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Deduction and Computation

v

Computation is at the root of mathematics.

v

It has been forgotten by the formalization of the mathematics.

v

reborn with informatics: rewriting rules.

v

we need a balance between deduction steps and computation
steps.
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connectors: A, Vv, =, -, and quantifiers v, 3.
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Deduction systems: the logical framework

» first-order logic: function and predicate symbols, logical
connectors: A, Vv, =, -, and quantifiers v, 3.

Even(0)
vn(Even(n) = Odd(n + 1))
Vn(Odd(n) = Even(n + 1))

» asequent:
hyp.  conc.
—_— /=
r r A

» rules to form them: sequent calculus (or natural deduction)

» framework: intuitionnistic logic (classical, linear, higher-order,
constraints ...)



Deduction System : sequents calculus (LJ)

» A deduction rule:

rcA B
rN-AanB
» right and left rules
axiom LA+8 rHL\cut
NAFA M-B
rkArrB LABrC |
r-AAB AABEC
I, VxA[x],A[t] + B I A[X]
LA AP LAY —— v, xf
FVAK FB AW A e Tree
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Example: 1

VYxP(x), P(0) - P(0) VYxP(x),P(1) - P(1)
) VxP(x) + P(0) VxP(x) + P(1)
VxP(x) + P(0) A P(1)

A-r



Example: 1
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VxP(x) + P(0) VYxP(x) + P(1)
VxP(x) r P(0) A P(1) A
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¥xP(x), P(1), P(0) + P(0) A P(1)
VxP(x), P(0) - P(0) A P(1)
VxP(x) + P(0) A P(1)
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Example: 2

axiom

VxP(x), P(1), P(0) r P(0)  VxP(x),P(1), P(0) r P(1) 2X'°M
¥xP(x), P(1), P(0)  P(0) A P(1) M
VxP(x), P(0) v P(0) A P(1) )

WxP(x) F P(O)APA) T




Example: 2

XIoM = B (x), P(1), P(0) - P(0)  VxP(x), P(1), P(0) r P(1) i’_‘irOm

VxP(x),P(1),P(0) v P(0) A P(1)
VxP(x), P(0) - P(0) A P(1)
VxP(x) + P(0) A P(1)

V-l

» the first rule is not always “don’t care”: free variable condition.



Axioms vs. rewriting

X% S(y) = x+x %y

(xxy=0)e (x=0Vvy=0)

Axioms Rewriting
x+S5(y)=S(x+y) x+5(y) > S(x+y)
x+0=x xX+0-—>x
xx0=0 x*0—0

X S(y) = x+xty
(xxy=0)->(x=0vy=0)

Tr2«2=4
T rAx(2xx = 4)

F4=4
FAx(2xx=4)
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Deduction modulo: allowed rewriting

» General form (free variables are possible):
| —>r

» use: We replace t = ol by or (unification). Rewriting could be
deep in the term.

» rewriting on terms:
X+ S8(y) = S(x+vy)
» and on propositions (predicate symbols):
xxy=0-x=0vy=0

» advantage: expressiveness
» we obtain a congruence modulo R (chosen set of rules): =
» deduction rules transform as such:

axiom TAFA becomes TArB axiom, A = B



Deduction modulo : sequent calculus modulo

F,AkBaXIomAEB

NrNFAT+B

————  ATAAB=
N-c¢ ' c

r,B,A[f]+ C _

r,B—I—CV-I VXA[X]:B

NA,BrC

NMArCT+B
N-C

D+C

I A[X]
[+ B

cut A

=B

A-lAAB=D

Y-r' ¥xA[x] = B
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» consider the rewriting system R:
P(0) — A
P(1) — B

VxP(x) + A VxP(x) + B
VxP(x)r AAB

A-r



Example: 3

» consider the rewriting system R:

P(0O) — A
P(1) — B

VxP(x),P(0)F A VxP(x),P(1)+ B
VXP(x) + A VxP(x) + B 7
VxP(x)r AAB a




Example: 3

» consider the rewriting system R:

P(O) —» A
P(1) — B

axiom
Y-r
A-T

axiom VxP(x), P(0) r B VxP(x),P(1) + B

VxP(x) + A VxP(x) + B
VxP(x)-AAB




Cut rule: a detour

IMArBT+C

B cut, A=C

v

showl + A
showl,A+ B
then, you have showed I + B

v

v

v

it is the application of a lemma.
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Example: 4

» consider the rewriting system R:
P(0) — A
P(1) — B

VxP(x),ArAAB VxP(x)+ A
VxP(x)rAAB

cut



Example: 4

» consider the rewriting system R:

P(0) — A
P(1) — B

AX.
VxP(x),P(0) - A
VxP(x),ArAAB VxP(x)r A
VxP(x)r AAB

cut



Example: 4

» consider the rewriting system R:

P(0) — A
P(1) — B
AX.
Ax. VxP(x),P(1).A+B Ax.
L IXP(x). A+ A VXP(x),ArB ' VxP(x),P(0)r A
VxP(x),ArAAB VxP(x) A

VXP(X)F A A B out



Example: 4

» consider the rewriting system R:

P(0) — A
P(1) — B
AX.
Ax. VxP(x),P(1),A+ B
YxP(x),Ar A VxP(x),A+ B

VYxP(x),A+AAB

AX.

V¥xP(x),P(0) + A

VxP(x) + A

VxP(x)rAAB

» an unnecessary detour
» we could have cutted on any formula!

cut



The cut rule: a detour

NMA+BTFrC
B
weshowlLA+-Bandl+A
then we have showed I + B.
lemma: the good way for a human being.
» in practice: not adapted for automatic demonstration.
Nb: resolution method do not proceed by cuts !

cutA=C

v

v

v
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The cut rule: a detour

IMArBT+C
N+ B

» weshowlL,A+rBandl+A

» then we have showed I' + B.

» lemma: the good way for a human being.

» in practice: not adapted for automatic demonstration.
Nb: resolution method do not proceed by cuts !

» in theory: consistence, proof normalization (Curry-Howard)
depend of its elimination.

» eliminating cuts: a key result.

N-A > TrH5A

» two main paths towards:
» proof normalization (syntactic).
» semantical methods.
» in deduction modulo: indecidable, need for general criterions
on R

cutA=C



The normalization method(s)

v

Curry-Howard: proofs = programs

v

formulas = types
proof tree = typing tree
at the heart of proof assistants (PVS, Coq, Isabelle, ...)

v

v

v

when a program calculates, it performs a cut elimination
procedure.



The normalization method(s)

» Curry-Howard: proofs = programs

» formulas = types

» proof tree = typing tree

» at the heart of proof assistants (PVS, Coq, Isabelle, ...)

» when a program calculates, it performs a cut elimination
procedure.

» show that all typables function terminates.
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The semantical method(s)

» define a semantical space (truth value). Ex: Boolean
algebras.

» we must have soundness/completeness wrt the semantic.
» there is links between both methods (last part of the talk).



The semantical method
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Gentzen completeness
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soundness
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completeness
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The semantical method

soundness
Fr-A F=A

Gentzen
Tait-Girard
Dowek-Werner

r|'cfA
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A semantic for deduction modulo

Two main semantics for intuitionistic logic:

» Kripke structures
A Kripke Structure (KS) is a tuple (K, <, D, IF):

» K the set of worlds, partially ordered with < (a “temporal
relation”; past, present, possible futures: partial information)

» D : o — Set a monotone function (interpretation domain for
terms).
» I is a relation between worlds and formulas, verifiying:



A semantic for deduction modulo

» P atomic: ifa <Banda i P,theng - P.
» oI+ A= Biffforany 8 > o, when 8 - A then 8 + B.
»al-rAvBiffarAorali B.



