
A Team-Based Methodology of Memory Hierarchy-Aware Runtime Support
in Coarray Fortran

Dounia Khaldi∗, Deepak Eachempati∗, Shiyao Ge∗ Pierre Jouvelot† and Barbara Chapman∗
∗Department of Computer Science

University of Houston, Houston, Texas
Email: {dkhaldi, dreachem, sge2, bchapman}@uh.edu
†MINES ParisTech, PSL Research University, France

Email: pierre.jouvelot@mines-paristech.fr

Abstract—In this paper, we describe how a 2-level memory
hierarchy can be exploited to optimize the implementation
of teams in the parallel facet of the upcoming Fortran
2015 standard. Teams have been suggested to leverage the
hierarchical parallelism present in many applications. They
are supposed to be used as an extension to Coarray Fortran
(CAF), the explicitly-parallel part of the Fortran 2008 standard
that adheres to the Partitioned Global Address Space (PGAS)
programming model. Specifically, we focus on reducing the
cost associated with moving data within a node and between
nodes, finding that this distinction is of key importance when
looking at performance issues. We introduce a new hardware-
aware approach for PGAS, to be used within a runtime system,
to optimize the communications in the virtual topologies and
clusters that are binding different teams together. We have
applied and implemented this methodology to three important
collective operations, namely barrier, all-to-all reduction and
one-to-all broadcast.

To validate our approach, we implemented full support for
teams into the CAF OpenUH compiler. To the best of our
knowledge, the resulting platform is the first Fortran compiler
that both provides teams and handles such a memory hierarchy
methodology within teams. We illustrate the benefits of our
methodology on a new Team Microbenchmark suite we specif-
ically developed for this research and also on High Performance
Linpack (HPL). Our memory hierarchy-awareness approach
for barrier, reduction and broadcast operations shows up to
26-, 74- and 3-fold performance improvements over the default
approach, respectively.

Keywords-Coarray Fortran; teams; PGAS; memory hierar-
chy; intra- and inter-node runtime; collective operations

I. INTRODUCTION
The emergence of many-core compute nodes in large-

scale computing systems, such as the currently top-ranked
Tianhe-21, requires programming model implementers to
consider more carefully the memory system hierarchy when
looking at and overcoming performance issues. Rather than
adding low-level language features to exploit the perfor-
mance gains permitted by such architectures, likely to
result in programs that are non-portable and difficult to
maintain, the implementation of the programming model
for a given platform should be responsible for detecting

1Currently, Tianhe-2 is the world’s fastest supercomputer according to
the TOP500 list dated November 2014.

such system characteristics at run time and exploiting this
information. As an illustrative example, consider the dissem-
ination barrier [1], a commonly used algorithm for barrier
synchronization between P processors commonly employed
on distributed memory systems due to its strong scaling
properties. When the P processors are distributed over Q
nodes, with multiple processors per node and the bandwidth
between the nodes being limited, a straightforward execution
of this algorithm will yield poor results as it may result in
multiple processors contending for the inter-node bandwidth.

Most parallel applications are programmed using the Mes-
sage Passing Interface (MPI) [2], where multiple processes
execute in a coordinated manner, communicating by per-
forming send and receive operations. More recently, several
languages and libraries have added support for explicit or
implicit remote memory access (RMA) using so-called “one-
sided communication”, including languages following the
Partitioned Global Address Space (PGAS) paradigm as well
as MPI (MPI-2 added RMA to the interface and MPI-
3 made significant refinements to better support it). Of
special note is the Fortran 2008 addition for supporting
coarrays, a language mechanism that enables RMA as a
natural extension to Fortran’s array syntax, informally named
CAF2. In this paradigm, an image represents an executing
process in an SPMD program with its own copy of data.

The purpose of this paper is to provide new optimization
strategies for coarrays. We suggest to decompose appli-
cations into subproblems that may be worked upon con-
currently, and organize this work among subsets of image
teams. Additionally, we consider the ensuing challenge of
reducing the costs associated with moving data within a
node and between nodes. Our approach is thus to combine
a hierarchical decomposition of applications across two
dimensions: (1) a logical partitioning of the work, based on
the application, and (2) a processor layout hierarchy, based

2This acronym describes the Co-Array Fortran extension proposed by
Cray Computer several years before it was adopted into the standard. We
refer to the implementation of CAF in the OpenUH compiler as UHCAF.
CAF 2.0 is an alternative Fortran language extension for supporting coarrays
proposed by Rice University.

on the underlying hardware.
The first dimension we address will use teams for coarray

programs. Teams are expected to be adopted in Fortran 2015,
and they are described in a draft of the technical specification
for additional parallel processing features3. This concept has
been already introduced in many parallel programming APIs
such as MPI [2], in the form of communicators. (We discuss
related work in Section VI.) Image teams make it possible
to divide applications into loosely coupled subproblems that
are handled by different subsets of images. For instance,
one can divide a logical grid into arbitrary subgrids. Teams
are of a special importance for PGAS models because
this concept enables the partial allocation of memory in
a subset of images and not along all the images. In this
paper, we describe our design and implementation of coarray
allocations, RMA, barriers, atomics and collective operations
for image teams within the OpenUH compiler. We believe
our platform represents the first compiler that supports the
core features of teams expected in Fortran 2015.

To effectively make use of teams, images are logically
grouped to work, in parallel, on the subproblems of an
application. It is expected that these subproblems may be
executed independently or close to independently; i.e., there
should be minimal communication required between images
executing in different teams. The language does not expose
any other memory hierarchy information to the programmer,
such as which images may be executing on the same
compute node, with a more tightly coupled physical mem-
ory, versus a different node with loosely-coupled memories
and higher communication costs. Therefore, among images
executing as part of the same team, the amount of explicit
control the programmer has in reducing communication
cost is limited to reducing accesses of data belonging to
a different image or reducing the occurrence of operations
with implicit collective communication.

