
The Regular Unwinding Framework

Benôıt Dupont de Dinechin

STMicroelectronics AST Embedded Systems Research Laboratory
Via Cantonale 16E 6928 Manno Switzerland

Abstract

Modulo scheduling is a 1-periodic cyclic scheduling technique that originates from
compiler instruction scheduling. To solve resource-constrained modulo scheduling
problems, we propose regular unwinding, a new framework based on the unwind-
ing of the cyclic scheduling problem and the acyclic scheduling under a regularity
constraint. Given λ the modulo schedule period, a λ-regular unwinded schedule is
such that two successive instances of any generic operation are scheduled at least λ
cycles apart. We show the equivalence between modulo schedules of period λ and
λ-regular unwinded schedules of pseudo-polynomial size. We apply the regular un-
winding framework to solve in pseudo-polynomial time several modulo scheduling
problems with UET operations on parallel processors and on typed task systems.

Key words: cyclic scheduling, modulo scheduling, instruction scheduling,
monotone interval order, backward scheduling, modified deadlines

Introduction

Modulo scheduling [13][14] is the mainstream cyclic instruction scheduling
technique used by optimizing compilers for the software pipelining of loops
on instruction-level parallel processors. In modulo scheduling problems, a set
of operations {Oi}1≤i≤n is repeatedly executed with an integral period of λ
cycles, traditionally known as the initiation interval, subjected to renewable
resource constraints and uniform dependences with dependence delays. The
objective of modulo scheduling is to build a schedule that minimizes λ.

The current techniques to solve modulo scheduling problems in compilers are
domain-specific heuristics, some of them being satisfactory in practice [15].

Email address: Benoit.Dupont-de-Dinechin@st.com (Benôıt Dupont de
Dinechin).

Technical report E/280/CRI 17 May 2006

However, no machine scheduling results have been applied to modulo schedul-
ing and the only known relaxations are the obvious ones: either remove all
resource constraints; or remove all dependence constraints. While this yields
lower bounds on the period λ, no modulo scheduling relaxations are known
that include dependence circuits and resource constraints.

In this work, we propose the regular unwinding framework to solve resource-
constrained modulo scheduling problems. This framework combines two ideas:

p-Unwinding is the creation of an acyclic scheduling problem by instancing
p iterations of the modulo scheduling problem operation set {Oi}1≤i≤n and
by instancing the dependences accordingly.

λ-Regularity is the constraint that any two operation instancesOk
i , O

k+1
i cre-

ated by the unwinding of an operation Oi of the modulo scheduling problem
are scheduled at least λ cycles apart.

Thanks to the λ-regularity condition, we show in Section 2 that: either the
p-unwinded schedule becomes λ-stationary with all the Ok

i , O
k+1
i scheduled

exactly λ cycles apart; or, the λ-regularized p-unwinded scheduling problem is
infeasible for some p, implying there is no modulo schedule at period λ. From
the λ-stationary part of the p-unwinded schedule, we extract a 1-periodic cyclic
schedule with period λ, that is, a modulo schedule. The λ-regularity can be
enforced by introducing dependence arcs with a positive latency λ between
any two operations Ok

i , O
k+1
i .

Like the classic modulo scheduling framework [13][14], our regular unwinding
framework requires that a period λ be assumed before trying to schedule, a
difficulty addressed by performing a dichotomy search for a feasible value of
λ. The novelty of regular unwinding however, is that for any assumed value of
λ, acyclic machine scheduling techniques apply to the λ-regular p-unwinded
scheduling problems. Whenever a polynomial-time solution is known for this
particular class of acyclic machine scheduling problems, the corresponding
modulo scheduling problem is solved in pseudo-polynomial time.

