
Deduction and Computation through Deduction
Modulo

Olivier H

19 November 2007



Deduction and Computation

I Computation is at the root of mathematics.

I It has been forgotten by the formalization of the mathematics.
I reborn with informatics: rewriting rules.
I we need a balance between deduction steps and computation

steps.



Deduction and Computation

I Computation is at the root of mathematics.
I It has been forgotten by the formalization of the mathematics.

I reborn with informatics: rewriting rules.
I we need a balance between deduction steps and computation

steps.



Deduction and Computation

I Computation is at the root of mathematics.
I It has been forgotten by the formalization of the mathematics.
I reborn with informatics: rewriting rules.
I we need a balance between deduction steps and computation

steps.



Deduction systems: the logical framework

I first-order logic: function and predicate symbols, logical
connectors: ∧,∨,⇒,¬, and quantifiers ∀,∃.

Even(0)

∀n(Even(n)⇒ Odd(n + 1))

∀n(Odd(n)⇒ Even(n + 1))

I a sequent :
hyp.︷︸︸︷
Γ `

conc.︷︸︸︷
A

I rules to form them: sequent calculus (or natural deduction)
I framework: intuitionnistic logic (classical, linear, higher-order,

constraints ...)



Deduction systems: the logical framework

I first-order logic: function and predicate symbols, logical
connectors: ∧,∨,⇒,¬, and quantifiers ∀,∃.

Even(0)

∀n(Even(n)⇒ Odd(n + 1))

∀n(Odd(n)⇒ Even(n + 1))

I a sequent :
hyp.︷︸︸︷
Γ `

conc.︷︸︸︷
A

I rules to form them: sequent calculus (or natural deduction)
I framework: intuitionnistic logic (classical, linear, higher-order,

constraints ...)



Deduction System : sequents calculus (LJ)

I A deduction rule:
Γ ` A Γ ` B

Γ ` A ∧ B
I right and left rules

Γ,A ` A
axiom

Γ,A ` B Γ ` A
Γ ` B

cut

Γ ` A Γ ` B
Γ ` A ∧ B

∧ -r
Γ,A ,B ` C
Γ,A ∧ B ` C

∧ -l

Γ,∀xA [x],A [t] ` B
Γ,∀xA [x] ` B

∀-g, any t
Γ ` A [x]

Γ ` ∀xA [x]
∀-r, x free



Example: 1

∀xP(x) ` P(0) ∧ P(1)



Example: 1

∀xP(x) ` P(0) ∀xP(x) ` P(1)
∧-r

∀xP(x) ` P(0) ∧ P(1)



Example: 1

∀xP(x),P(0) ` P(0)
∀-l

∀xP(x) ` P(0)

∀xP(x),P(1) ` P(1)
∀-l

∀xP(x) ` P(1)
∧-r

∀xP(x) ` P(0) ∧ P(1)



Example: 1

axiom
∀xP(x),P(0) ` P(0)

∀-l
∀xP(x) ` P(0)

axiom
∀xP(x),P(1) ` P(0)

∀-l
∀xP(x) ` P(1)

∧-r
∀xP(x) ` P(0) ∧ P(1)



Example: 2

∀xP(x) ` P(0) ∧ P(1)



Example: 2

∀xP(x),P(1),P(0) ` P(0) ∧ P(1)
∀-l

∀xP(x),P(0) ` P(0) ∧ P(1)
∀-l

∀xP(x) ` P(0) ∧ P(1)



Example: 2

axiom
∀xP(x),P(1),P(0) ` P(0)

axiom
∀xP(x),P(1),P(0) ` P(1)

∧-r
∀xP(x),P(1),P(0) ` P(0) ∧ P(1)

∀-l
∀xP(x),P(0) ` P(0) ∧ P(1)

∀-l
∀xP(x) ` P(0) ∧ P(1)



Example: 2

axiom
∀xP(x),P(1),P(0) ` P(0)

axiom
∀xP(x),P(1),P(0) ` P(1)

∧-r
∀xP(x),P(1),P(0) ` P(0) ∧ P(1)

∀-l
∀xP(x),P(0) ` P(0) ∧ P(1)

∀-l
∀xP(x) ` P(0) ∧ P(1)

I the first rule is not always “don’t care”: free variable condition.



Axioms vs. rewriting

Axioms Rewriting
x + S(y) = S(x + y) x + S(y)→ S(x + y)

x + 0 = x x + 0→ x
x ∗ 0 = 0 x ∗ 0→ 0

x ∗ S(y) = x + x ∗ y x ∗ S(y)→ x + x ∗ y
(x ∗ y = 0)⇔ (x = 0 ∨ y = 0) (x ∗ y = 0)→ (x = 0 ∨ y = 0)

...