The second decomposition dimension we introduce in
this paper relies on a specific hardware-aware dedicated
runtime that can take advantage of the actual memory
hierarchy in order to optimize communications among teams
by distinguishing between intra-node and inter-node memory
accesses. Here, our approach consists on identifying the
images that run on the same node, within a team, assigning
a leader for them and handling them using an intra-node
strategy. Afterwards, the leaders, which are by definition on
different nodes, are handled differently. The challenge here
also is to define, for each collective operation, which algo-
rithm is suitable for intra-node local memory accesses and
which is the best for inter-node remote memory accesses.

We applied this methodology to three common opera-
tions which may be executed collectively by a team of
images in CAF: barrier, all-to-all reduction and broadcast.

3As of this writing, these features are described in N2040.pdf at
http://www.nag.com/sc22wg5/.

The classical algorithms for all three of these operations
entail a fixed communication pattern among the images, and
consequentially their total communication cost is sensitive
to the placement of the images in the parallel system. Since
a significant part of the execution time of an application is
consumed while waiting on completion of these operations,
ensuring their implementations are efficient irrespective of
image placement is paramount. In this paper, we exploit
the knowledge of the architecture that a run-time system
can have, and describe how we applied inside every team a
new, two-level algorithm, called Team Dissemination Linear
Barrier (TDLB), for the barrier collective operation. In
this algorithm, synchronization among leaders of a node is
performed with the dissemination algorithm, while synchro-
nization within a node uses a linear barrier. Experimental
evaluations indicate that the application of our proposed
runtime awareness approach of the memory hierarchy to the
implementation of barriers via TDLB yields an up to 26-time
execution time improvement over the basic dissemination
algorithm. We also applied this methodology to all-to-all
reduction and one-to-all broadcast operations, but, for lack
of space, we do not provide a detailed description of our
two-level reduction and broadcast algorithms in this paper.

The contributions of this paper are thus:
• the support of teams in Coarray Fortran within the

OpenUH compiler, enabling the creation of logical im-
age subsets that work on loosely-coupled subproblems
within an application. Specifically, we describe our
original memory management strategy for allocation
and deallocation within teams;

• the design of a two-step methodology for achieving bet-
ter performance of collective operations, using runtime
awareness of the memory hierarchy;

• the application of this methodology to the implementa-
tion of barriers, via the new Team Dissemination Linear
Barrier (TDLB) algorithm, reductions and broadcasts:
the novelty in these algorithms is to adapt existing tech-
niques such as the dissemination algorithm to the PGAS
memory model using one-sided communications;

• a comprehensive evaluation of this methodology on two
benchmarks: (1) our newly developed Coarray Fortran,
CAF 2.0 and MPI (communicator concept) Teams Mi-
crobenchmark suite [3], which contains a set of kernels
for testing reductions, broadcasts and barriers within
teams 4, and (2) our porting to Coarray Fortran of
the High Performance Linpack (HPL) benchmark [4],
which uses teams.

The paper is organized as follows. We describe the
OpenUH compiler and Coarray Fortran in Section II. The
design and implementation of teams of images within

4Since teams are a relatively new concept for Coarray Fortran, there is
no reference test suite for them; Teams Microbenchmarks has been made
publicly available for other implementers to get a baseline to compare
themselves to.

the OpenUH compiler are introduced in Section III. In
Section IV, we define our memory hierarchy awareness
methodology and apply it to barrier, reduction and broadcast
operations. Experimental results using our microbenchmarks
and High Performance Linpack (HPL) are discussed in Sec-
tion V. We survey other approaches to the implementation of
teams in Section VI. We discuss future work and conclude
in Section VII.

II. BACKGROUND
We provide here the necessary background material for

our work: the OpenUH compiler and Coarray Fortran.
A. The OpenUH Compiler

OpenUH [5] is a branch of the open-source Open64
compiler suite that has been developed at the University
of Houston and is used to support a wide range of re-
search activities in the area of programming model research.
OpenUH provides a solid base infrastructure for exploring
implementation strategies for Coarray Fortran. The Fortran
95 front-end, originating from Cray, was already capable of
recognizing coarrays and parsing the cosubscript syntactic
extension. OpenUH also includes its own Fortran runtime li-
braries, providing optimized support for the intrinsic routines
defined in Fortran, memory allocation, I/O, and termination.
B. Coarray Fortran

Coarray Fortran is an explicitly-parallel extension of the
Fortran 2008 standard that adheres to the Partitioned Global
Address Space (PGAS) programming model. Coarray For-
tran programs follow an SPMD execution model, where all
execution units called images are launched at the beginning
of the program; each image executes the same code and the
number of images remains unchanged during execution.
1) Coarrays

Coarrays are shared data entities that are declared with
the codimension attribute specifier and allocated collectively
across all images. Coarrays are replicated a fixed number of
times. Subscripts of coarrays are specified with square brack-
ets and provide a clear and straightforward representation of
access to data on other images using 1-sided communication
semantics. One can specify 1-sided communication using
coarrays. For example, the statement A(:)[k] = B(:)
writes the elements of Coarray A on Image k.
2) Team-Based Clustering of Images

Teams, added to Coarray Fortran, induce a hierarchical
SPMD model. The initial team contains all the images.
Subsets of images in a team may collectively form a
new team, which are referenced using a handle of type
team_type, using the form team statement. Every team
has a unique identifier and a unique parent. An executing
image can change to a subteam of the current team using the
change team construct. Statements change team and
end team delimit a structured block while setting the team
parameter within its scope. Teams can be used to partition
an application into different tasks executed by subteams. For
instance, one can divide a logical grid into arbitrary subgrids.

