
Verifying Faust in Coq
Progress report

Emilio J. Gallego Arias, Pierre Jouvelot, Olivier
Hermant, Arnaud Spiwack

Mines-ParisTech, PSL Research University

CoqPL 2015

Music and PL?

Software verification ?

Coq ?

Music and PL?

Software verification ?

Coq ?

Music and PL?

Software verification ?

Coq ?

Faust

I Functional PL for digital signal processing.
I Synchronous paradigm, geared towards audio.
I Programs: circuits/block diagrams + feedbacks.
I Semantics: streams of samples.
I Efficiency is crucial.
I Created in 2000 by Yann Orlarey et al. at GRAME.
I Mature, compiles to more than 14 platforms.

Faust’s Ecosystem

Users:
I Grame: Multiple projects, main developer.
I Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
I Ircam: Acoustic libraries, effects libraries,. . .
I Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
I Faust day at Stanford happened yesterday.
I Ongoing Faust program competition (2000e in prices).
I FEEVER project :)

Faust’s Ecosystem

Users:
I Grame: Multiple projects, main developer.
I Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
I Ircam: Acoustic libraries, effects libraries,. . .
I Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
I Faust day at Stanford happened yesterday.
I Ongoing Faust program competition (2000e in prices).
I FEEVER project :)

Faust’s Ecosystem

Users:
I Grame: Multiple projects, main developer.
I Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
I Ircam: Acoustic libraries, effects libraries,. . .
I Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
I Faust day at Stanford happened yesterday.
I Ongoing Faust program competition (2000e in prices).
I FEEVER project :)

Syntax and Well-Formedness

TERM
`! : 1→ 0

ID
` _ : 1→ 1

PAR
` f1 : i1 → o1 · · · ` fn : in → on

` (f1, . . . , fn) :
n∑
j

ij →
n∑
j

oj

COMP
` f : i → k ` g : k → o

` (f : g) : i → o

PAN
` f : i → k ` g : k ∗ n→ o 0 < k ∧ 0 < n

` f <: g : i → o

Syntax and Typing
PL standard practice vs what the musicians want/imagine:

Feedbacks

FEED
` f : go + fi → gi + fo ` g : gi → go

` f ∼ g : fi → fo

Diagram for + ∼ sin:

+

sin

process

Synchronous semantics: execution in “ticks” + state.

Simple Low-pass Filter
smooth(c) = *(1−c) : + *(c);
process = smooth(0.9);

1

0.9
- *

+

0.9*

process

T: 1 2 3 4 5 6 7 8
I: 1.00 1.05 1.10 1.15 1.20 1.25 1.20 1.25
O: 0.10 0.19 0.28 0.37 0.45 0.53 0.61 0.68

A More Real Example:

fdnrev0(delays, BBSO, freqs, durs, loopgainmax, nonl)
= (bus(2*N) :> bus(N) : delaylines(N))

(delayfilters(N,freqs,durs) : feedbackmatrix(N))
with {
delayval(i) = take(i+1,delays);
delaylines(N) = par(i,N,(delay(dlmax(i),(delayval(i)−1))));
delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = bhadamard(N);
vbutterfly(n) = bus(n) <: (bus(n):>bus(n/2)) , ...)
...

};

A More Real Example:

Why Coq?

Does there exist any other
programming language?

Why Coq?

Does there exist any other
programming language?

Why Coq? Motivations and Goals:

PHILOSOPHICAL — MATHEMATICAL

I Manual proofs starting to feel odd in PL.
I Motto: use Coq from the start.
I Try to develop in reusable way: both for the Faust/DSP

and Coq communities.

Why Coq? Motivations and Goals:

PHILOSOPHICAL — MATHEMATICAL

I Prove programs correct, reason about them in new
ways. Current testing process is to compare output
with MatLab’s.

I Optimizations performed by the compiler are not well
understood. Semantics trickier than it looks to the eye

I Explore the formalization of concepts from the signal
processing community: Finite Impulse Response (FIR)
filters, LTI theory, spectral analysis, Nyquist. . .

Why Coq? Motivations and Goals:

PHILOSOPHICAL — MATHEMATICAL

I Prove programs correct, reason about them in new
ways. Current testing process is to compare output
with MatLab’s.

I Optimizations performed by the compiler are not well
understood. Semantics trickier than it looks to the eye

I Explore the formalization of concepts from the signal
processing community: Finite Impulse Response (FIR)
filters, LTI theory, spectral analysis, Nyquist. . .

Why Coq? Motivations and Goals:

PHILOSOPHICAL — MATHEMATICAL

I Prove programs correct, reason about them in new
ways. Current testing process is to compare output
with MatLab’s.

I Optimizations performed by the compiler are not well
understood. Semantics trickier than it looks to the eye

I Explore the formalization of concepts from the signal
processing community: Finite Impulse Response (FIR)
filters, LTI theory, spectral analysis, Nyquist. . .

Why Coq? Motivations and Goals:

PHILOSOPHICAL — MATHEMATICAL
PRACTICAL

Less effort than to build a custom analysis tool.

Applications:

IMHO: Robust Definitions and Standards are crucial.
Don’t repeat the mistakes of the past

Why Coq? Motivations and Goals:

PHILOSOPHICAL — MATHEMATICAL
PRACTICAL

Less effort than to build a custom analysis tool.