T ` 2 ∗ 2 = 4
T ` ∃x(2 ∗ x = 4)

` 4 = 4
` ∃x(2 ∗ x = 4)



Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r

I use: We replace t = σl by σr (unification). Rewriting could be
deep in the term.

I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transform as such:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B



Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.

I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transform as such:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B



Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.
I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transform as such:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B



Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.
I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness

I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transform as such:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B



Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.
I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡

I deduction rules transform as such:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B



Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.
I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transform as such:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B



Deduction modulo : sequent calculus modulo

Γ,A ` B
axiom A ≡ B

Γ,A ` C Γ ` B
Γ ` C

cut A ≡ B

Γ ` A Γ ` B
Γ ` C

∧ -r A ∧ B ≡ C
Γ,A ,B ` C
Γ,D ` C

∧ -l A ∧ B ≡ D

Γ,B ,A [t] ` C
Γ,B ` C

∀-l ∀xA [x] ≡ B
Γ ` A [x]

Γ ` B
∀-r∗ ∀xA [x] ≡ B



Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x) ` A ∧ B



Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x) ` A ∀xP(x) ` B
∧-r

∀xP(x) ` A ∧ B



Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x),P(0) ` A
∀-l

∀xP(x) ` A
∀xP(x),P(1) ` B

∀-l
∀xP(x) ` B

∧-r
∀xP(x) ` A ∧ B



Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

axiom
∀xP(x),P(0) ` B

∀-r
∀xP(x) ` A

axiom
∀xP(x),P(1) ` B

∀-r
∀xP(x) ` B

∧-r
∀xP(x) ` A ∧ B



Cut rule: a detour

Γ,A ` B Γ ` C
Γ ` B

cut, A ≡ C

I show Γ ` A
I show Γ,A ` B
I then, you have showed Γ ` B
I it is the application of a lemma.



Example: 4

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x) ` A ∧ B



Example: 4

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x),A ` A ∧ B ∀xP(x) ` A
cut

∀xP(x) ` A ∧ B



Example: 4

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x),A ` A ∧ B

Ax.
∀xP(x),P(0) ` A

∀-r
∀xP(x) ` A

cut
∀xP(x) ` A ∧ B



Example: 4

I consider the rewriting system R:

P(0) → A

P(1) → B

Ax.
∀xP(x),A ` A

Ax.
∀xP(x),P(1),A ` B

∀-r
∀xP(x),A ` B

∧-r
∀xP(x),A ` A ∧ B

Ax.
∀xP(x),P(0) ` A

∀-r
∀xP(x) ` A

cut
∀xP(x) ` A ∧ B



Example: 4

I consider the rewriting system R:

P(0) → A

P(1) → B

Ax.
∀xP(x),A ` A

Ax.
∀xP(x),P(1),A ` B

∀-r
∀xP(x),A ` B

∧-r
∀xP(x),A ` A ∧ B

Ax.
∀xP(x),P(0) ` A

∀-r
∀xP(x) ` A

cut
∀xP(x) ` A ∧ B

I an unnecessary detour
I we could have cutted on any formula!



The cut rule: a detour

Γ,A ` B Γ ` C
Γ ` B

cut A ≡ C

I we show Γ,A ` B and Γ ` A
I then we have showed Γ ` B.
I lemma: the good way for a human being.
I in practice: not adapted for automatic demonstration.

Nb: resolution method do not proceed by cuts !

I in theory: consistence, proof normalization (Curry-Howard)
depend of its elimination.

I eliminating cuts: a key result.

Γ ` A B Γ `cf A

I two main paths towards:

I proof normalization (syntactic).
I semantical methods.

I in deduction modulo: indecidable, need for general criterions
on R



The cut rule: a detour

Γ,A ` B Γ ` C
Γ ` B

cut A ≡ C

I we show Γ,A ` B and Γ ` A
I then we have showed Γ ` B.
I lemma: the good way for a human being.
I in practice: not adapted for automatic demonstration.

Nb: resolution method do not proceed by cuts !
I in theory: consistence, proof normalization (Curry-Howard)

depend of its elimination.

I eliminating cuts: a key result.

Γ ` A B Γ `cf A

I two main paths towards:

I proof normalization (syntactic).
I semantical methods.

I in deduction modulo: indecidable, need for general criterions
on R



The cut rule: a detour

Γ,A ` B Γ ` C
Γ ` B

cut A ≡ C

I we show Γ,A ` B and Γ ` A
I then we have showed Γ ` B.
I lemma: the good way for a human being.
I in practice: not adapted for automatic demonstration.