This could be used to group subsets of images performing
computations on dense matrices into row- and/or column-
oriented teams.

Regarding performance, via teams many collective opera-
tions can be overlapped; these collectives will work on just a
subset of images and an image need not be communicating
or synchronizing with images belonging to other teams. This
removes the need for global synchronizations among all the
images. Regarding memory, using Coarray Fortran teams
one can declare and allocate coarrays within a change
team block. This allows a coarray to be allocated only in
the images operating on it, thus utilizing more efficiently the
available memory on each image.

III. TEAM SUPPORT IN OPENUH
OpenUH is able to parse the form team, change

team, end team and sync team constructs. We added
the new type team_type to the type system of OpenUH
and support for get_team and team_id intrinsics. We
also extended the usual CAF intrinsics this_image,
num_images and image_index for teams. We depict
the OpenUH Coarray Fortran implementation in Figure 1.

Figure 1: OpenUH Coarray Fortran team implementation

During the back-end compilation process in OpenUH,
team-related constructs are lowered to subroutine calls which
constitute the UHCAF runtime library interface. In the
runtime, we add a team_type data structure for storing
image-specific identification information, such as the map-
ping from a new index to the process identifier in the lower
communication layer. Also we provide support for team-
related intrinsics, for example get_team and team_id.
We evaluate our implementation of teams and compare it to
CAF 2.0 and MPI in Section V-B.

Before team support was added into our implementation,
coarrays allocation was globally symmetric across all im-
ages, with each coarray allocated at the same offset within
a managed symmetric heap. With teams, however, this global
symmetry can be relaxed. According to the draft of the

technical specification, symmetric data objects have the
following features, which simplify the memory management
for teams. First of all, whenever two images are in the
same team, they have the same memory layout. Second, an
image can only change to the initial team or teams formed
within the current team. Third, when exiting a given team,
all coarrays allocated within this team should be deallocated
automatically. And fourth, if an image wants to refer to
a coarray of another image located in a sibling team, the
coarray should be allocated in their common ancestor team.
A. Memory Management

As currently specified, coarrays must be symmetric across
all images. Yet, a coarray may indirectly point to non-
symmetric data, by declaring the coarray to be of a derived
data type with a pointer or allocatable component, data
for which may be allocated independently of other images.
The allocated data may be remotely referenced using the
coarray. In our implementation, these kinds of data objects
are allocated in an asymmetric memory section.

We implemented a structure for managing allocations
from a remotely accessible memory heap allocated during
program initialization. We use this structure to manage
both symmetric (i.e., coarrays) and non-symmetric (e.g.,
associated data of a coarray pointer component, or interme-
diate local communication buffers) allocations. The structure
was implemented as a doubly-linked list of slots, each of
which describes a range of addresses which may be either
allocated or non-allocated. The slots list is ordered based
on the address range referenced by each slot. The allocation
strategy is to efficiently make use of the available space
in the managed heap. This is achieved by allocating from
the top of the heap for symmetric allocations and from the
bottom of the heap for non-symmetric allocations. One node
in the slots list, designated the common slot, serves as the
last available slot for either symmetric or non-symmetric
allocations. When an object is allocated from this heap, we
search for an empty slot referencing an address range of
sufficient size. We then either use this slot or split the slot
in two if the address range exceeds the amount of memory
being requested. When an object allocated from this heap is
deallocated, the corresponding slot is marked as empty and
merged with empty slots that may immediately precede or
follow it in the slots list.

When a coarray is allocated while executing a change
team block (see for instance Figure 2), corresponding
allocations should occur on all other images in the current
team, rather than for all images. Upon exiting the change
team block, any allocations that had occurred within it
are implicitly freed if they were not already freed by a
deallocate statement. An image may only change to a
team with the change team construct if it was formed
by its current team with a form team statement or if it is
the initial team. The latter scenario requires that the state of
symmetric allocations belonging to the initial team should

not be affected by allocations (not yet freed) belonging to a
non-initial team. To support this, we reserve a fixed section
of memory from the top of our managed heap for symmetric
allocations by a non-initial team.

We divide the list structure for memory allocations into
two lists: one is for symmetric allocations by any non-initial
team, and the other is for symmetric allocations by the
initial team and all non-symmetric allocations. Whenever
the image changes to a team, the old heap address within
the segment for that team is saved in the team structure as
symmetric_slot; when the team ends, this data is easily
freed. Section IV-B presents the team data structure.

change team(cteam)
...
allocate(w(nn+1, BLKSIZE)[0:*], wptr(1)[0:*])
...
mykey = 1
...
form team(mykey, subcteam)
change team(subcteam)

...
call co_broadcast(u, 1)
...

end team
...
deallocate(wptr, w)
...

end team

Figure 2: HPL code snippet from our Coarray Fortran
implementation using teams

B. Remote Memory Accesses
To refer to an object in another image’s memory, we use

a “base_address plus offset” technique to compute the
remote data address. The base address is obtained during
initialization. From the discussion above, the memory layout
symmetry between images in the same team is preserved. So
we still can compute the remote address of a coarray in this
simple manner.

