
Dendrogram Based Algorithm for Dominated

Graph Flooding∗

Fernand Meyer2, Claude Tadonki1 and François Irigoin1

1 Mines ParisTech - Centre de Recherche en Informatique (CRI)
35, rue Saint-Honoré, 77305, Fontainebleau Cedex

claude.tadonki@mines-paristech.fr
2 Mines ParisTech - Centre de Morphologie Mathématique (CMM)

35, rue Saint-Honoré, 77305, Fontainebleau Cedex
fernand.meyer@mines-paristech.fr

Abstract

In this paper, we are concerned with the problem of flooding undirected weighted graphs
under ceiling constraints. We provide a new algorithm based on a hierarchical structure
called dendrogram, which offers the significant advantage that it can be used for multiple
flooding with various scenarios of the ceiling values. In addition, when exploring the graph
through its dendrogram structure in order to calculate the flooding levels, independent sub-
dendrograms are generated, thus offering a natural way for parallel processing. We provide
an efficient implementation of our algorithm through suitable data structures and optimal
organisation of the computations. Experimental results show that our algorithm outperforms
well established classical algorithms, and reveal that the cost of building the dendrogram
highly predominates over the total running time, thus validating both the efficiency and
the hallmark of our method. Moreover, we exploit the potential parallelism exposed by the
flooding procedure to design a multi-thread implementation. As the underlying parallelism
is created on the fly, we use a queue to store the list of the sub-dendrograms to be explored,
and then use a dynamic round-robin scheduling to assign them to the participating threads.
This yields a load balanced and scalable process as shown by additional benchmark results.
Our program runs in few seconds on an ordinary computer to flood graphs with more that 20
millions of nodes.

1 Introduction

A flooding algorithm is typically an algorithm for distributing material to every node of a connected
network [1]. Graph flooding is thus a classical combinatorial problem, which has many applications
in number of fields including mathematical morphology [6], computer network [3], mathematical
modeling (maze problem [2]), and hydrodynamic simulation. The complexity of the problem mainly
depends on the density of the input graph. Depending on the algorithm, the ceiling levels may also
influence the effective running time. Anyway, real-time processing expectation for this problem,
due to its applications and the large-scale instances under consideration, requires faster algorithms
and associated implementations. In some cases, we need to compute the flooding levels for the
same graph using different scenarios of the ceiling values. An algorithm for which we do not have
to restart the whole flooding process from scratch with each scenario is clearly of a great value.
This is the contribution of the current paper.

We provide a new algorithm for dominated graph flooding, based on a structuration of the graph
in the form of a dendrogram. Then, given a set of ceiling values, we compute the flooding levels by
performing a bottom-up exploration of the dendrogram organized as a binary tree. Our method
is a kind of divide and conquer algorithm. Note that, Dijkstra procedure is a greedy algorithm [5],
while Berge solution follows a dynamical programming approach [4]. Since our algorithm creates
independent sub-structures on the fly, a potential for parallelism comes up. Efficient sequential
and parallel implementations are really expected.

∗TIMC

1

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

The rest of the paper is organized as follows. Section 2 provides the necessary background
on graph flooding and the dendrogram structure. Next, our method is fully described in section
3 . Sequential and parallel implementations are detailed in section 4. Section 5 provides some
benchmark results and section 6 concludes the paper.

2 Background and preliminaries

2.1 Graph flooding

Definition 1. Given a weighted undirected graph G = (X,E, v) and a ceiling function ω : A→ R.
A valid flooding function of G under the ceiling ω is the maximal function τ : A→ R satisfying

∀x, y ∈ A : τ(x) ≤ min(max(v(x, y), τ(y)), ω(x)). (1)

Example 1. Figure 1 illustrates the flooding of a weighted graph with 7 vertices and 9 edges.