The presentation is as follows. In Section 1, we provide necessary scheduling
background, including extensions of the α|β|γ scheduling problem denotation
and a survey of the scheduling algorithm of Leung, Palem and Pnueli [10]. In
Section 2, we formulate the resource-constrained modulo scheduling problem
and we establish the regular unwinding framework in the setting of renewable
resources. In Section 3, we apply this framework to modulo scheduling prob-
lems with Unit Execution Time (UET) operations on parallel machines, by
scheduling the p-unwinded problems with the Leung-Palem-Pnueli Algorithm
(LPPA). In Section 4, we extend these results to the typed task systems [9].

2

+3

2*

1+

for (i=2; i<n; i++) {

 a[i] = x+c[i-2];

 b[i] = a[i]*f;

 c[i] = a[i]+b[i];

}

start stopa 0,0i
ib

ic
1,0

1,0

3,0

0,0

1,2

Fig. 1. Sample cyclic instruction scheduling problem.

1 Deterministic Scheduling Background

1.1 Resource-Constrained Cyclic Scheduling Problems

A basic cyclic scheduling problem [8] is defined by a set of generic operations
{Oi}1≤i≤n to be executed repeatedly, thus defining a set of operation instances
{Ok

i }k>0
1≤i≤n, k ∈ lN. We call iteration k the set of operation instances {Ok

i }1≤i≤n.
For any i ∈ [1, n] and k > 0 ∈ lN, let σki denote the schedule date of opera-
tion instance Ok

i . Basic cyclic scheduling problems are constrained by uniform

dependences denoted Oi

θji ,ω
j
i≺ Oj:

Oi

θji ,ω
j
i≺ Oj =⇒ σki + θji ≤ σ

k+ωji
j ∀k > 0

The latency θji and the distance ωji of uniform dependences are non-negative
integers. The carried dependences are such that ωji > 0.

Let Ok
0 and Ok

n+1 be dummy operations defined by σk0
def
= min1≤i≤n σ

k
i and

σkn+1
def
= max1≤i≤n σ

k
i . Given a feasible cyclic schedule {σki }k>0

0≤i≤n+1, its quality

is measured by the asymptotic throughput R∞
def
= limk→∞

k
σkn+1

.

In case of cyclic scheduling on parallel processors [8], basic cyclic scheduling
problems are augmented with resource constraints. Each generic operation Oi

has a processing time pi and there are m identical processors available. Each
Ok
i requires one of the processors to be available between dates [σki , σ

k
i + pi[.

In the present work, we are interested in resource-constrained cyclic schedul-
ing problems, where the resource constraints are adapted from the resource-
constrained project scheduling problems (RCPSP) [3]. Precisely, we assume a
set of renewable resources, also known as cumulative resources, whose avail-
abilities are given by an integral vector ~B. Each generic operation Oi is also
associated with an integral vector ~bi of resource requirements and this defines
the resource requirements of all the operation instances {Ok

i }k>0. For the cyclic
scheduling problems we consider, the cumulative use of the resources by the
operation instances executing at any given time must not exceed ~B.

3

O1
1

O1
2

O1
3O2

1

O2
2

O2
3

I �

ADD

MUL

O3
1

O3
2

O4
1

O4
2

cyclic pattern

Fig. 2. Unwind and find pattern cyclic scheduling heuristic.

To illustrate the resource-constrained cyclic scheduling problems that arise
from instruction scheduling of inner loops, consider the code and its depen-
dence graph displayed in Figure 1. Here the dummy operations O0 and On+1

are labeled start and stop (to simplify the presentation, we did not include
the memory access operations). Here, operation O3 (c[i]=a[i]+b[i]) of iteration
i must execute before operation O1 (a[i]=x+c[i-2]) of iteration i+2 and this
creates the uniform with distance 2 between O3 and O1 (arc ci in Figure 1).

Assume this code is compiled for a microprocessor with an adder and a multi-
plier that operate in parallel. The adder and the multiplier may start a new op-
eration every cycle. However, due to pipelined implementation, the multiplier
result is only available after 3 cycles. This resource-constrained cyclic schedul-

ing problem is defined by p1 = p2 = p3 = 1, ~B =

 1

1

, ~b1 = ~b3 =

 1

0

,

~b2 =

 0

1

. The dependences are O1

1,0
≺ O2, O1

1,0
≺ O3, O2

3,0
≺ O3, O3

1,2
≺ O1.