In CAF, a coarray may have the save attribute, or is
allocated by images executing as part of some team (the
initial team, or a formed team during execution of the
change team construct). Our memory allocation scheme
guarantees that a coarray will reside at the same offset within
the managed symmetric heap as the corresponding coarray
of any other image in which it was allocated, with the base
address of the symmetric heap being set during program
initialization. Hence, accessing a team-allocated coarray on
another image entails no additional overhead compared to
accessing a save coarray or a coarray allocated by images
in the initial team.
C. Collective and Atomic Operations

We adapt atomic operations (atomic_add,
atomic_and, etc.), synchronization operations (sync
images and sync all), broadcast (co_broadcast)

and reduction operations (co_sum, co_max, co_min)
to work when executed by non-initial teams. Each
subroutine works using the global pointer to the current
team, quickly obtaining the mapping of the image ids to
the process ids in the team_type structure’s image index
mapping array.

IV. MEMORY HIERARCHY AND TEAMS

In order to make applications more scalable when run-
ning on nodes with many cores, the runtime should have
some knowledge about the mapping of images on nodes
and/or cores. If teams create subsets of images, there is
no simple relationship between the image structure and the
actual underlying physical structure of the parallel system.
Therefore, as a research methodology towards an efficient
implementation of teams, we propose to introduce a memory
hierarchy-aware runtime for PGAS, in order to optimize
communications within teams via the distinction between
local and remote memory accesses. In this section, we
present our methodology and its application to the barrier
operation through the use of a two-level barrier algorithm.
As already mentioned, we also applied this methodology to
reduction and broadcast operations but left the description
of these other use cases out this paper, for lack of space.
A. Methodology

A major motivation for applying our methodology to
barriers is that the classic dissemination barrier algorithm
is well-suited for distributed memory systems but not as
efficient for the shared memory case. In the dissemination
algorithm, for n images, there are n log n synchronization
notifications. On a shared memory system, where the n
processors share the same physical memory, in the worst
case all those notifications would have to be serialized.
However, contrast this with a centralized linear algorithm.
For n processors, there are 2(n − 1) notifications because
there are two steps: first, notifications are sent from n − 1
non-leader images to the leader image; then, in the second
round, notifications proceed from the leader image to the
n − 1 slave images. Even if all those notifications are
serialized, it is not as expensive as for the dissemination
algorithm. If we consider instead a distributed system, where
each of the n images is on its own node, then dissemination
becomes faster. There are n log n total notifications, with

Figure 3: Memory hierarchy awareness methodology for two
teams; Image itx denotes the xth image of the tth team

n notifications performed in parallel in log n steps. For a
centralized linear algorithm, everything would have to be
serialized through a single node, so yielding 2(n− 1) steps.
These results are confirmed by Mellor-Crummey et al [6].

Our methodology relies on detecting the images within a
team that run locally on the same node, assigning a leader
for them and handling them with an intra-node strategy.
After that, the leaders, which are on different nodes, are
handled in a remote manner. This methodology is presented
in Figure 3.

B. Team Data Structure
In our approach, we combine the grouping of images into

teams with a memory hierarchy-aware runtime. Thus, in our
design of teams, we use a team data structure that includes
data objects related to teams and to memory hierarchy. Also,
in order to make our implementation the fastest possible, we
compute the information related to a team once each time we
form a new team of images in order to avoid its calculation
at every collective operation on a team.

Table I: Team data structure

Feature Meaning
parent Parent team in the tree of created teams
num images Number of images in this team
depth Level of nesting of this team in the team tree
image index Correspondence between the logical image id in a team
mapping and the hardware entity process id
intranode set Set of images on the same node within the same team
leaders set Set of leaders among nodes within the same team
sync flags Array of synchronization flags needed for implementing

dissemination barrier
sync parity Parity variable controls the use of the sync flags

in successive barriers
sync sense Phase of the synchronization
cocounter Counter variable when applying a counter-based

algorithm for barrier
symmetric Heap address for the symmetric memory slot reserved
slot for this team

The information we need to store includes (1) the list
of images that are on the same node, (2) the number of
images within the same node, and (3) data structures used
to facilitate the collective operations. This information is
used many times in the runtime by different algorithms to
perform collectives (see Section IV-C). Table I summarizes
the features required for each team and their meaning.
C. The TDLB Synchronization Algorithm

In order to implement a memory hierarchy-aware barrier,
we developed a two-level algorithm that proceeds in three
steps: (1) a designated leader on each node waits for the
remaining images on the same node to arrive at the barrier;
(2) all leader images, one from each node with at least one
image in the team, synchronize using a dissemination barrier
algorithm; and (3) each node leader notifies the remaining
images on the same node that they may leave the barrier.

As we said, the dissemination algorithm is suitable for
message passing, but tends to perform poorly in the shared

ALGORITHM 1: Team Dissemination Linear Barrier Algorithm,
to be run by each image in Team team

procedure TDLB(team)
me = this_image(team)
cocounter = team.cocounter
ιleader = get_leader(team, me)
//step 1: slaves synchronize with the leader
linear_counter_step1(team,me,ιleader,cocounter);
if (ιleader == me) then
pgased_dissemination(team, ιleader);

//step 2: the leader notifies the intranode set
linear_counter_step2(team,me,ιleader,cocounter);
end

memory case. A centralized linear algorithm, such as a
counter-based algorithm, is the best way to program a
shared memory barrier for a limited number of images.
Therefore, in our implementation, synchronization among
nodes’ leaders is performed using the dissemination algo-
rithm, while synchronization within a node uses a linear
barrier. This algorithm is called Team Dissemination Linear
Barrier Algorithm (TDLB), and is specified in Algorithm 1.
In this algorithm, there is an interaction between two barrier
algorithms. Note that, in the subsequent algorithms, we use
the same syntax as Coarray Fortran to access an element of
an array, using parentheses as array subscripts and brackets
for image-selecting cosubscripts.
D. Cost Model

