. Hence the parallelized code, however correct, is deemed inconsistent
with respect to the workspace.

Section 1 deals with the usual import of other NewGen data structures. Sec-
tion 2 contains the declarations of data structure external to NewGen. Section 3
presents the arc and vertex decorations specific to the dependence graph. And
the last section, Section 4, is used to describe the data structures required by
the Allen&Kennedy parallelization algorithm.

1 Imported NewGen Types

The dependence graph points to statement and to memory effects (see use-def
chains for both data structures).

Import effect from "effects.newgen"

The dependence graph data structure is a particular instance of the graph

data structure.

Import vertex from "graph.newgen"

2 Data Structures External to NewGen

Generating systems are used to abstract a set of dependence arcs by dependence
cones (convex and transitive closure of the dependence set) and/or dependence
polyhedron (convex closure). This data structure, generating system, is part
of the C3 Linear Algebra library.

External Ptsg

3 Arc and Vertex Labels for the Dependence
Graph

3.1 DG Vertex Label

dg vertex label = statement:int x sccflags

This data type carries information attached to each dependence graph ver-
tex (a.k.a. node). Graph nodes are of type node defined in graph.tex. Field
statement contains a statement_ordering, i.e. a unique statement identi-
fier (see ri.tex). The effective statement can be retrieved using mapping
OrderingToStatement.

Field sccs_flags is used to compute strongly connected components of the
dependence graph.

2



3.2 DG Arc Label

dg arc label = conflicts:conflict*

This data type contains information attached to a dependence graph arc.
See Newgen data type graph in file graph.tex. Each DG arc points to the list
of all conflicts due to references in either the source or the sink statements, i.e.
the statements attached to the sink or the source vertex.

3.3 Dependence Conflict

conflict = persistant source:effect x persistant sink:effect x cone

A conflict is generated by two effects, one in the source statement and one
in the sink statement. Simple effects are due to references in statements. More
complex effects are generated for procedure calls. Different kinds of arcs (a.k.a.
chains), use-def, def-use, use-use and def-def, are derived from the different kinds
of effects, read and write. Note that def-def conflicts are computed to provide
locality information. This information is or might be used in phase WP65.

3.4 Dependence Levels and Dependence Cone

cone = levels:int* x generating system:Ptsg

Dependence arcs do not carry enough information to parallelize and/or trans-
form loops [4]. The simplest loop parallelization information is called dependence
levels. Each level correspond to one common enclosing loop. A common enclos-
ing loop contains both source and sink statements. The outermost enclosing
loop is denoted 1, and the innermost loop has the higher level. Non-loop car-
ried dependences have level number of common enclosing loops plus one, which
makes impossible to know if a dependence is loop carried or not if the number
of common enclosing loops is unknown.

Intra-statement conflicts, i.e. conflict between two references of the same
statement, are preserved, even if they are not loop-carried. They are required
for instruction level scheduling (not implemented in PIPS) and for consistency
across program transformations. After instruction atomization (see pipsmake-rc.tex),
the number of dependence arc should remain the same.

Loop interchange, for instance, requires more information than dependence
levels, namely dependence direction vectors (DDV). DDV’s are not computed in
PIPS because a more precise information, dependence cone and/or dependence
polyhedron, is made available. These convex polyhedra are not represented by
sets of affine constraints but by their generating systems because generating
systems are directly useful to constraint schedules (hyperplane methods) and
tilings (supernode partitioning).

The ultimate dependence information is value and not location based. PIPS
contains an implementation of Pr. Feautrier’s Array Data Flow Graph (DFG).
The DFG is implemented with another data structure described in paf_ri.tex.

3



4 Strongly Connected Components

4.1 Flags for Strongly Connected Components

Sccflags = enclosing scc:scc x mark:int x dfnumber:int x lowlink:int

This type is an auxiliary type used when computing the strongly connected
components of the dependence graph. More information available in Tarjan’s
algorithm description?

4.2 Sets of Strongly Connected Components

Sccs = sccs:scc*

This data type is used to return the strongly connected components of the
dependence graph. It is a simple list of SCC’s.

4.3 Strongly Connected Component

Scc = vertices:vertex* x indegree:int

A strongly connected component is a set of vertices, represented as a list,
and an integer field, indegree, used for their topological sort. Allen & Kennedy
algorithm [1] is based on topological sorts of the dependence graph SCC’s.

References

[1] J. Allen, K. Kennedy, Automatic Translation of FORTRAN Programs to
Vector Form, TOPLAS, V. 9, n. 4, 1987 1, 4

[2] P. Jouvelot, R. Triolet, NewGen: A Language Independent Program Gener-
ator, Rapport Interne CAII 191, 1989 1

[3] P. Jouvelot, R. Triolet, NewGen User Manual, Rapport Interne CAII ???,
1990 1

[4] Y. Yang, C. Ancourt, F. Irigoin, Minimal Data Dependence Abstractions
for Loop Transformations, International Journal of Parallel Programming,
v. 23, n. 4, Aug. 1995, pp. 359-388 3

4


	Imported NewGen Types
	Data Structures External to NewGen
	Arc and Vertex Labels for the Dependence Graph
	DG Vertex Label
	DG Arc Label
	Dependence Conflict
	Dependence Levels and Dependence Cone

	Strongly Connected Components
	Flags for Strongly Connected Components
	Sets of Strongly Connected Components
	Strongly Connected Component