43

5
21

8

4

a

d

e

b3
f

g6

c
With the ceiling ω({a; b; c; d; e; f ; g}) = {9; 3; 6; 7; 9; 4; 5}
we have the flooding τ({a; b; c; d; e; f ; g}) = {3; 3; 4; 4; 3; 3; 5}

Figure 1: Sample flooding

Classical algorithms for graph flooding include Djikstra and Berge procedures. We restate the
Djisktra algorithm for self-containedness, as we use it for validation and comparison purposes.

Algorithm 1 Dijkstra greedy algorithm for flooding a graph G = (X,V, v)

S ← X
while (S 6= ∅) do
x← arg minx∈S τ(x)
S ← S − {x}
for all y ∈ S such that (x, y) ∈ V do

if (τ(y) < max(v(x, y), τ(x))) then
τ(y)← max(v(x, y), τ(x))

end if
end for

end while

Since each edge is visited once, i.e. the time one of its vertices is selected, the algorithm
has a complexity of O(|V | + |X|2), where the term |X|2 is for the selections of the min from X
to ∅. The selections of of the minimum values can be made faster by implementing a so-called
mintree. In that case, each selection of the minimum will cost O(1), and the update of each of
the corresponding neighbors will cost O(log(|S|) (insertion into a mintree containing |S| nodes).
If the degree of each node is atmost K, then the updates of the mintree will cost

K

|X|∑
p=1

log(p) = K log(|X|!) ≤ K|X| log(|X|). (2)

2

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

Thus, for a graph with n nodes and m edges, Dijsktra algorithm has an asymptotic complexity of
m log(n).

Another classical algorithm is due to Berge. The algorithm is a dynamical programming
procedure, where the flooding values are iteratively updated from ω to the final results using the
correction (3)

τx ← min(τx,max(v(x, y), τy), for all y such that (x, y) ∈ V. (3)

2.2 Dendrogram

Definition 2. Let A be a given set and E a subset of P(A). E defines a dendrogram if

(i) ∀U, V ∈ E,∃W ∈ E s.t. (U ⊂W) ∧ (V ⊂W),

(ii) ∀U ∈ E, ({V ∈ E|V ⊇ U},⊆) is totally ordered.

Definition 3. Considering U, V,W three elements of a dendrogram E,

(i) U is a successor of V (resp. V is a predecessor of U) if

(U (V) ∧ (@W ∈ E s.t. U (W (V). (4)

(ii) V is maximal if
@W ∈ E s.t. (W) V). (5)

(iii) V is minimal if
@W ∈ E s.t. (W (V). (6)

Definition 4. Given a dendrogram E, we define supp(E), the support of E by

supp(E) =
⋃

X∈E

X. (7)

Note that the maximal element of a dendrogram is not necessarily unique. This is the case
when the graph is not strongly connected. However, without loss of generality, we will assume the
uniqueness of the maximal element for the rest of the paper.

Definition 5. Given a dendrogram E, any subset F of E that also defines a dendrogram is called
a subdendrogram of E.

A dendrogram can be viewed as a tree of its sub-dendrograms. In such a tree, the children
of a node are all its successors. Thus, the leaves correspond to the minimal elements of the
dendrogram, while the root corresponds to its maximal element. In addition, each sub-dendrogram
is represented by the corresponding subtree, whose the root can thus be used as an identifier of the
subdendrogram. Figure 2 displays an example of dendrogram and its hierarchical representation.

Figure 2: Sample dendrogram and its tree representation

3

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

The representation of a dendrogram as a tree can be used for its exploration following the rules a
given algorithm. Typically, the dendrogram is constructed through its tree structure. Proposition
1 provides the key for a bottom-up agglomerative way to build the hierarchical structure of the
dendrogram.

Proposition 1. Given n distinct dendrograms Ei, i = 1, 2, · · · , n, built over the same set A, a
new dendrogram can be constructed as follows

E =

n⋃
i=1

Ei ∪ {
n⋃

i=1

root(Ei)}. (8)

Proposition 1 can be used with n = 2 for a binary tree, which is more simpler to handle,
although higher. Moreover, the way the pairwise selections for merging are performed (clustering)
is algorithm dependent and impacts on the shape of the dendrogram representation.