We present a simple cost model to estimate the total time
taken by TDLB based on two parameters: latency (internode
αn, intranode αc) and bandwidth (internode βn, intranode
βc). Let L(t) be the set of nodes containing at least one
image that belongs to a team t. Within t, we select one
image leader l(t, n) for each node n ∈ L(t). |L(t)| is thus
the number of leader images within Team t. We note I(t, l)
is the set of images under one leader l within t. This cost
model assumes that all images can put and get one message
at the same time and all local nodes are strictly flat.
1) Dissemination for Remote

Algorithm 2 describes an adaptation of the dissemination
algorithm described in [6] to the use of teams in a PGAS
environment. There, the term sense refers to a phase of the
synchronization process. The sense variable sync_sense
ensures that the participating images are in the same phase
of the various synchronization steps in the whole program.
It is a boolean variable that alternates its value from one
barrier to the next. Each image maintains a sense variable
for the other images (target). In [6], the partner flags are
gathered in a separate array in a shared memory algorithm;
in our PGAS case, the concept of 1-sided communication
is used to refer to the sync flags of the target at each step
via sync_flags(...)[target]. sync_flags is a
two-dimensional coarray of (2,log2(|L(t)|)) elements used
to synchronize the |L(t)| images along all the log2(|L(t)|)

ALGORITHM 2: PGASed Dissemination Barrier Algorithm for
Team team, run on the ιleader image of a node

procedure pgased_dissemination(team, ιleader)
leaders_set = team.leaders_set;
sync_flags = team.sync_flags
sync_sense = team.sync_sense
sync_parity = team.sync_parity
rank = get_leader_rank(leaders_set, ιleader);
nbsteps = log2(|leaders_set|);
sense = 1 - sync_sense; parity = sync_parity;
//step 1: sync with the other leaders
for(step = 0, nbsteps -1)
power = 2step;
target = image_id((rank + power)%count,team);
source = image_id((rank - power + count)%count,

team)
sync_flags(parity, step)[target] = sense;
block_until(sync_flags(parity,step) == sense);

//step 2: toggle the sense
sync_parity = 1 - parity;
if (sync_parity == 1) then
sync_sense = sense;

end

steps of the dissemination algorithm. The first dimension
represents the parity variable that controls the use of al-
ternating sets of flags in successive barriers. false is the
initial value of the flag, and it means the image has not
arrived yet to the barrier, and true means that the image
has reached the barrier. target is the image that an
image ιleader needs to synchronize with during a given
step. source is the image ιleader is waiting for. Func-
tion get_leader_rank returns the position of ιleader in
leaders_set; this position needs to be 0-adjusted since
in Fortran indices typically start from 1. Also, image_id
returns an image index with respect to the initial team, based
on a 0-adjusted index with respect to another team. Function
block_until(cond) is used to block until the value of
cond is true. At every step, each image sends a notification
to the target image, and thus |L(t)| notifications occur at
every step. The time taken by this algorithm for Team t is:

Tdissemination(t) = log(|L(t)|)αn + |L(t)| log(|L(t)|)βn

2) Parallel Linear for Local
We deal with images on the same node via a linear algo-

rithm, a counter-based one. In the counter-based algorithm
presented in Algorithm 3, we use a coarray cocounter
for each team to synchronize the non-leader images ι and
the leader ιleader. In the first step, each non-leader image
ι remotely writes 1 to the counter of the leader image
ιleader, at the position ι, and then waits. In the second step,
as shown in Algorithm 1, once ιleader has synchronized
with the other leaders, it remotely writes 1 back to the
cocounter of the slave images in order to release them.
Function changed_p is used to return true if the value of
cocounter for the corresponding image has changed.

ALGORITHM 3: Steps 1 and 2 of Parallel Counter-Based Barrier
Algorithm, run by each image ι in Team team with Counter
cocounter; each image has a leader, ιleader , on the same node

procedure linear_counter_step1(team, ι, ιleader,
cocounter)

if (ιleader == ι) then
foreach ιi ∈ intranode_set(team, ιleader)
block_until(changed_p(cocounter(ιi)));
cocounter(ιi) = 0;

else
cocounter(ι)[ιleader] = 1;

end
procedure linear_counter_step2(team, ι, ιleader,

cocounter)
if (ιleader == ι) then
foreach ιi ∈ intranode_set(team, ιleader)
cocounter(ιleader)[ιi] = 1;

else
block_until(changed_p(cocounter(ιleader)));
cocounter(ιleader) = 0;

end

This linear algorithm is an optimized, counter-based algo-
rithm because the counter cocounter here is implemented
with an array rather than a scalar, unlike what is usually
used in linear algorithms, in order to make it possible for
notifications from the participating images to be received in
parallel. If we had used a scalar, the updates would have been
serialized via an atomic increment operation. The number of
notifications in the optimized version is thus |I(t, l)| instead
of 2(|I(t, l)| − 1). This approach improves performance at
the cost of an extra byte for each additional non-leader node
on the same image.

