
From pre-models to models
normalization by Heyting algebras

Olivier H

18 Mars 2008



Deduction System : natural deduction (NJ)

I first-order logic: function and predicate symbols, logical
connectors: ∧,∨,⇒,¬, and quantifiers ∀,∃.

Γ,A ` A
axiom

Γ ` A Γ ` B
Γ ` A ∧ B

∧ -i
Γ ` A ∧ B

Γ ` A
∧ -e1

Γ ` A ∧ B
Γ ` B

∧ -e2

Γ,A ` B
⇒-i

Γ ` A ⇒ B
Γ ` A ⇒ B Γ ` A

⇒-e
Γ ` B

Γ ` ∀xA [x]

Γ ` A [t]
∀-e, any t

Γ ` A [x]

Γ ` ∀xA [x]
∀-i, x free



Deduction modulo: allowed rewriting

I General form (free variables are possible):

l → r

I use: We replace t = σl by σr (unification). Rewriting could be
deep in the term.

I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
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Natural deduction modulo - first presentation
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I Add the following conversion rule

Γ ` A A ≡ B
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Natural deduction modulo, second version

Γ,A ` B
axiom, A ≡ B

Γ ` A Γ ` B
Γ ` C

∧ -i, C ≡ A ∧ B
Γ ` C
Γ ` A

∧ -e1,C ≡ A ∧ B
Γ ` C
Γ ` B

∧ -e2,C ≡ A ∧ B

Γ,A ` B
⇒-i, C ≡ A ∧ B

Γ ` C
Γ ` C Γ ` A

⇒-e, C ≡ A ∧ B
Γ ` B

Γ ` A [x]

Γ ` B
∀-i, x free,B ≡ ∀xA [x]

Γ ` B
Γ ` A [t]

∀-e, any t ,B ≡ ∀xA [x]



Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x) ` A ∧ B
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Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

axiom
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` A

axiom
∀xP(x) ` ∀xP(x)

∀-e
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∧-r
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A Cut: a detour

Γ ` A
Γ,A ` B

⇒-i
Γ ` A ⇒ B

⇒-e
Γ ` B

I show Γ ` A and Γ,A ` B
I then, you have showed Γ ` B
I it is the application of a lemma.



A Cut: a detour

π1

Γ ` A
π2

Γ ` B
∧-i

Γ ` A ∧ B
∧-e

Γ ` A

General pattern of a cut: an introduction rule, followed by an
elimination on the same symbol.
This is unnecessary, consider only π1.

π1

Γ ` A



A Cut: a detour

In deduction modulo:

θ
Γ ` A ′

π
Γ,A ` B

⇒-i, C ≡ A ⇒ B
Γ ` C

⇒-e, C ≡ A ′ ⇒ B′
Γ ` B′

I need for cut elimination: the heart of logic.

I two main methods:
I semantic: cut admissibility.
I syntactic: proof normalization.

I indecidable, need for conditions on R.
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II – The semantic method



The semantical method

Γ ` A
soundness

-
�

completeness
Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ?



The semantical method

Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? � strong completeness



Heyting algebras

I a universe Ω

I an order

I operations on it: lowest upper bound (join: ∪), greatest lower
bound (meet: ∩), arrow→ (more that lattice).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

a ≤ b → c iff a ∩ b ≤ c

I like Boolean algebras, with weaker complement
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an example

I R and open sets (infinite g.l.b. is not infinite intersection)

I complement is weaker:

−∞
¬A

[|
0

]
A

- ∞



an example

I R and open sets (infinite g.l.b. is not infinite intersection)
I complement is weaker:

−∞
¬A

[|
0

]
A

- ∞



A model
I a domain D to interpret the first-order terms.
I a Heyting algebra Ω
I a interpretation function for each symbol:

f̂ : Dn → D

P̂ : Dm → Ω

I that we extend readily to all terms and all formulae and terms:

(x)∗φ := φ(x)

(f(t1, · · · , tn))∗φ := f̂(((t1)∗φ, · · · , (tn)
∗
φ))

(P(t1, · · · , tn))∗φ := P̂(((t1)∗φ, · · · , (tn)
∗
φ))

(A ∧ B)∗φ := (A)∗φ ∩ (B)∗φ

I degree of freedom: how to choose f̂ and P̂.
I in deduction modulo, additional condition:

A ≡R B implies A∗ = B∗
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Cannonical model: Lindenbaum algebra

I defined for provability
I elements of Ω: the equivalence class of formulae [A ].

[A ] := {B | ` A ⇔ B}

I order: [A ] ≤ [B] iff ` A ⇒ B is provable
I meet: [A ] ∩ [B] iff [A ∧ B]

I and so on ... (domain D: open terms).
I with this model, one proves completeness
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Cannonical model: Lindenbaum algebra

I defined for provability with cuts
I elements of Ω: the equivalence class of formulae [A ].