We now describe our dendrogram-based graph flooding algorithm.

3 Description of our algorithm and its ingredients

3.1 Construction of the dendrogram

Our flooding algorithm operates on a dendrogram constructed from the input graph using the
set of vertices as the support and the weights of the edges to select the sub-dendrograms to be
merged. Algorithm 2 describes how we construct the dendrogram from a given weighted graph.

Algorithm 2 Construction of the dendrogram associated to a weighted a graph G = (X,V, v)

k = 1
for all x ∈ X do
Dk ← {{x}} {Singleton dendrograms}
k ← k + 1

end for
S ← V
while (S 6= ∅) do
µ = min(V (S))
for all (x, y) ∈ S such that v(x, y) = µ do
S ← S − {(x, y)}
a← get id root dendrogram(x) {id of the root dendrogram containing {x}}
b← get id root dendrogram(y) {id of the root dendrogram containing {y}}
if (a 6= b) then
Dk ← merge(Da, Db, v(x, y))
k ← k + 1

else
{We just need to update the properties of Da using the weight v(x, y)}
update dendrogram properties(Da, v(x, y))

end if
end for

end while

Figure 3 illustrates our procedure on a linear graph whose the set of nodes is {a, b, c, · · · , t} and
the weights are the values displayed in red at the bottom. Blue (horizontal) segments represent
the nodes of the dendrogram and the associated subgraphs, while red (vertical) lines depict the
hierarchical relationship within the dendrogram. Each node of the dendrogram is created by
merging the roots of the sub-dendrograms that are linked by edges having the current minimum
weight, the corresponding values are in purple color.

4

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

Figure 3: Sample dendrogram built using Algorithm 2

Since the nodes of a dendrogram are subsets of its support, we need to handle some basic
information about the corresponding subgraphs. We now define two of them that will be very
important for our algorithm.

Definition 6. Given a weighted graph G = (X,V, v) and a subset Y of X, we define

ϕ(Y) = min{v(a, b) : (a, b) ∈ V, a ∈ Y, b ∈ X − Y } (9)

diam(Y) = max{v(a, b) : (a, b) ∈ V, a ∈ Y, b ∈ Y } (10)

Remark 1. The main idea when using a dendrogram to flood a given graph is that, flooding levels
will be assigned to subsets of vertices rather than to individual vertices. When a flooding value is
assigned to a sub-dendrogram, it means that all the vertices of its support receive the same final
flooding level equals to that value. In such case, the bigger is the sub-dendrogram the faster is the
flooding process.

Note that the dendrogram, including all its properties, only depends on the structure of the
graph and the weights. The ceilings will come across to drive the flooding process as we will
shortly describe.

3.2 Considering the ceiling levels

In a dominated flooding, flooding levels are constrained by upper bounds called ceiling levels. On
a given vertex, the final flooding level should not exceed that of its ceiling level. The set of the
ceiling levels is the main input for a flooding algorithm in addition to the weighted graph. An
unconstrained vertex is said to have an infinite ceiling, hence the notation ∞ used in our figures.
In practice, we can consider the maximum value between the highest ceiling level and the biggest
weight of the edges.

Assume the dendrogram is constructed and the values of the ceiling levels are provided. Our
algorithm starts by performing a bottom-up propagation of the ceiling values over the hierarchical
structure of the entire dendrogram, following the principle of a mintree. The ceiling level of a node
is the minimum between the ceiling levels of its children. Figure 4 illustrates the procedure on a
sample linear graph. Propagated (resp. initial) ceilings are inside yellow (resp. orange) disks. A
ceiling level not provided means that the corresponding vertex is unconstrained.