The linear algorithm is structured in two steps. First, all
images send in parallel |I(t, l)|−1 notifications to the leader
coarray, which has cost 1, since this happens in parallel. In
the second step, the leader sends |I(t, l)|−1 notifications to
the images. So the time taken by these two steps is:

Tlinear(t, l) = 2αc + |I(t, l)|βc
3) Total Cost

Recall that L(t) is the set of leader images within a team
t and I(t, l) the set of images under one leader l within a
team t. The time taken by the Team Dissemination Linear
Barrier Algorithm operating on a team t is thus:

TTDLB(t) = log(|L(t)|)αn + |L(t)| log(|L(t)|)βn+∑
n∈L(t)(2αc + |I(t, l(t, n))|βc)

V. EXPERIMENTAL RESULTS
This section discusses experimental results for our ap-

proach on two benchmarks: (1) the Teams Microbenchmark
suite [3], which contains code designed to test the perfor-
mance and correctness for collective operations (reduction,
broadcast and barrier) and team operations (team formation
and team switching) written in CAF, CAF2.0 and MPI,
and (2) a porting of High Performance Linpack (HPL) to

use Fortran 2008 coarrays and anticipated future constructs
(teams and collective subroutines).
A. Experimental Setup

We ran our experiments on a cluster of 44 nodes con-
nected via a 4xDDR InfiniBand (IB) switch, with dual quad-
core AMD Opteron processors running at 2.2GHz on 16GB
of main memory per node. We compared the implementation
of these benchmarks in OpenUH 3.0.40 with two other
implementations we used for this evaluation: (1) a CAF
2.0 version, for the source-to-source Rice CAF 2.0 compiler
version 1.14.0, which uses ROSE [7] and GFortran 4.4.7 as
backends, and (2) an MPI version, which we ran using both
Open MPI 1.8.3 and MVAPICH 2.0beta. Both OpenUH and
Rice CAF 2.0 implementations rely on GASNet’s Infiniband
Verbs runtime implementation. We used GASNet 1.22.2.
B. Teams Microbenchmarks

In this section, we compare the performance of our imple-
mentation for teams with the Rice CAF 2.0, Open MPI and
MVAPICH implementations. We applied the methodology
introduced in this paper to barrier, all-to-all reduction and
one-to-all broadcast operations. The performance of these
collectives are assessed via our microbenchmarks.
Barrier Contrarily to Algorithm 9 in [6], which relies on two
synchronization arrays for its implementation of a barrier
operation, and the one described in [1], which is using
two waits, our dissemination algorithm is based on Coarray
sync_flags, thus taking advantage of the features of a
PGAS model with only one wait. We compare our TDLB
implementation of barriers with the one provided on GAS-
Net, which implements very low-level algorithms depending
on the conduit used. TDLB is portable and can be used with
any communication layer and any conduit. Our methodology
tends to be independent from the low-level communication
layer used to implement PGAS languages/libraries.

In the two charts in Figure 4, the RDMA Dissemination
uses Put operations to implement the dissemination barrier
described in [6]. The IB Dissemination directly uses In-
finiband verbs for communication to implement the same
algorithm. CAF 2.0 uses also the dissemination barrier
described in [6]. As for MPI, we use MPI_Barrier of
MVAPICH, default Open MPI and Open MPI with the
hierarchy-awareness options (hierarch and sm modules).
In UHCAF, we compare TDLB with the pure dissemination
algorithm described in [6]. We use two configurations: (1)
one image per node, to verify that TDLB performs as
well as a pure dissemination algorithm in the case of a
flat hierarchy, and (2) 8 images per node, to show that
TDLB is well optimized to handle the memory hierarchy
and is only marginally more expensive than the low-level
dissemination algorithm implemented directly over the IB
verbs that GASNet provides.
All-to-All Reduction In the two charts in Figure 5, we
compare the application of our methodology on the re-
duction operation to the original implementation, which

 1

 10

 100

2 4 8 16 32

E
xe

cu
tio

n
tim

e
(u

s)

Number of images per team, case one image per node

 UHCAF Dissem
 UHCAF TDLB

CAF2.0

GASNet RDMA Dissem
GASNet IB Dissem

Open MPI default

Open MPI hierarch-sm
MVAPICH

 1

 10

 100

 1000

 10000

16 32 64 128 256

E
xe

cu
tio

n
tim

e
(u

s)

Number of images per team, case 8 images per node

 UHCAF Dissem
 UHCAF TDLB

CAF2.0

GASNet RDMA Dissem
GASNet IB Dissem

Open MPI default

Open MPI hierarch-sm
MVAPICH

Figure 4: Performance evaluations for TDLB barrier algorithm using the Teams Microbenchmark suite

uses the recursive doubling algorithm [8]. The two-level
implementation uses binomial tree reduction from non-
leaders to their node leader; then, a recursive-doubling all-
reduce is performed between the leaders; and finally the
non-leaders perform parallel local gets from their leader. We
also compare it to CAF 2.0, Open MPI and MVAPICH. As
expected, the memory hierarchy awareness in our two-level
algorithm gives very good results (note the case where we
have 8 images per node).

In the case of one image per node, not only is there
no additional overhead compared to the original implemen-
tation, but we were able to improve the performance by
applying a further optimization. Using the 2-level approach
advocated in our paper, we can distinguish remote memory
operations that access out-of-node memory via the intercon-
nect’s RDMA from memory accesses within the node. In the
former case, we can employ the canary protocol [9], which
entails the target polling on the last byte (or some bytes)
as a canary value to check for communication completion
(a valid approach because an RDMA write over Infiniband
can be assumed to complete in byte order). By using this
protocol, which effectively bundles a notification of comple-
tion with the data to be sent, we can eliminate sending an
additional notification per write in our algorithm.
One-to-All Broadcast We also applied our 2-level method-
ology to broadcast operations. The two charts in Figure 6
show results comparing our implementation of the two-level
broadcast in UHCAF, with Open MPI, MVAPICH and Rice
CAF 2.0 versions. Our algorithm proceeds in three steps:
(1) we first write to the leader image on the first node; (2)
we use a binomial tree broadcast among the leader images
at each node with the source image being the leader at the
first node; and (3) the non-leaders at each node wait for a
notification from their leader and then read the result from
the leader’s buffer. We compare this broadcast with three
MPI broadcast (MPI_Bcast) implementations: Open MPI’s
default broadcast, Open MPI broadcast with hierarchy-awar-
eness (the MCA hierarch and sm modules) enabled, and
MVAPICH’s broadcast. For UHCAF, we compare the two-