Nb: resolution method do not proceed by cuts !
I in theory: consistence, proof normalization (Curry-Howard)

depend of its elimination.
I eliminating cuts: a key result.

Γ ` A B Γ `cf A

I two main paths towards:
I proof normalization (syntactic).
I semantical methods.

I in deduction modulo: indecidable, need for general criterions
on R



The cut rule: a detour

Γ,A ` B Γ ` C
Γ ` B

cut A ≡ C

I we show Γ,A ` B and Γ ` A
I then we have showed Γ ` B.
I lemma: the good way for a human being.
I in practice: not adapted for automatic demonstration.

Nb: resolution method do not proceed by cuts !
I in theory: consistence, proof normalization (Curry-Howard)

depend of its elimination.
I eliminating cuts: a key result.

Γ ` A B Γ `cf A

I two main paths towards:
I proof normalization (syntactic).
I semantical methods.

I in deduction modulo: indecidable, need for general criterions
on R



The normalization method(s)

I Curry-Howard: proofs = programs
I formulas = types
I proof tree = typing tree
I at the heart of proof assistants (PVS, Coq, Isabelle, ...)
I when a program calculates, it performs a cut elimination

procedure.

I show that all typables function terminates.



The normalization method(s)

I Curry-Howard: proofs = programs
I formulas = types
I proof tree = typing tree
I at the heart of proof assistants (PVS, Coq, Isabelle, ...)
I when a program calculates, it performs a cut elimination

procedure.
I show that all typables function terminates.



The semantical method(s)

I define a semantical space (truth value). Ex: Boolean
algebras.

I we must have soundness/completeness wrt the semantic.

I there is links between both methods (last part of the talk).



The semantical method(s)

I define a semantical space (truth value). Ex: Boolean
algebras.

I we must have soundness/completeness wrt the semantic.
I there is links between both methods (last part of the talk).



The semantical method

Γ ` A
soundness

-
�

completeness
Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ?



The semantical method

Γ ` A
soundness

-
�

completeness
Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? � strong completeness



The semantical method

Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? � strong completeness



A semantic for deduction modulo

Two main semantics for intuitionistic logic:

I Heyting algebras [Lipton,Okada]
I Kripke structures

I K the set of worlds, partially ordered with ≤ (a “temporal
relation”: past, present, possible futures: partial information)

I D : α→ Set a monotone function (interpretation domain for
terms).

I 
 is a relation between worlds and formulas, verifiying:



A semantic for deduction modulo

Two main semantics for intuitionistic logic:
I Heyting algebras [Lipton,Okada]

I Kripke structures

I K the set of worlds, partially ordered with ≤ (a “temporal
relation”: past, present, possible futures: partial information)

I D : α→ Set a monotone function (interpretation domain for
terms).

I 
 is a relation between worlds and formulas, verifiying:



A semantic for deduction modulo

Two main semantics for intuitionistic logic:
I Heyting algebras [Lipton,Okada]
I Kripke structures

I K the set of worlds, partially ordered with ≤ (a “temporal
relation”: past, present, possible futures: partial information)

I D : α→ Set a monotone function (interpretation domain for
terms).

I 
 is a relation between worlds and formulas, verifiying:



A semantic for deduction modulo

Two main semantics for intuitionistic logic:

I Heyting algebras [Lipton,Okada]

I Kripke structures

A Kripke Structure (KS) is a tuple 〈K ,≤,D,
〉:

I K the set of worlds, partially ordered with ≤ (a “temporal
relation”: past, present, possible futures: partial information)

I D : α→ Set a monotone function (interpretation domain for
terms).

I 
 is a relation between worlds and formulas, verifiying:



A semantic for deduction modulo

Two main semantics for intuitionistic logic:

I Heyting algebras [Lipton,Okada]

I Kripke structures

A Kripke Structure (KS) is a tuple 〈K ,≤,D,
〉:
I K the set of worlds, partially ordered with ≤ (a “temporal

relation”: past, present, possible futures: partial information)

I D : α→ Set a monotone function (interpretation domain for
terms).

I 
 is a relation between worlds and formulas, verifiying:



A semantic for deduction modulo

Two main semantics for intuitionistic logic:

I Heyting algebras [Lipton,Okada]

I Kripke structures

A Kripke Structure (KS) is a tuple 〈K ,≤,D,
〉:
I K the set of worlds, partially ordered with ≤ (a “temporal

relation”: past, present, possible futures: partial information)
I D : α→ Set a monotone function (interpretation domain for

terms).