The K-periodic schedules are solutions to cyclic scheduling problems that sat-
isfy the property ∃λ ∈ lQ : σki +Kλ = σk+K

i . Given a cyclic scheduling problem
on parallel processors with uniform dependences, there always exists K such
that the K-periodic schedules contain an optimal solution [8], but this K is
problem instance dependent. The asymptotic throughput R∞ of a periodic
schedule equals 1

λ
, so the periodic scheduling problem is the construction of a

K-periodic schedule of minimum λ.

An effective heuristic technique for K-periodic scheduling is to schedule the
successive instances of the set of generic operations in acyclic context, until
a repeating pattern of K successive iterations appears in the schedule [2][1].
To ensure convergence, these “unwind and find pattern” techniques require
that a span-limiting uniform dependence On+1 ≺ O0 be added to the original
problem. In Figure 2, we apply the unwind and find pattern heuristic on our
sample problem to construct a 2-periodic schedule of period λ = 3.

4

�������� ��������-

-

��
��
�1

A

B

C

D

A

B

C

D

Fig. 3. Set of intervals and the corresponding interval-order graph.

1.2 Machine Scheduling Problem Denotation

In parallel machine scheduling problems, an operation set {Oi}1≤i≤n is pro-
cessed on m identical processors. Each operation Oi requires the exclusive use
of one processor for pi time units, starting at its schedule date σi. Scheduling
problems may involve release dates ri and due dates di. This constrains the
schedule date σi of operation Oi as σi ≥ ri and there is a penalty whenever
Ci > di, with Ci the completion date of Oi defined as Ci

def
= σi + pi. For prob-

lems where Ci ≤ di is mandatory, the di are called deadlines. A dependence
Oi ≺ Oj between two operations constrains the schedule with σi + pi ≤ σj.
The dependence graph has one arc (Oi, Oj) for each dependence Oi ≺ Oj.

Machine scheduling problems are denoted by a triplet notation α|β|γ, where α
describes the processing environment, β specifies the operation properties and
γ defines the optimality criterion. For the deterministic machine scheduling
problems, the common values of α, β, γ are:

α : 1 for a single processor, P for parallel processors, Pm for the given m
parallel processors. We introduce ΣP to denote typed task systems [9].

β : ri for release dates, di for deadlines (if γ = •) or due dates, pi = 1 for Unit
Execution Time (UET) operations.

γ : • for the feasibility, Cmax or Lmax for the minimization of these objectives.

The makespan is Cmax
def
= maxiCi and the maximum lateness is Lmax

def
=

maxi Li : Li
def
= Ci − di. The meaning of the additional β fields is:

prec(lji) Dependence delays lji , where Oi ≺ Oj implies σi + pi + lji ≤ σj.
prec(lji = l) All the dependence delays lji have the same value l.
inTree The dependence graph is an in-tree.
intOrder(mono lji) The dependence graph weighted by w(Oi, Oj)

def
= pi + lji is

a monotone interval order (see below).
chainOrder(mono lji) Case of intOrder(mono lji), where the dependence graph

is the transitive closure of a chain that connects all operations.
subChainOrder(mono lji) Case of intOrder(mono lji), where the dependence

graph is the transitive closure of a chain that connects some operations.
Other operations are independent.

5

As introduced by Papadimitriou & Yannakakis [12], an interval-order is de-
fined by an incomparability graph that is chordal. An interval-order is also
the transitive orientation of the complement of an interval graph [12] (see
Figure 3). A monotone interval-order graph [11] is an interval-order graph
(V,E) with a non-negative weight function w on the arcs such that, given any
(vi, vj), (vi, vk) ∈ E : pred vj ⊆ pred vk ⇒ w(vi, vj) ≤ w(vi, vk). Here pred vj
and pred vk respectively denote the predecessors of vj and vk.