5

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

Figure 4: Distribution of the ceiling values among nodes of the dendrogram

3.3 The main algorithm

Once the nodes of the dendrogram are tagged with their initial ceiling levels, our algorithm per-
forms a bottom-up exploration of its hierarchical structure and computes the desired flooding
levels. This is done by refining the ceiling levels of the visited nodes of the dendrogram as long as
the convergence criteria is not met. Algorithm 3 describes the process from a leaf node.

Algorithm 3 Exploration of the dendrogram from a given leaf node {x}
d← subdendrogram({x}) {this is the sub-dendrogram reduced to the singleton{x}}
while ((!is root(d)) ∧ (ω(d) > diam(d)))) do
d← pred(d) {pred(d) is the parent of d in the tree}

end while
{Either d is a root sub-dendrogram or (ω(d) ≤ diam(d))}
if (ω(d) > diam(d)) then
{The vertices of the support of d receive the final flooding level ω(d), we’re done with this!}
flood subdendro(d, ω(d))

else
{We cut the branch between d and its children, we repeat the same with all its ancestors}
dismantle(d)

end if

Let us outline the validation arguments of the algorithm:

• If ω(d) ≤ diam(d), then ω(pred(d)) ≤ diam(pre(d)), since ω (resp. diam) is a decreasing
(resp. increasing) sequence along the precedence path. Thus, once we have ω(d) ≤ diam(d)
in a bottom-up exploration, this will ever remains true. Since having the ceiling level lower
than the diameter of the subgraph does not provide any useful information for the flooding,
we stop our exploration here and disable the corresponding links in the structure.

• if ω(d) > diam(d) then all the nodes in the support of d should have the same flooding
level (this is typically a lake) dominated by ω(d). Thus, if d is a root within the current
dendrogram hierarchy (probably dismantled one or several times), then we can consider ω(d)
as the flooding level of all associated nodes. Indeed, if d is root, then the corresponding sub-
dendrogram is isolated, thus its flooding level can be computed without taking care of any
potential influence on the complementary part of the entire dendrogram. However, for sake
of consistency, we need to update ω accordingly during the dismantling process as we are
going to explain.

6

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

3.4 The dismantling procedure

Considering the fact that our dendrogram is constructed by selecting the edges of the graph in
an ascending order, we obtain that the diameter of any sub-dendrogram is lower than the weight
of any outgoing or outside edge. Thus, the minimum weight of all outgoing edges (i.e. ϕ) of the
subgraph restricted to the support of a sub-dendrogram is greater that its diameter. Consequently,
for a given sub-dendrogram d, we have

(ω(d) > diam(d)) =⇒ min(ω(d), ϕ(d)) > diam(d). (11)

Following (11) and the fact that we consider a sub-dendrogram d as a lake in case ω(d) > diam(d),
in order to be able to consider the current ceiling level a valid flooding level, we need to make sure
that it does not impact any outside vertex. This is made by applying the following correction

ωd ← min(ωd, ϕ(d)). (12)

Our dismantling procedure can thus be expressed as follows by Algorithm 4.

Algorithm 4 Dismantling procedure from a node d of the dendrogram

repeat
{Here we dismantle the links to all children of d}
for all (p successor of d) do
remove link(p, d) {p is now a root independent sub-dendrogram}
ϕp ← min(ϕp, ω(d)) {Since p is made independent of d, we should not exceed its ceiling}
ωp ← min(ωp, ϕp) {We correct the ceiling of p following equation (12)}
if (ωp > diam(p)) then
flood lake(p, ωp) {p is a lake with the final flooding level ωp}

else
put queue to be explore(p) {p is an independent sub-dendrogram to be explored later}

end if
end for

until (is root(d))

The following update
ϕp ← min(ϕp, ω(d)) (13)

corresponds to the canonical requirement of a valid flooding as expressed by equation (1). Its
aim is to put the ceiling of a sub-dendrogram at the level of his parent from which it has been
made independent. Once we create an independent sub-dendrogram, we immediately check if its
ceiling is greater than its diameter, in that case we have a lake and the flooding level is the ceiling.
Otherwise, we put that sub-dendrogram into the queue of the (independent) sub-dendrograms
to be explored. The exploration process is then repeated with each sub-dendrogram taken from
the queue. Figure 5 illustrates our dismantling procedure on a sample linear graph. We have
dismantled from the indicated node, i.e. itself and its ancestors. Gray lines represent the disable
links and nodes. Green disks correspond to final flooding levels obtained during the dismantling.