I 
 is a relation between worlds and formulas, verifiying:



A semantic for deduction modulo

Two main semantics for intuitionistic logic:

I Heyting algebras [Lipton,Okada]

I Kripke structures

A Kripke Structure (KS) is a tuple 〈K ,≤,D,
〉:
I K the set of worlds, partially ordered with ≤ (a “temporal

relation”: past, present, possible futures: partial information)
I D : α→ Set a monotone function (interpretation domain for

terms).
I 
 is a relation between worlds and formulas, verifiying:



A semantic for deduction modulo

I P atomic: if α ≤ β and α 
 P, then β 
 P.
I α 
 A ⇒ B iff for any β ≥ α, when β 
 A then β 
 B.
I α 
 A ∨ B iff α 
 A or α 
 B.

I Additional constraint in deduction modulo:

A ≡ B implies α 
 A ⇔ α 
 B



A semantic for deduction modulo

I P atomic: if α ≤ β and α 
 P, then β 
 P.
I α 
 A ⇒ B iff for any β ≥ α, when β 
 A then β 
 B.
I α 
 A ∨ B iff α 
 A or α 
 B.
I Additional constraint in deduction modulo:

A ≡ B implies α 
 A ⇔ α 
 B



Kripke structures at work

I A ∨ (¬A) is well-known not to be valid in intuitionistic logic.
I we build a structure that is invalidating this formula. Note: at

least two worlds (single world = boolean model).
I ¬A = A ⇒ ⊥

β 
 A

α 
 ∅



Kripke structures at work

I A ∨ (¬A) is well-known not to be valid in intuitionistic logic.
I we build a structure that is invalidating this formula. Note: at

least two worlds (single world = boolean model).
I ¬A = A ⇒ ⊥

β 
 A

α 
 ∅

β 
 A

α 
 ∅ and α 1 A ,¬A ,A ∨ ¬A



Constructive proof: the algorithm behind

Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? � strong completeness



Constructive proof: the algorithm behind

Γ ` A
soundness

- Γ |= A

Γ `cf A
� strong completeness

Tab (T∅ 
 Γ,
F∅ 
 A) ↪→�

tableaux
soundness

6
tableaux

completeness?



Constructive proof: the algorithm behind

Γ ` ∆
soundness

- Γ |= A

Γ `cf ∆ �
tableaux soundness

� strong completeness

Tab (T∅ 
 Γ,
F∅ 
 ∆) ↪→�

tableaux
completeness?



The tableau method
I Searching for a counter-model

I Exhaustive algorithm, each branch represents a potential
counter-model.

I some rules:

Tp 
 A ∨ B

Tp 
 BTp 
 A

Fp 
 A ∨ B

Fp 
 A

Fp 
 B

Tp 
 A ⇒ B

Fq 
 ATq 
 B

Fp 
 A ⇒ B

Tq 
 A

Fq 
 B
with proviso on q

I in deduction modulo: allow rewrite rules, define a new
systematic research algorithm with R.



The tableau method
I Searching for a counter-model
I Exhaustive algorithm, each branch represents a potential

counter-model.

I some rules:

Tp 
 A ∨ B

Tp 
 BTp 
 A

Fp 
 A ∨ B

Fp 
 A

Fp 
 B

Tp 
 A ⇒ B

Fq 
 ATq 
 B

Fp 
 A ⇒ B

Tq 
 A

Fq 
 B
with proviso on q

I in deduction modulo: allow rewrite rules, define a new
systematic research algorithm with R.



The tableau method
I Searching for a counter-model
I Exhaustive algorithm, each branch represents a potential

counter-model.
I some rules:

Tp 
 A ∨ B

Tp 
 BTp 
 A

Fp 
 A ∨ B

Fp 
 A

Fp 
 B

Tp 
 A ⇒ B

Fq 
 ATq 
 B

Fp 
 A ⇒ B

Tq 
 A

Fq 
 B
with proviso on q

I in deduction modulo: allow rewrite rules, define a new
systematic research algorithm with R.



The tableau method
I Searching for a counter-model
I Exhaustive algorithm, each branch represents a potential

counter-model.
I some rules:

Tp 
 A ∨ B

Tp 
 BTp 
 A

Fp 
 A ∨ B

Fp 
 A

Fp 
 B

Tp 
 A ⇒ B

Fq 
 ATq 
 B

Fp 
 A ⇒ B

Tq 
 A

Fq 
 B
with proviso on q

I in deduction modulo: allow rewrite rules, define a new
systematic research algorithm with R.