A semantic for deduction modulo

v

P atomic: ifa <Band a + P,then 8 I+ P.

a - A = Biffforany 8 > a, when g I+ A theng I+ B.
ar-rAvBiffarAorar B

Additional constraint in deduction modulo:

v

v

v

A=B implies arA e arB



Kripke structures at work

» AV (-A) is well-known not to be valid in intuitionistic logic.

» we build a structure that is invalidating this formula. Note: at
least two worlds (single world = boolean model).

»-A=A=1
BIA

al0



Kripke structures at work

» AV (-A) is well-known not to be valid in intuitionistic logic.

» we build a structure that is invalidating this formula. Note: at
least two worlds (single world = boolean model).

»—-A=A= L
BI-A BrA

al0 akQandax A,-A,AV -A



Constructive proof: the algorithm behind

soundness
MeA 4 e A

Gentzen
Tait-Girard
Dowek-Werner

r|'cfA
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Constructive proof: the algorithm behind

soundness
MeA u e A

tableaux
completeness
Tab (TO W T,
tableaux soundness FOr A) >0

rkcfA
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The tableau method

» Searching for a counter-model

» Exhaustive algorithm, each branch represents a potential
counter-model.

» some rules:

ForAvB
I
To-AVB Fpir A
T~ |
Tp-A Tpw+B Fp+ B
ForA =B
I
Tp+rA=B Tgr-A
/\ |
TqrB FqirA Fgw+B

with proviso on q

» in deduction modulo: allow rewrite rules, define a new
systematic research algorithm with R.



Tableau: example 1

» We wantto show “AVv B+ C = A”

» tranlsation in tableau language: there is NO (node of no)
Kripke structure satisfying A v B without satisfying also
C = A. Let’s see if the counter-model search fails or not.

» We choose as usual sequences of integers for the set of
worlds (partial order: prefix).

TOrAVB,FOrC = A



Tableau: example 1

TOFrAVB,FOFrC = A
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TO-AVB,FOrC=A

T1w+C

F1rA



Tableau: example 1

TOrAVB,FOrC = A
TirC
F1rA

TO-A TOwrB
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TOrAVB,FOrC = A

T1|||—C
F1rA
TOrA TOwB

©



Tableau: example 2

» We want to show “+ (A = B) = (A = B)”
For(A=B)=A=8B
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Tableau: example 2

For(A=B)=>A=8B

Ti - (A= B)

FFrA=B

FiirA Ti - B

T+ (A= B)
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For(A=B)=A=8B

Ty - (A= B)

FirA=B

FiirA T+ B

T1+ (A= B)

Ti1 FA

F11 - B
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Fr(A=B)=A=8B

T1 - (A= B)

FF-A=B8B

FirA T+ B

Ti - (A= B)

T11 - A

F11 I+ B

F11 - A T11 - B
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Ti - (A= B)

Ff+A=8B

FirA Ti+B

Ty - (A= B)

T11 - A

F11 - B
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Tableau: example 2
Fr(A=B)=A=8B

Ti - (A= B)

Ff+A=8B

FirA Ti+B

Ti - (A= B)

T11 - A

F11 - B

F11 A T11 - B

© © O]
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Tableaux completeness

» If the systematic tableau generation fails (does not terminate):
does it generate a counter-model ?
» well known in the classical sequent calculus.

» defining a model from an infinite branch: the latter has the
needed properties.
» the model is consistent with the branch:

TpwP iff prP

» deduction modulo: it has also to be a model of the rewrite
rules R.
» constructive point of view: if there is no counter-model, does
the method terminate? (KS definition is modified)



Remember the tableau for AV B+ C = A:
TO-rAVB,FO-rC = A

T1rC
F1IrA
TOrA TOwB

O]

» the right path generates counter model.

» the nerve: the atomic formulas each world entails (forces),
extension by induction.
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Conditions on rewrite rules

Providing the confluence of the rewrite system R, and for:

» an order condition: >, well-founded, having the subformula
property, and such that P —* Q implies P > Q.