7

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

Figure 5: Illustration of the dismantling procedure

3.5 The flooding process and the whole algorithm

The pool of the independent sub-dendrograms to be treated is dynamically supplied during each
individual exploration. Thus, we just need to iterate on that pool until it becomes empty. Algo-
rithm 5 describes the process.

Algorithm 5 Flooding through the dendrogram

Q← {id main dendrogram} {We start with the main dendrogram}
while (Q 6= ∅) do
d← select one subdendrogram(Q) {We pick up one sub-dendrogram to be expored}
Q← Q− {d}
d← get leaf subdendrogram(d) {We always explore from a leaf}
flood from(d) {Apply the bottom-up flooding exploration following Algorithm 3}
{The queue Q has potentially been supplied with created orphan sub-dendrograms}

end while

Our complete algorithm can be summarized as follows:

• create the dendrogram

• propagate the ceiling values among the nodes of the dendrogram organized as a tree

• perform the flooding process by running Algorithm 5

If we need to proceed with another scenario of ceiling levels on the same graph, then we just
need to perform the last two steps on its dendrogram. Moreover, since we create independent
sub-dendrograms to be explored, we get a natural way for parallelism. However, we need to take
care of load balancing and the overhead of inadequate thread creations. We will explain our
approach to efficiently deal with this parallelism in the next section, which starts with general
implementation details and programming tricks.

4 Implementation

4.1 Data structures and programming methodology

4.1.1 Data structure

First, the leaves of our dendrogram are airs of (connected) vertices, instead of singletons as it
should be. Thereby, since we also consider a pairwise merging in our bottom-up agglomerative
algorithm to build the dendrogram, our structure is a binary tree, where each of the two children

8

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

of a given node is either a node of the dendrogram or simply a vertex. The choice of a binary tree
simplifies both the information storage and the exploration process. Moreover, we chose to have
the support of each dendrogram represented by its vertex with the smallest id. The flooding of a
sub-dendrogram is performed through this representative vertex of its support (any other choice
would have been valid too). Thus, a node of our dendrogram is represented by the following data
structure:

typedef struct

{

int edge_id; // The id of the edge used to create this dendrogram (by merging)

char is_leaf_left; // tells if the left child is a dendrogram or a vertex

char is_leaf_right; // tells if the right child is a dendrogram or a vertex

float diam; // diameter of the dendrogram

float min_outedge; // the outgoing edge with the minimum cost

int size; // number of vertices in the support of this dendrogram

float ceil; // the ceiling level (provided as input)

float flood; // the flooding level (to be computed)

int smallest_vertex; // we keep the id of the vertex with the smallest ceiling

int pred; // the predecessor of this dendrogram (its parent)

int child_left; // we create dendrogram by fusing two subdendrograms (left, right)

int child_right; // right child

} dendro;

4.2 Foundations of our implementation

Our implementation relies on the following basis

(1) The number of nodes in our dendrogram is bounded by the number of edges of the graph.
Thus, we can use a fixed size array of dendro (bounded by |V |) to store all nodes of the
dendrogram.

(2) Each sub-dendrogram is created from a single edge (a, b) of the graph by merging the roots
of the two sub-dendrograms containing {a} and {b}. Thus, each node dendrogram has two
children referenced by (child left and right. So, our structure is a binary tree.

(3) We technically consider the leaves of our dendrogram as the nodes containing two (neighbor)
vertices only. In that case, child left and child right are the indexes of these two vertices
(within the global array of the vertices), instead of the indexes to its child sub-dendrograms.