Tableau: example 1

I We want to show “A ∨ B ` C ⇒ A ”
I tranlsation in tableau language: there is NO (node of no)

Kripke structure satisfying A ∨ B without satisfying also
C ⇒ A . Let’s see if the counter-model search fails or not.

I We choose as usual sequences of integers for the set of
worlds (partial order: prefix).

T∅ 
 A ∨ B ,F∅ 
 C ⇒ A



Tableau: example 1

T∅ 
 A ∨ B ,F∅ 
 C ⇒ A



Tableau: example 1

T∅ 
 A ∨ B ,F∅ 
 C ⇒ A

T1 
 C

F1 
 A



Tableau: example 1

T∅ 
 A ∨ B ,F∅ 
 C ⇒ A

T1 
 C

F1 
 A



Tableau: example 1

T∅ 
 A ∨ B ,F∅ 
 C ⇒ A

T1 
 C

F1 
 A

T∅ 
 BT∅ 
 A



Tableau: example 1

T∅ 
 A ∨ B ,F∅ 
 C ⇒ A

T1 
 C

F1 
 A

T∅ 
 BT∅ 
 A

�



Tableau: example 1

T∅ 
 A ∨ B ,F∅ 
 C ⇒ A

T1 
 C

F1 
 A

T∅ 
 BT∅ 
 A

�



Tableau: example 2

I We want to show “` (A ⇒ B)⇒ (A ⇒ B)”

F∅ 
 (A ⇒ B)⇒ A ⇒ B



Tableau: example 2

F∅ 
 (A ⇒ B)⇒ A ⇒ B

T1 
 (A ⇒ B)

F1 
 A ⇒ B



Tableau: example 2

F∅ 
 (A ⇒ B)⇒ A ⇒ B

T1 
 (A ⇒ B)

F1 
 A ⇒ B

T1 
 BF1 
 A



Tableau: example 2

F∅ 
 (A ⇒ B)⇒ A ⇒ B

T1 
 (A ⇒ B)

F1 
 A ⇒ B

T1 
 BF1 
 A

T1 
 (A ⇒ B)



Tableau: example 2

F∅ 
 (A ⇒ B)⇒ A ⇒ B

T1 
 (A ⇒ B)

F1 
 A ⇒ B

T1 
 BF1 
 A

T1 
 (A ⇒ B)

T11 
 A

F11 
 B



Tableau: example 2

F∅ 
 (A ⇒ B)⇒ A ⇒ B

T1 
 (A ⇒ B)

F1 
 A ⇒ B

T1 
 BF1 
 A

T1 
 (A ⇒ B)

T11 
 A

F11 
 B

T11 
 BF11 
 A



Tableau: example 2
F∅ 
 (A ⇒ B)⇒ A ⇒ B

T1 
 (A ⇒ B)

F1 
 A ⇒ B

T1 
 BF1 
 A

T1 
 (A ⇒ B)

T11 
 A

F11 
 B

T11 
 B

�

F11 
 A

�



Tableau: example 2
F∅ 
 (A ⇒ B)⇒ A ⇒ B

T1 
 (A ⇒ B)

F1 
 A ⇒ B

T1 
 B

�

F1 
 A

T1 
 (A ⇒ B)

T11 
 A

F11 
 B

T11 
 B

�

F11 
 A

�



Tableaux completeness

I If the systematic tableau generation fails (does not terminate):
does it generate a counter-model ?

I well known in the classical sequent calculus.

I defining a model from an infinite branch: the latter has the
needed properties.

I the model is consistent with the branch:

Tp 
 P iff p 
 P

I deduction modulo: it has also to be a model of the rewrite
rules R.

I constructive point of view: if there is no counter-model, does
the method terminate? (KS definition is modified)



Tableaux completeness

I If the systematic tableau generation fails (does not terminate):
does it generate a counter-model ?

I well known in the classical sequent calculus.
I defining a model from an infinite branch: the latter has the

needed properties.

I the model is consistent with the branch:

Tp 
 P iff p 
 P

I deduction modulo: it has also to be a model of the rewrite
rules R.

I constructive point of view: if there is no counter-model, does
the method terminate? (KS definition is modified)



Tableaux completeness

I If the systematic tableau generation fails (does not terminate):
does it generate a counter-model ?

I well known in the classical sequent calculus.
I defining a model from an infinite branch: the latter has the

needed properties.
I the model is consistent with the branch:

Tp 
 P iff p 
 P

I deduction modulo: it has also to be a model of the rewrite
rules R.