level implementation with a 1-level binomial tree broadcast.
We use two configurations for our comparisons: one image
per node and 8 images per node. Again, by breaking up
into inter-node and intra-node broadcast, we can optimize
inter-node communication with by using the canary protocol,
referenced above. Our two-level algorithm is well optimized
to handle the memory hierarchy, and is faster that CAF 2.0,
Open MPI and MVAPICH.
C. HPL

For the purpose of this work, we implemented a Coarray
Fortran version of High Performance Linpack (HPL) [4],
which is used to solve systems of linear equation, thus
testing temporal and spatial run-time locality. We based our
version of HPL on its CAF 2.0 port, described in [10]. HPL
makes use of row team rteam and column team cteam for
performing updates of the matrix data. HPL computes LU
factorization with row partial pivoting. The recursive factor-
ization of a 1-dimensional panel of columns of processes is
performed on cteam. The associated swaps and broadcasts
of the pivot row are performed on rteam. Figure 7 compares
the performance results using the two-level approach in
UHCAF, the one-level approach in UHCAF, CAF 2.0 using
GFortran as backend compiler, CAF 2.0 using OpenUH as
backend compiler and Open MPI using GCC compiler. The
-O3 option is passed to the compilers in Figure 7. These
preliminary results show that using the two-level approach
in UHCAF provides up to 32% improvement over a typical
one-level approach. Overall, we obtained 95 GFLOPS/s on
256 cores, as compared to 29.48 GFLOPS/s obtained with
the CAF 2.0 implementation with the GFortran backend and
80 GFLOPS/s with the OpenUH backend. Note that we used
the classic recursion parameters of the MPI version of HPL
without tuning; we got results comparable to UHCAF’s.

VI. RELATED WORK

In this section, we survey different existing implementa-
tions of teams and compare them with our approach.

CAF 2.0 [11], a alternative Fortran extension for coarrays
proposed by Rice University, included teams as first-class
objects since its inception. It provides similar operations

 1

 10

 100

 1000

2 4 8 16 32

E
xe

cu
tio

n
tim

e
(u

s)

Number of images per team, case one image per node

 UHCAF Recursive doubling
 UHCAF 2level

CAF2.0

Open MPI default
Open MPI hierarch-sm

MVAPICH

 1

 10

 100

 1000

 10000

16 32 64 128 256

E
xe

cu
tio

n
tim

e
(u

s)

Number of images per team, case 8 images per node

 UHCAF Recursive doubling
 UHCAF 2level

CAF2.0

Open MPI default
Open MPI hierarch-sm

MVAPICH

Figure 5: Performance evaluations for the 2-level reduction algorithm using the Teams Microbenchmark suite

 1

 10

 100

 1000

2 4 8 16 32

E
xe

cu
tio

n
tim

e
(u

s)

Number of images per team, case one image per node

 UHCAF Tree based
 UHCAF 2level

CAF2.0
Open MPI default

Open MPI hierarch-sm
MVAPICH

 10

 100

 1000

 10000

16 32 64 128 256

E
xe

cu
tio

n
tim

e
(u

s)

Number of images per team, case 8 images per node

 UHCAF Tree based
 UHCAF 2level

CAF2.0
Open MPI default

Open MPI hierarch-sm
MVAPICH

Figure 6: Performance evaluations for the 2-level broadcast algorithm using the Teams Microbenchmark suite

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4(4) 16(16) 16(2) 64(8) 256(32)

G
F

LO
P

S
/s

Number of Images (Number of Nodes)

UHCAF 2level
UHCAF 1level

CAF2.0 OpenUH backend

CAF2.0 GFortran backend
Open MPI (No tuning)

Figure 7: Performance results for HPL

as what is being proposed for Fortran 2015. CAF 2.0 also
permits a more unstructured programming style for team-
based collectives, allowing an image to execute a collective
operation (e.g. reduction) as part of a specified team without
changing the current team. This added flexibility in the
language, however, can introduce difficult-to-detect synchro-
nization bugs into the code, and can impose additional
synchronization costs for completing collective operations.

OpenSHMEM [12] proposes the concepts of teams and
spaces in order to allow allocation of memory only across
subteams. The referenced paper explores the allocation,

placement and access to data by subgroups of processes
and studies the positive impact of teams on the symmetric
memory requirements for OpenSHMEM codes.

These two works, which extend Fortran and OpenSH-
MEM implementations with team support, did not provide
any memory hierarchy information for the teams. In our im-
plementation, we combine both team-based grouping of im-
ages with an awareness of the underlying memory hierarchy,
lacking in the referenced implementations of OpenSHMEM
and CAF 2.0.

MVAPICH2-X [13] provides a unified runtime that
supports both MPI and PGAS programming models,
namely OpenSHMEM and UPC on IB clusters. The ref-
erenced paper proposed a team-based memory alloca-
tion strategy and introduces shmem_team_create and
shmem_team_split, which are MPI-like routines to sup-
port SHMEM extensions for creating and splitting teams in
order to define symmetry domains for symmetric allocation.
UHCAF, in addition, provides an extension for both memory
and collective operations to work in the context of teams.