(4) Since we visit the edges of the graph in an ascending order of their weights, the diameter
of a newly created sub-dendrogram is the weight of the edge used for the corresponding
merging. Later on, each time we select an edge whose the vertices belong to the same
dendrogram (inside edge), we just set the diameter of that sub-dendrogram to the weight of
the selected edge (since it is necessarily higher). Other basic information are updated in the
same occasion.

(5) We manage the connectivity of the graph as follows. We assume that the number of neighbors
for each vertex is bounded by a given constant (this is a fixed value for regular stencil
applications). This constant is either provided as a parameter, or is calculated when reading
the input graph. With N vertices and an indegree bound K, we use an array of length NK
to store the neighborhood information, each vertex being associated to the corresponding
chunk of length K. Thereby, we get a mechanism to seek basic information like the associated
vertices of a given edge or the neighborhood of a given vertex.

(6) Since each sub-dendrogram is explored in a bottom-up way from any vertex of its support
following the pred field, we choose to proceed with the vertex with the smallest id stored in
the smallest vertex field.

9

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

(7) The smallest outgoing edge of a sub-dendrogram is the one used when creating its parent
dendrogram, because edges are selected in an ascending order of their weights.

(8) Dendrogram based graph flooding algorithm has several advantages. Among them, we point
that

• it can be used to generate information from a local input (e.g. flooding from a vertex)

• it naturally exhibits parallelism (independent sub-dendrograms from the dismantling)

• other algorithms are global, thus will always process with and for the whole graph

4.2.1 Programming aspects

In addition to the bais of our implementation as previously reported, we now describe some
important programming strategies.

For a given vertex v of the graph, we need to be able to get the corresponding root sub-
dendrogram (the one for which v belongs to the support). This can be done by starting from the
leaf sub-dendrogram containing v, and then move from parent to parent (using the pred field)
until we reach a root sub-dendrogram. The complexity of this procedure is proportional to the
increasing height of the whole dendrogram so far constructed. However, since this is repeated
each time we have to merge two sub-dendrograms from a selected edge, it is thus vital to make
it as efficient as possible. For this purpose, we can observe that, for a vertex that we are visiting
for the second time, we can start our way to the root from the previously identified root instead
of restarting from a leaf. Such an incremental processing significantly improves the time of the
construction of the dendrogram, which is a good point as this is the most heavy part of our
algorithm, especially with dense graphs.

4.3 Parallelisation of our method

Regarding the parallelisation of our algorithm, we only consider shared memory multiprocessing.
Technically, we focus on a multi-threaded implementation for multicore machines. We have so far
claim that we can naturally consider parallelism when flooding a graph through its dendrogram,
because we create independent sub-dendrograms that can thus be explored in parallel. This is true
indeed, but we need to take care about the potential load unbalance of the scheduling, which is
dynamic in this case with an unpredictable flow of (independent) tasks. Our solution is to consider
a queue, where we store the references to the (independent) sub-dendrograms isolated, which are
then explored in a round robbing distribution by the threads. So, each threads has to continuously
pick up a sub-dendrogram from the pool and explore it, putting the corresponding isolated sub-
dendrograms into the common pool. Figure 6 illustrates our scheduling mechanism, which is
implemented using the mutual exclusion feature for the section where the pool is provisioned.

10

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

Figure 6: Parallel scheduling

5 Validation and performances

We present the results of our benchmark, performed on an Intel Core i7-2600 processor with 4 cores
and up to 8 threads (HyperTreading). Our graphes are randomly generated from two parameters:
the number of vertices (|X|) and the maximum indegree per vertex (c). |V | is the number of
edges (|V | ≤ c|X|) and h tree is the height of the constructed dendrogram (the longest path from
a leaf to the root). For the timings, the total running time of our algorithm is decomposed into
two parts: the time to build the dendrogram and the time to calculate the flooding levels from
the dendrogram. We compare our solution with a reasonably optimised implementation of the
Dijkstra algorithm by ourself.