I constructive point of view: if there is no counter-model, does
the method terminate? (KS definition is modified)



Tableaux completeness

I If the systematic tableau generation fails (does not terminate):
does it generate a counter-model ?

I well known in the classical sequent calculus.
I defining a model from an infinite branch: the latter has the

needed properties.
I the model is consistent with the branch:

Tp 
 P iff p 
 P

I deduction modulo: it has also to be a model of the rewrite
rules R.

I constructive point of view: if there is no counter-model, does
the method terminate? (KS definition is modified)



Tableaux completeness

I If the systematic tableau generation fails (does not terminate):
does it generate a counter-model ?

I well known in the classical sequent calculus.
I defining a model from an infinite branch: the latter has the

needed properties.
I the model is consistent with the branch:

Tp 
 P iff p 
 P

I deduction modulo: it has also to be a model of the rewrite
rules R.

I constructive point of view: if there is no counter-model, does
the method terminate? (KS definition is modified)



Remember the tableau for A ∨ B ` C ⇒ A :
T∅ 
 A ∨ B ,F∅ 
 C ⇒ A

T1 
 C

F1 
 A

T∅ 
 BT∅ 
 A

�

I the right path generates counter model.
I the nerve: the atomic formulas each world entails (forces),

extension by induction.



Conditions on rewrite rules

Providing the confluence of the rewrite system R, and for:
I an order condition: �, well-founded, having the subformula

property, and such that P →∗ Q implies P � Q .

I a positivity condition: if A → P then P has only positive
occurences of atoms.

I both conditions mixed: R� ∪R+, with a compatibility condition.
I the rule:

R ∈ R → ∀y (∀x(y ∈ x ⇒ R ∈ x)⇒ (y ∈ R ⇒ (A ⇒ A)))

the tableau method is complete.



Conditions on rewrite rules

Providing the confluence of the rewrite system R, and for:
I an order condition: �, well-founded, having the subformula

property, and such that P →∗ Q implies P � Q .
I a positivity condition: if A → P then P has only positive

occurences of atoms.

I both conditions mixed: R� ∪R+, with a compatibility condition.
I the rule:

R ∈ R → ∀y (∀x(y ∈ x ⇒ R ∈ x)⇒ (y ∈ R ⇒ (A ⇒ A)))

the tableau method is complete.



Conditions on rewrite rules

Providing the confluence of the rewrite system R, and for:
I an order condition: �, well-founded, having the subformula

property, and such that P →∗ Q implies P � Q .
I a positivity condition: if A → P then P has only positive

occurences of atoms.
I both conditions mixed: R� ∪R+, with a compatibility condition.

I the rule:

R ∈ R → ∀y (∀x(y ∈ x ⇒ R ∈ x)⇒ (y ∈ R ⇒ (A ⇒ A)))

the tableau method is complete.



Conditions on rewrite rules

Providing the confluence of the rewrite system R, and for:
I an order condition: �, well-founded, having the subformula

property, and such that P →∗ Q implies P � Q .
I a positivity condition: if A → P then P has only positive

occurences of atoms.
I both conditions mixed: R� ∪R+, with a compatibility condition.
I the rule:

R ∈ R → ∀y (∀x(y ∈ x ⇒ R ∈ x)⇒ (y ∈ R ⇒ (A ⇒ A)))

the tableau method is complete.



Γ ` ∆
soundness

- Γ |= ∆

Γ `cf ∆
Tab (T∅ 
 Γ,

F∅ 
 ∆) ↪→�

tableaux
completeness?



Tableaux soundness
We show the following theorem:

Theorem
If a tableau starting with T∅ 
 Γ,F∅ 
 P is closed, then we can
transform it into a proof of Γ `cf P.

I intuitionistic diffculty: in a tableau, there might be more than
one “non true” formula:

F∅ 
 P ∨ Q

F∅ 
 P

F∅ 
 Q

I we must derive the following rule:

Γ `cf A ∨ B Γ `cf A ∨ C
Γ `cf A ∨ (B ∧ C)

(similar to “multi succedent intuitionistic sequent calculus”).
I easy with cut, hard without.



Tableaux soundness
We show the following theorem:

Theorem
If a tableau starting with T∅ 
 Γ,F∅ 
 P is closed, then we can
transform it into a proof of Γ `cf P.

I intuitionistic diffculty: in a tableau, there might be more than
one “non true” formula:

F∅ 
 P ∨ Q

F∅ 
 P

F∅ 
 Q
I we must derive the following rule:

Γ `cf A ∨ B Γ `cf A ∨ C
Γ `cf A ∨ (B ∧ C)

(similar to “multi succedent intuitionistic sequent calculus”).