[A ] := {B | ` A ⇔ B}

I “intersection”: [A ] ∩ [B] iff [A ∧ B]

I “order”: [A ] ≤ [B] iff ` A ⇒ B
I and so on ... (domain D: open terms)
I with this model, one proves completeness: cuts are needed

for transitivity of the order.



Cut-free cannonical model

I defined for provability without cuts
I elements of Ω: the contexts proving A cut-free.

[A ] := {Γ | Γ `∗ A }

I the [A ] generate Ω with their (arbitrary) intersection and
pseudo-union (l.u.b.):

a ∪ b =
⋂
{[A ] | a ⊆ [A ] and b ⊆ [A ]}

I order: a ≤ b iff a ⊆ b
I and so on ...
I with this model, one proves cut-free completeness.



Deduction modulo

I what about the domain ?
I what about the validity of the rewrite rules ?

A ≡R B implies A∗ = B∗



Deduction modulo

I what about the domain: it depends on R (not always open
term).

I what about the validity of the rewrite rules: choose carefully
the interpretation of predicates and function symbols,
depends on R.



An example: Simple Theory of Types

I aka higher-order (intuitionistic) logic.
I basic types o, ι, and arrow: o → o, o → ι, ...
I constants of each type
I application (t u) and λ-abstraction or combinators: S,K
I logical connectors: constants ∧ : o → o → o, ...
I e.g. we can form the formula: ∀P.P
I same deduction rules as NJ plus lambda-conversion.



Cut admissibility in STT
I problem number one, circularity:

...
` ∀.P(P ⇒ P)

` (P⇒ P)

I no more induction on the size of the formulae.
I solution, same as Girard:

Define RA : quantify over all RB : Circular

Avoid circularity: define C a priori, quantify over C instead,
Prove a posteriori that RB ∈ C.

I define “semantic candidates” [Okada] for (A)∗ without
induction:

{α ∈ Ω | A ∈ α ⊆ [A ]}

I then quantify over all truth-values candidates. Identifies which
of the α is (A)∗.
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Cut admissibility in STT
I Problem 2: logical intensionality. In STT, as in λProlog:

P(A ∧ A)= P(A)

No logical extensionality rule:

P(A) A ⇔ B
P(B)

I implicates: although semantic truth value of A is in Ω, its
domain of interpretation should not be Ω.

I usual trick:
I interpret everything within those domains, e.g.:

∧̂ := 〈∧, λ〈B , b〉.〈∧ · B , λ〈C , c〉.〈∧ · B · C , b ∩ c〉〉〉

I then, “extract” the truth value:

ω(A∗) = π2(A∗)
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STT in deduction modulo
I same types, same symbols ∧̇, ∀̇, · · ·
I application:

K · x · y → x

S · x · y · z → (xz)(yz)

I how to express ∀P.P in a first-order setting ?

I solution: embed P into ε(P), and define:

ε(∧̇ · A · B) → ε(A) ∧ ε(B)

ε(∀̇A) → ∀x.ε(Ax)

I duplication of “connectors”: ∧̇ (of the type hierarchy)
connecting terms and ∧, connecting propositions.

I two “formulae”: P, a term, and ε(P), at the logical level.
I ε is the only predicate symbol.
I ε embeds in the syntax the ω is in the semantics: separates

truth value and propositional content.
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III - Normalization



Curry-Howard correspondence

I Notation for proofs. Give a name to each of the hypothesis:

Γ = x1 : A1, . . . , xn : An

Axiom
Γ, x : A ` x : A

Γ ` π : A ∧ B
∧-e1

Γ ` fst(π) : A

Γ ` π1 : A Γ ` π2 : B
∧-i

Γ ` 〈π1, π2〉 : A ∧ B
Γ ` π : A ∧ B

∧-e2
Γ ` snd(π) : A

Γ, x : A ` π : B
⇒-i

Γ ` λx.π : A ⇒ B
Γ ` π′ : A Γ ` π : A ⇒ B

Γ ` (ππ′) : B

I very similar to a type system
I in deduction modulo, rewrite rules are silent:

Γ ` π : A A ≡ B
Γ ` π : B
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Γ ` (ππ′) : B

I very similar to a type system
I in deduction modulo, rewrite rules are silent:
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Cut elimination with proof terms

I Cut elimination is a process, similar to function execution.

Γ ` π1 : A Γ ` π2 : B
∧-i

Γ ` 〈π1, π2〉 : A ∧ B
∧-e

Γ ` fst(〈π1, π2〉) : A
B Γ ` π1 : A

Γ ` θ : A
Γ, x : A ` π : B

⇒-i
Γ ` λx.π : A ⇒ B

⇒-e
Γ ` (λx.π)θ : B

B Γ ` {θ/x}π : B

I showing that every proof normalizes: the cut elimination
process terminates.
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Normalization [Dowek,Werner]

I deduction modulo is high-level: circularity hence reducibility
candidates.