Applications:

IMHO: Robust Definitions and Standards are crucial.
Don’t repeat the mistakes of the past

Some Properties

I Stability properties: bound input produces bounded
output.

This will be our example.
I Linearity/Time invariance. [Note: relational!]
I Stabilization: Zero input eventually produces zero

output.

Some Properties

I Stability properties: bound input produces bounded
output. This will be our example.

I Linearity/Time invariance. [Note: relational!]
I Stabilization: Zero input eventually produces zero

output.

Some Properties

I Stability properties: bound input produces bounded
output. This will be our example.

I Linearity/Time invariance. [Note: relational!]
I Stabilization: Zero input eventually produces zero

output.

Relating Programs:
Impulse response (two poles filter):

H(z) =
1− z−2

1− 2R cos(Θc)z−1 + R2z−2

process = firpart : + feedback
with {
bw = 100; fr = 1000; g = 1; // parameters − see caption
SR = fconstant(int fSamplingFreq, <math.h>); // Faust fn
pi = 4*atan(1.0); // circumference over diameter
R = exp(0−pi*bw/SR); // pole radius [0 required]
A = 2*pi*fr/SR; // pole angle (radians)
RR = R*R;
firpart(x) = (x − x’’) * g * ((1−RR)/2);
feedback(v) = 0 + 2*R*cos(A)*v − RR*v’;

};

Relating Programs:
Impulse response (two poles filter):

H(z) =
1− z−2

1− 2R cos(Θc)z−1 + R2z−2

process = firpart : + feedback
with {
bw = 100; fr = 1000; g = 1; // parameters − see caption
SR = fconstant(int fSamplingFreq, <math.h>); // Faust fn
pi = 4*atan(1.0); // circumference over diameter
R = exp(0−pi*bw/SR); // pole radius [0 required]
A = 2*pi*fr/SR; // pole angle (radians)
RR = R*R;
firpart(x) = (x − x’’) * g * ((1−RR)/2);
feedback(v) = 0 + 2*R*cos(A)*v − RR*v’;

};

Finally! Let’s Talk About Coq!

So far:
I Mathcomp library allowed us to do a prototype in two

weeks.
I New feedback reasoning rule: proved sound.
I Motivated by real use cases.
I Defined a one-state logic, proved it sound.
I Again, mathcomp was key.

Currently:
I Investigating more complex logics.
I New semantics needed, based on guarded recursion.

Finally! Let’s Talk About Coq!

So far:
I Mathcomp library allowed us to do a prototype in two

weeks.
I New feedback reasoning rule: proved sound.
I Motivated by real use cases.
I Defined a one-state logic, proved it sound.
I Again, mathcomp was key.

Currently:
I Investigating more complex logics.
I New semantics needed, based on guarded recursion.

The Pieces of the Puzzle

The First Piece: Streams

I We ported [Boulmé, Hamon and Pouzet], some
problems with CoInductives.

I Like in C. Auger Lustre certified compiler, we choose
to work with sequences (for now).

I Didn’t look into PACO and more advanced
co-reasoning tools.

The current solution: a realizability semantics in guarded
recursion style. Suggested simultaneously by A. Spiwak
and A. Guatto:

J` f : i → oKn
W : JiKn → JoKn

The First Piece: Streams

I We ported [Boulmé, Hamon and Pouzet], some
problems with CoInductives.

I Like in C. Auger Lustre certified compiler, we choose
to work with sequences (for now).

I Didn’t look into PACO and more advanced
co-reasoning tools.

The current solution: a realizability semantics in guarded
recursion style. Suggested simultaneously by A. Spiwak
and A. Guatto:

J` f : i → oKn
W : JiKn → JoKn

The Second Piece: Analysis

I Not in Mathcomp. rcfType good enough for now.
I How hard is to prove Euler’s identity:

todo

I Difficult to chose. C-CorN? The standard library?
Coquelicot?

I Our feeling is that given the amount of analysis going
on our life is going to be very painful.

[We ignore precision issues and machine floats for now]

The Third Piece: Coq as a Tool

I Is building a verification tool on top of Coq feasible?
Does it even make sense?

I We got some inspiration from EasyCrypt.
I Would our tool mature, we would certainly need to

plug deeply into Coq’s parsing/display routines.
I We still think this may be better than rewriting

everything from scratch.
I Our approach to automation: last thing to worry about.

The Third Piece: Coq as a Tool

Verification of the Smooth Filter:
Recall the smooth filter.
smooth(c) = *(1−c) : + *(c);

We want to prove stability, that is, bounded inputs produce
bounded outputs, provided the coefficient c is in [0,1].
Three significant cases:
by rewrite ?ler_wpmul2r ?ler_subr_addr ?add0r.

have Ha: a = a * c + a * (1 − c)
by rewrite −mulrDr addrC addrNK mulr1.

have Hb: b = b * c + b * (1 − c)
by rewrite −mulrDr addrC addrNK mulr1.

by rewrite Ha Hb !ler_add.

by rewrite ?ler_wpmul2r.

We pushed the VC to Why3 with success. Technique ready
for incorporation into the main compiler.

Conclusions:

I Young project, highly positive so far.
I First alpha release very near.
I Tons of related work, difficult to get a good

perspective.
I Most challenging topic: real/complex analysis.
I Certified audio/dsp processing? (Do we need it?)
I All of the usual Coq caveats apply to us.
I What do *you* think?

Thanks!