I easy with cut, hard without.



Tableaux soundness
We show the following theorem:

Theorem
If a tableau starting with T∅ 
 Γ,F∅ 
 P is closed, then we can
transform it into a proof of Γ `cf P.

I intuitionistic diffculty: in a tableau, there might be more than
one “non true” formula:

F∅ 
 P ∨ Q

F∅ 
 P

F∅ 
 Q
I we must derive the following rule:

Γ `cf A ∨ B Γ `cf A ∨ C
Γ `cf A ∨ (B ∧ C)

(similar to “multi succedent intuitionistic sequent calculus”).
I easy with cut, hard without.



Normalization (in a nutshell)



Curry-Howard correspondence

I Notation for proofs:

Γ, x : A ` π : B
Γ ` λx.π : A ⇒ B

Γ ` π′ : A Γ ` π : A ⇒ B
Γ ` (ππ′) : B

I very similar to a type system !
I extends to deduction modulo: rewrite rules are silent.
I cut elimination is a process, similar to function execution.
I aim: show that every proof normalizes: then the cut

elimination process terminates.



Curry-Howard correspondence

I Notation for proofs:

Γ, x : A ` π : B
Γ ` λx.π : A ⇒ B

Γ ` π′ : A Γ ` π : A ⇒ B
Γ ` (ππ′) : B

I very similar to a type system !

I extends to deduction modulo: rewrite rules are silent.
I cut elimination is a process, similar to function execution.
I aim: show that every proof normalizes: then the cut

elimination process terminates.



Curry-Howard correspondence

I Notation for proofs:

Γ, x : A ` π : B
Γ ` λx.π : A ⇒ B

Γ ` π′ : A Γ ` π : A ⇒ B
Γ ` (ππ′) : B

I very similar to a type system !
I extends to deduction modulo: rewrite rules are silent.

I cut elimination is a process, similar to function execution.
I aim: show that every proof normalizes: then the cut

elimination process terminates.



Curry-Howard correspondence

I Notation for proofs:

Γ, x : A ` π : B
Γ ` λx.π : A ⇒ B

Γ ` π′ : A Γ ` π : A ⇒ B
Γ ` (ππ′) : B

I very similar to a type system !
I extends to deduction modulo: rewrite rules are silent.
I cut elimination is a process, similar to function execution.

I aim: show that every proof normalizes: then the cut
elimination process terminates.



Curry-Howard correspondence

I Notation for proofs:

Γ, x : A ` π : B
Γ ` λx.π : A ⇒ B

Γ ` π′ : A Γ ` π : A ⇒ B
Γ ` (ππ′) : B

I very similar to a type system !
I extends to deduction modulo: rewrite rules are silent.
I cut elimination is a process, similar to function execution.
I aim: show that every proof normalizes: then the cut

elimination process terminates.



Normalization

I deduction modulo is high-level: we need reducibility
candidates.

I A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

I our aim: to each formula A , find a candidate ~A�. Show that if
Γ ` π : A then π ∈ ~A�.

I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�



Normalization

I deduction modulo is high-level: we need reducibility
candidates.

I A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

I our aim: to each formula A , find a candidate ~A�. Show that if
Γ ` π : A then π ∈ ~A�.

I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�



Normalization

I deduction modulo is high-level: we need reducibility
candidates.

I A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

I our aim: to each formula A , find a candidate ~A�. Show that if
Γ ` π : A then π ∈ ~A�.

I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�



Normalization

I deduction modulo is high-level: we need reducibility
candidates.

I A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

I our aim: to each formula A , find a candidate ~A�. Show that if
Γ ` π : A then π ∈ ~A�.

I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�



Towards “usual” semantics

I such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)

I the sets of candidates have a structure: pseudo Heyting
algebras [Dowek].



Towards “usual” semantics

I such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)

I the sets of candidates have a structure: pseudo Heyting
algebras [Dowek].



Heyting algebras

I a universe Ω

I an order

I operations on it: lowest upper bound (join: ∪ – pseudo union),
greatest lower bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

I think about R and closed sets (infinite l.u.b. is not infinite
union)



Heyting algebras

I a universe Ω

I an order
I operations on it: lowest upper bound (join: ∪ – pseudo union),

greatest lower bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

I think about R and closed sets (infinite l.u.b. is not infinite
union)



pseudo-Heyting algebras

I a universe Ω

I a pseudo order: a ≤ b and b ≤ a with a , b possible.
I operations on it: lowest upper bound (join: ∪ – pseudo union),

greatest lower bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c



Towards “usual” semantics

I such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, ...)