» a positivity condition: if A — P then P has only positive
occurences of atoms.

» both conditions mixed: R. U R, with a compatibility condition.
» the rule:

ReR—-Vy(Vx(yex=Rex)=>(yeR=(A=A))

the tableau method is complete.



soundness

FreA N=A
tableaux
completeness
Mg A Tab (TO W T,

FOr A) —06



Tableaux soundness
We show the following theorem:
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Tableaux soundness
We show the following theorem:

Theorem
If a tableau starting with TO + ', FO I+ P is closed, then we can
fransform it into a proof of I' +-¢ P.

» intuitionistic diffculty: in a tableau, there might be more than

one “non true” formula:
ForPvQ

|
FQ)lli—P

FOor Q

» we must derive the following rule:

Nt AVB T AVC
[For AV (BAC)

(similar to “multi succedent intuitionistic sequent calculus”).
» easy with cut, hard without.



Normalization (in a nutshell)
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Curry-Howard correspondence

» Notation for proofs:

Nx:Arnm:B Mea: A +7n:A=>B

N-Axrn:A=B [+ (nn’): B

» very similar to a type system !
» extends to deduction modulo: rewrite rules are silent.
» cut elimination is a process, similar to function execution.

» aim: show that every proof normalizes: then the cut
elimination process terminates.
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Normalization

» deduction modulo is high-level: we need reducibility
candidates.

» A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

» our aim: to each formula A, find a candidate [A]. Show that if
[+7:Athenne[A]

» in deduction modulo, if A = B, additional constraint:

[AT = [BI
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Towards “usual” semantics

» such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)

» the sets of candidates have a structure: pseudo Heyting
algebras [Dowek].
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Heyting algebras

» a universe Q
» an order

\4

operations on it: lowest upper bound (join: U — pseudo union),
greatest lower bound (meet: N — intersection).

anb<a anb<b c<aandc<bimpliesc<anb
a<aUb b<aub a<candb<cimpliesaub<c

v

think about R and closed sets (infinite l.u.b. is not infinite
union)



pseudo-Heyting algebras

> a universe Q
» apseudo order: a < b and b < a with a # b possible.

» operations on it: lowest upper bound (join: U — pseudo union),
greatest lower bound (meet: N — intersection).

anb<a anb<b c<aandc<bimpliesc<anb
a<aUb b<aub a<candb<cimpliesaub<c
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Towards “usual” semantics

» such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, ...)

» the sets of candidates have a structure: pseudo Heyting
algebras.

» but ... Heyting algebras used for semantical cut elimination.
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The link: fibring

define
[A] =TAl <A ={T|T+n:A xe[Al}

» weak definition: for some 7 only.
» this is a Heyting algebra.
» interpretation of formulas in it:

A" =[A] =[A] <A
» interpetation of terms in it:
t* = (¢, [t

» this proves semantical cut elimination.

» Takahashi, Prawitz, Schiitte, higher-order V-complexes
(extended).



Computational content: what kind of algorithm ?

Let’s consider the rule:

ReR—->Vy(¥x(yex=Rex)=>(ye R= (A= A)))
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Computational content: what kind of algorithm ?

Let’s consider the rule:

ReR—->Vy(¥x(yex=Rex)=>(ye R= (A= A)))

» has semantical cut elimination but no normalization.
» this can not be a normalization algorithm.
» it is more or less the tableau method described in the first part.
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soundness

M-A Fr=A
Gentzen
Tait-Girard tableaux
Dowek-Werner soundness
Mg A Tab (TO W T,
tableaux soundness FOrA)—o

» This diagram does not commute.

» But: normalization methods “generate” a certain kind of
semantical cut elimination proof: normalization by evaluation
(weak fibring).



Further work

» there is normalization by evaluation work, but in a Kripke
style: links with both works ?

» do the candidates always have a “pseudo-” structure ?

» realizing rewrite rule not with Ax.x (not silently), could recover
normalization.
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