The notion of grouping and hierarchy is present in other
programming paradigms. For instance, the Message Passing
Interface-2 (MPI-2) specification allows for remote memory
access (RMA) within a group of MPI processes represented
by a communicator through the mechanism of window

creation [14]. The routine MPI_Comm_split partitions the
group associated with an initial communicator into disjoint
subgroups, one for each value of color. Techniques to sup-
port the scalability of communicators and groups in MPI are
presented in [15]. Our work parallels this approach, within
the PGAS framework. We believe that the team-based, one-
sided communication model of Coarray Fortran is easier
to handle by programmers than the grouping semantics of
MPI (and its need for windows); our work shows that this
better programmability does not come at a cost, since our
implementation of Coarray Fortran is competitive with MPI.

Finally, note that Open MPI provides two options –
hierarch and sm – which we enabled for our comparisons
to make Open MPI collectives work in a multi-level fashion
(see Section V). Our understanding is that Open MPI makes
use of inter-node and intra-node communicators, applied
respectively in two separate steps. In our approach these
two steps are more integrated and may be partially over-
lapped due to the use of 1-sided communication (e.g., while
communication is occurring among leaders, the non-leaders
may proceed with the next collective call).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a PGAS-based design method-
ology for supporting efficient communication between teams
for Coarray Fortran that takes into account the memory
hierarchy of clusters to efficiently implement collective al-
gorithms. We showed how the memory hierarchy can be ex-
ploited to optimize team implementations via the distinction
between local and remote memory accesses. Specifically,
we focused on reducing the cost associated with moving
data within a node and between nodes. This hardware-
aware approach used within the runtime system leads to a
significant optimization of the communications within the
virtual topologies and between the clusters that are binding
different teams together.

To evaluate our proposal, we extended the implementation
of Coarray Fortran within the OpenUH compiler with teams
and applied our methodology to three important collective
operations: barrier, reductions, and broadcast. The use of our
memory hierarchy-awareness approach for these operations
shows up to, respectively, 26-, 74- and 3-fold performance
improvements over the default approach. We also evaluate
our two-level methodology on HPL and get better per-
formance results compared to the one-level approach and
original CAF 2.0 version we based ours on.

Future work will look at how our methodology can
support multi-level hierarchies to represent different network
topologies or on-node locality domains such as NUMA
memory nodes, shared caches, processor sockets and cores.

REFERENCES

[1] D. Hensgen, R. Finkel, and U. Manber, “Two Algorithms for
Barrier Synchronization,” Int. J. Parallel Program., Feb. 1988.

[2] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-

garra, MPI-The Complete Reference, Volume 1: The MPI
Core, 2nd ed. Cambridge, MA, USA: MIT Press, 1998.

[3] “HPCTools Teams Microbenchmarks,” https://github.com/
dkhaldi/teams microbenchmarks.

[4] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary.
HPL - A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers.
http://www.netlib.org/benchmark/hpl/.

[5] B. Chapman, D. Eachempati, and O. Hernandez, “Experi-
ences Developing the OpenUH Compiler and Runtime In-
frastructure,” Int. J. Parallel Program., vol. 41, no. 6, pp.
825–854, Dec. 2013.

[6] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scal-
able Synchronization on Shared-memory Multiprocessors,”
ACM Trans. Comput. Syst., vol. 9, no. 1, Feb. 1991.

[7] D. Quinlan, “ROSE: Compiler Support For Object-Oriented
Frameworks,” Parallel Processing Letters, 2000.

[8] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of
Collective Communication Operations in MPICH,” Interna-
tional Journal of High Performance Computing Applications,
vol. 19, no. 1, pp. 49–66, 2005.

[9] T. Hoefler and T. Schneider, “Optimization Principles for
Collective Neighborhood Communications,” in Proceedings
of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, ser. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2012.

[10] J. Guohua, J. Mellor-Crummey, L. Adhianto, W. Scherer,
and C. Yang, “Implementation and Performance Evaluation
of the HPC Challenge Benchmarks in Coarray Fortran 2.0,”
in Parallel Distributed Processing Symposium (IPDPS), 2011
IEEE International, May 2011, pp. 1089–1100.

[11] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, and G. Jin,
“A New Vision for Coarray Fortran,” in Proceedings of
the Third Conference on Partitioned Global Address Space
Programing Models, ser. PGAS ’09. New York, NY, USA:
ACM, 2009, pp. 5:1–5:9.

[12] A. Welch, S. Pophale, P. Shamis, O. Hernandez, S. Poole, and
B. Chapman, “Extending the OpenSHMEM Memory Model
to Support User-Defined Spaces,” PGAS 2014, oct 2014.

[13] J. Jose, K. Hamidouche, X. Lu, S. Potluri, J. Zhang,
K. Tomko, and D. K. Panda, “High Performance OpenSH-
MEM for MIC Clusters: Extensions, Runtime Designs and
Application Co-design,” IEEE Cluster 2014, sep 2014.

[14] A. Moody, D. Ahn, and B. Supinski, “Exascale Algorithms
for Generalized MPI Comm split,” in Recent Advances in
the Message Passing Interface, ser. Lecture Notes in Com-
puter Science, Y. Cotronis, A. Danalis, D. Nikolopoulos, and
J. Dongarra, Eds. Springer Berlin Heidelberg, 2011.

[15] H. Kamal, S. M. Mirtaheri, and A. Wagner, “Scalability of
Communicators and Groups in MPI,” in Proceedings of the
19th ACM International Symposium on High Performance
Distributed Computing, ser. HPDC ’10. New York, NY,
USA: ACM, 2010, pp. 264–275.