I the sets of candidates have a structure: pseudo Heyting
algebras.

I but ... Heyting algebras used for semantical cut elimination.



Towards “usual” semantics

I such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, ...)

I the sets of candidates have a structure: pseudo Heyting
algebras.

I but ... Heyting algebras used for semantical cut elimination.



The link: fibring

define
[A ] = ~A� C A = {Γ | Γ ` π : A , π ∈ ~A�}

I weak definition: for some π only.
I this is a Heyting algebra.

I interpretation of formulas in it:

A∗ = [A ] = ~A� C A

I interpetation of terms in it:

t∗ = 〈t , ~t�〉

I this proves semantical cut elimination.
I Takahashi, Prawitz, Schütte, higher-order V-complexes

(extended).



The link: fibring

define
[A ] = ~A� C A = {Γ | Γ ` π : A , π ∈ ~A�}

I weak definition: for some π only.
I this is a Heyting algebra.
I interpretation of formulas in it:

A∗ = [A ] = ~A� C A

I interpetation of terms in it:

t∗ = 〈t , ~t�〉

I this proves semantical cut elimination.
I Takahashi, Prawitz, Schütte, higher-order V-complexes

(extended).



The link: fibring

define
[A ] = ~A� C A = {Γ | Γ ` π : A , π ∈ ~A�}

I weak definition: for some π only.
I this is a Heyting algebra.
I interpretation of formulas in it:

A∗ = [A ] = ~A� C A

I interpetation of terms in it:

t∗ = 〈t , ~t�〉

I this proves semantical cut elimination.
I Takahashi, Prawitz, Schütte, higher-order V-complexes

(extended).



The link: fibring

define
[A ] = ~A� C A = {Γ | Γ ` π : A , π ∈ ~A�}

I weak definition: for some π only.
I this is a Heyting algebra.
I interpretation of formulas in it:

A∗ = [A ] = ~A� C A

I interpetation of terms in it:

t∗ = 〈t , ~t�〉

I this proves semantical cut elimination.

I Takahashi, Prawitz, Schütte, higher-order V-complexes
(extended).



The link: fibring

define
[A ] = ~A� C A = {Γ | Γ ` π : A , π ∈ ~A�}

I weak definition: for some π only.
I this is a Heyting algebra.
I interpretation of formulas in it:

A∗ = [A ] = ~A� C A

I interpetation of terms in it:

t∗ = 〈t , ~t�〉

I this proves semantical cut elimination.
I Takahashi, Prawitz, Schütte, higher-order V-complexes

(extended).



Computational content: what kind of algorithm ?

Let’s consider the rule:

R ∈ R → ∀y (∀x(y ∈ x ⇒ R ∈ x)⇒ (y ∈ R ⇒ (A ⇒ A)))

I has semantical cut elimination but no normalization.

I this can not be a normalization algorithm.
I it is more or less the tableau method described in the first part.



Computational content: what kind of algorithm ?

Let’s consider the rule:

R ∈ R → ∀y (∀x(y ∈ x ⇒ R ∈ x)⇒ (y ∈ R ⇒ (A ⇒ A)))

I has semantical cut elimination but no normalization.
I this can not be a normalization algorithm.

I it is more or less the tableau method described in the first part.



Computational content: what kind of algorithm ?

Let’s consider the rule:

R ∈ R → ∀y (∀x(y ∈ x ⇒ R ∈ x)⇒ (y ∈ R ⇒ (A ⇒ A)))

I has semantical cut elimination but no normalization.
I this can not be a normalization algorithm.
I it is more or less the tableau method described in the first part.



Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ?

�
tableaux soundness

Tab (T∅ 
 Γ,
F∅ 
 A) ↪→�

tableaux
soundness?

I This diagram does not commute.

I But: normalization methods “generate” a certain kind of
semantical cut elimination proof: normalization by evaluation
(weak fibring).



Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ?

�
tableaux soundness

Tab (T∅ 
 Γ,
F∅ 
 A) ↪→�

tableaux
soundness?

I This diagram does not commute.
I But: normalization methods “generate” a certain kind of

semantical cut elimination proof: normalization by evaluation
(weak fibring).



Further work

I there is normalization by evaluation work, but in a Kripke
style: links with both works ?

I do the candidates always have a “pseudo-” structure ?
I realizing rewrite rule not with λx.x (not silently), could recover

normalization.


	Introduction
	Sequent calculus
	rewrite rules
	The cut rule

	Semantical methods
	Normalization (in a nutshell)
	Conclusion