I A reducibility candidate: a set of normalizing proof terms (and
other closure properties).

I to each formula A , associates a candidate ~A�: this is a
C-valued model (pre-model).

I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�

I then prove the main theorem:

Theorem: if Γ ` π : A then for any ψ substitution, φ model assignment,
θ environment (mapping α : B ∈ Γ to ~A�φ),
we have θψπ ∈ ~A�φ
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IV – From Normalization to usual semantics



I such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)

I the pre-model have a structure: pseudo Heyting algebras, or
truth value algebras (TVA) [Dowek].
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Heyting algebras

I a universe Ω

I an order
I operations on it: lowest upper bound (join: ∪), greatest lower

bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

I like Boolean algebras, with weaker complement



pseudo-Heyting algebras, aka Truth Values Algebras

I a universe Ω

I a pre-order: a ≤ b and b ≤ a with a , b possible.
I operations on it: lowest upper bound (join: ∪ – pseudo union),

greatest lower bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c



Candidates form a pseudo-Heyting algebra

I > = ⊥ = SN

I ~A� ∩ ~B� = ~A ∧ B�
I and so on.
I pre-order: trivial one.
I But ~A ∧ A� ≤≥ ~A� only.
I of course:

A ≡ B implies ~A� = ~B�



Super consistency

I the pre-model construction (domain, ...) does not depends on
the properties of C.

I consistency: there exists a model.

I super-consistency: for every TVA, there exists a model
(interpretation): construction has to be uniform.

I condition in DM: A ≡ B implies ~A� = ~B�

I Super consistency implies cut elimination.
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Super consistency

I e.g. higher-order logic is super-consistent:

Mι = ι (dummy)

Mo = C

Mt→u = MMt
u

I hence, it has a model in the
pseudo-Heying Algebra of candidates

I Γ ` π : A implies π ∈ ~A�.
I the system enjoys proof normalization.
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Towards usual semantics

Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? � strong completeness
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Towards usual semantics

I How to transform a TVA into a Heyting algebra.
I assume we have a modelM, ~ � in the previous

pseudo-Heyting algebra of sequents.
I first idea: pseudo-Heyting to Heyting by quotienting.

I trivial pseudo order implies > = ⊥.
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The link: extract contexts

I Assumption: we have a pre-model (~A�φ, modelM defined).
Set:

[A ]σφ = {Γ | Γ ` π : σA , and for any environment θ, assignment ψ,

θψπ ∈ ~A�φ}

I ~A�φ contains proof terms associated to ∆ ` π : B. Extract
the contexts corresponding to A .

I this forms a Heyting algebra ([A ]: basis)
I interpretation of formulas in it:

A∗ = [A ]σφ
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Wait a minute !
I interpretation ? [A ]σφ .

I Need for one single substitution. hybridization: σ × φ.

D = T ×M

I interpretation for symbols were, in C:

f̂M(d1, ..., dn) ∈ M P̂M(d1, ..., dn) ∈ C

I Now they are:

f̂D(〈t1, d1〉, ..., 〈tn, dn〉) = 〈f(t1, ..., tn), f̂M(d1, ..., dn)〉

P̂D(〈t1, d1〉, ..., 〈tn, dn〉) = [P]
(t1/x1,...,tn/xn)

(d1/x1,...,dn/xn)

= {Γ | (Γ ` π : P(
−→
t )) ∈ ~P�

(
−→
d /−→x )
}

I Holds for any theory in DM. extends the V-complexes.
I pointwise application

〈t , v〉 � 〈t ′, v′〉 = 〈(tt ′), (vv′)〉

instead of 〈t , v〉 � 〈t ′, v′〉 = 〈(tt ′), (v(〈t ′, v′〉))〉
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I Need to prove [A ∧ B] = [A ] ∩ [B] to have a model
interpretation.
Usually (semantic cut elim), only:

A ∧ B ∈ [A ] ∩ [B] ⊂ [A ∧ B]

I proof resembles the proof for normalization.
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Cut admissibility

Assume Γ ` A has a proof (with cuts)
I [Γ] ≤ [A ] in D by (usual) soundness
I Γ ∈ [Γ]

I Γ ∈ [A ] implies Γ `cf A
I Q.E.D.

I compared to the former main lemma: Γ ` π : A implies
π ∈ ~A�, and hence π is SN .
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I Γ ∈ [A ] implies Γ `cf A
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Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? �

strong completeness

I This diagram does not commute in deduction modulo.



Further work

I what is the computational content of this algorithm ?
I there is normalization by evaluation work, but in a Kripke

style: links ?
I do the proof terms (candidates) always have a “pseudo-”

structure ?
I realizing rewrite rule not with λx.x (not silently), could recover

(some) normalization and make the previous diagram
commute again.

Γ ` π : A A ≡ B
Γ ` π : B
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