5.1 Sequential version

We discuss both the characteristics of the dendrogram and the performances. Table 1 (resp. 2)
provides our benchmark results on graphs with a fixed (resp. increasing) number of vertices and
an increasing number of edges.

Execution time(s)

|X| |V | c h tree Dendrogram Flood Total Dijktra ↑
1 10000 15024 5 9 0.0073 0.001050 0.0083 0.0406 4.9

2 10000 27667 10 33 0.0072 0.000427 0.0076 0.0578 7.6

3 10000 40192 15 168 0.0166 0.000411 0.0170 0.0742 4.4

4 10000 52672 20 316 0.0355 0.000419 0.0359 0.0863 2.4

5 10000 65138 25 861 0.0480 0.000387 0.0484 0.0946 2.0

6 10000 76676 30 1205 0.0641 0.000381 0.0645 0.1027 1.6

Table 1: Performances of our algorithm on a graph with different densities

For the dendrogram, we see that its height is always moderate even if the structure is a binary
tree. In any case, we outperform Dijktra by factor 2 or more. In addition, the time for building
the dendrogram is clearly predominant, and the flooding step is noticeably fast. This last point is
a key aspect for our contribution. Indeed, if we have to flood the same graph using several sets of
ceiling values, our algorithm is indubitably the best choice. We now see in Table 2 what happens
with bigger graphs, both in size and density.

11

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

Execution time(s)

|X| |V | c h tree Dendrogram Flood Total Dijktra ↑
1 10000 15024 5 9 0.0073 0.001040 0.0083 0.0404 4.9

2 10000 27667 10 33 0.0072 0.000425 0.0076 0.0577 7.6

3 20000 29887 5 16 0.0064 0.000908 0.0073 0.1969 26.8

4 20000 54510 10 50 0.0156 0.000885 0.0165 0.3039 18.4

5 30000 44881 5 17 0.0099 0.001405 0.0113 0.4802 42.4

6 30000 82161 10 63 0.0256 0.001513 0.0271 0.7515 27.7

7 40000 60167 5 13 0.0137 0.002007 0.0157 0.9264 59.2

8 40000 110092 10 38 0.0368 0.002204 0.0390 1.4696 37.7

9 50000 74884 5 10 0.0176 0.002787 0.0203 1.5183 74.6

10 50000 137184 10 46 0.0477 0.003016 0.0507 2.6930 53.1

11 60000 89942 5 11 0.0220 0.003674 0.0257 2.4953 97.2

12 60000 165030 10 85 0.0638 0.004175 0.0680 3.8444 56.6

13 70000 104838 5 9 0.0273 0.004662 0.0319 3.6343 113.8

14 80000 119923 5 17 0.0342 0.005967 0.0402 4.9978 124.3

15 80000 219919 10 44 0.0914 0.006746 0.0981 7.9271 80.8

16 90000 134790 5 15 0.0394 0.007540 0.0470 6.5709 139.9

17 90000 247540 10 40 0.1027 0.008173 0.1109 10.3673 93.5

18 100000 150168 5 8 0.0458 0.009133 0.0549 8.4721 154.3

19 100000 275448 10 33 0.1138 0.009807 0.1236 15.0032 121.4

Table 2: Performances of our algorithm on a graph with various sizes and densities

We observe that the height of the dendrogram is not really affected by the number of vertices,
but slightly by the density. One could imagine a preprocessing which eliminates the edges whose
weight does not influence the flooding levels. Once again, we see that the overall computation
is dominated by the construction of the dendrogram and we significantly outperform Dijkstra
algorithm.

Now, let us examine the results of our parallel benchmark.

12

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

5.2 Parallel version

Here, we mainly focus on the scalability. We emphasize on the fact the only part that is paral-
lelized is the flooding step, because of its natural potential of parallelism. Table 3 displays our
timings and speedups with various graphs and 1 to 4 threads.

|X| |V | nb threads time(s) speedup

1 3 000 000 3 749 136 1 0.369 1.00

2 3 000 000 3 749 136 2 0.214 1.73

3 3 000 000 3 749 136 3 0.167 2.21

4 3 000 000 3 749 136 4 0.172 2.15

5 5 000 000 6 250 057 1 0.639 1.00

6 5 000 000 6 250 057 2 0.374 1.71

7 5 000 000 6 250 057 3 0.281 2.27

8 5 000 000 6 250 057 4 0.312 2.05

9 7 000 000 8 747 179 1 0.920 1.00

10 7 000 000 8 747 179 2 0.536 1.72

11 7 000 000 8 747 179 3 0.453 2.03

12 7 000 000 8 747 179 4 0.450 2.05

13 9 000 000 11 249 740 1 1.241 1.00

14 9 000 000 11 249 740 2 0.709 1.75

15 9 000 000 11 249 740 3 0.535 2.32

16 9 000 000 11 249 740 4 0.609 2.04

17 10 000 000 12 500 809 1 1.404 1.00

18 10 000 000 12 500 809 2 0.802 1.75

19 10 000 000 12 500 809 3 0.603 2.33

20 10 000 000 12 500 809 4 0.550 2.55

21 20 000 000 24 996 258 1 3.105 1.00

22 20 000 000 24 996 258 2 1.762 1.76

23 20 000 000 24 996 258 3 1.438 2.16

24 20 000 000 24 996 258 4 1.171 2.65

Table 3: Scalability of our algorithm on a quad-core machine

Our scheduling strategy really improves the load balance from the point of view of the set of
independent sub-dendrograms, not necessarily from the number of vertices to be examined. This
second aspects is difficult to predict, as it really depends on both the structure of graph and the
distribution of the ceiling levels. Nevertheless, our speedups look good and promising.

6 Conclusion

Classical algorithms for dominated graph flooding are no longer sufficient for real-time processing
when it comes to large and dense graphs. Moreover, when we have to flood the same graph with
different set of ceiling values, it is common to restart from scratch. In this paper, we provide
an algorithm, which is competitive and well suited for multiple flooding. At this point of our
work, we see two perspectives. The first one is about how to get the dendrogram of a modified
version of a given graph by just adapting its original dendrogram. The second one is related to
the parallelization. We admit that, from a global point of view, parallelizing the construction of
the dendrogram would be more rewarding than parallelizing the flooding step. Thus, investigating
on a parallel version of our algorithm for constructing the dendrogram is to be done.

13

Dominated Graph Flooding Fernand Meyer, Claude Tadonki, and François Irigoin

References

[1] Fernand Meyer, Flooding edge or node weighted graphs, eprint arXiv:1305.5756, 05/2013.

[2] D. C. Dracopoulos, Neural Robot Path Planning: The Maze Problem, Neural Computing
& Applications, (7)115-120, 1998.

[3] K. Erciyes, Distributed Graph Algorithms for Computer Networks, ISBN: 978-1-4471-5172-
2, Springer, 2013.

[4] C. Berge, Theorie des graphes et ses applications, Dunod, Paris, 1958.

[5] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik
1, 269-271, 1959.

[6] B.T.M. Roerdink and A. Meijster, The Watershed Transform: Definitions, Algorithms and
Parallelization Strategies, Fundamenta Informaticae (41)187-228, 2001. ...

14

	Introduction
	Background and preliminaries
	Graph flooding
	Dendrogram

	Description of our algorithm and its ingredients
	Construction of the dendrogram
	Considering the ceiling levels
	The main algorithm
	The dismantling procedure
	The flooding process and the whole algorithm

	Implementation
	Data structures and programming methodology
	Data structure

	Foundations of our implementation
	Programming aspects

	Parallelisation of our method

	Validation and performances
	Sequential version
	Parallel version

	Conclusion