We extend further the α|β|γ scheduling problem denotation to cyclic schedul-
ing problems by introducing the following β fields:

prec(θji , ω
j
i) Uniform dependences, implying cyclic scheduling.

circuit(θji , ω
j
i) The dependence graph is a single circuit that includes all the

operations.
subCircuit(θji , ω

j
i) The dependence graph is a single circuit that includes some

operations; other operations are independent.∑
ωji = k The sum of the ωji of the dependence graph is k ∈ lN. Because the
ωji ∈ lN, in case

∑
ωji = 1 only one ωji is non-zero.

πi = λi The processing period of operation Oi is λi.

The Graham List Scheduling Algorithm (GLSA) is a classic scheduling algo-
rithm where the time steps are considered in sequential order. For each time
step, if a processor is idle, the highest priority operation available at this time
is scheduled. An operation is available if the current time step is not earlier
than its release date and all its predecessors have completed their execution
early enough to satisfy the entering dependences of this operation. The GLSA
is optimal for P |ri; di; pi = 1|• and P |ri; pi = 1|Lmax when using the earliest
deadlines (or due dates) di first as priority [4] (Jackson’s rule).

Definition 1 Given a scheduling problem, a pseudo-schedule is a set of dates,
one per operation, that satisfies the dependence constraints, the release dates
and the deadlines of the scheduling problem.

1.3 The Scheduling Algorithm of Leung, Palem and Pnueli

The Leung-Palem-Pnueli Algorithm (LPPA) [10] is a parallel machine schedul-
ing algorithm based on deadline modification and the use of the lower modified
deadline first priority in a GLSA. Generally speaking, the modified deadlines
{d′i} of a scheduling problem are such that ∀i ∈ [1, n] : σi+pi ≤ d′i ≤ di in any
schedule. By using the fixpoint modified deadlines 1 computed as explained

1 Leung, Palem and Pnueli call them “consistent and stable modified deadlines”.

6

below, this GLSA solves the following problems in polynomial time:

• 1|prec(lji ∈ {0, 1}); ri; di; pi = 1|•
• P2|prec(lji ∈ {−1, 0}); ri; di; pi = 1|•
• P |intOrder(mono lji); ri; di; pi = 1|•
• P |inTree(lji = l); di; pi = 1|•

To find its modified deadlines {d′i}1≤i≤n, the LPPA computes the optimal back-
ward schedule date σ′i of each operation Oi and updates its current modified
deadline as d′i ← σ′i + pi. This process of deadline modification is iterated over
all operations until a fixpoint is reached.

A backward scheduling problem B(Oi, Si) comprises an operation Oi, an op-
eration set Si 63 Oi that contains the supporting set of Oi, the dependence-
consistent release dates {r′i} and the current modified deadlines {d′i}. The
supporting set of Oi contains the operations that affect its modified dead-
line r′i. Defining Si as the union of the successors of Oi and the operations
independent from Oi ensures it contains the supporting set of Oi [10].

A backward schedule {σ′j} for B(Oi, Si) satisfies the transitive dependence

delays lji
+ from Oi to any Oj ∈ Si, the resource constraints of m parallel pro-

cessors (assuming UET operations), the dependence-consistent release dates
and the current modified deadlines [10]:

• σ′i + pi + lji
+ ≤ σ′j, ∀Oj ∈ Si : Oi ≺ Oj

• ∀t ∈ lN : |{Oj ∈ {Oi} ∪ Si : σ′j = t}| ≤ m
• ∀Oj ∈ {Oi} ∪ Si : r′j ≤ σ′j < d′j

An optimal backward schedule for B(Oi, Si) maximizes σ′i.

For any B(Oi, Si) problem, Leung, Palem and Pnueli [10] propose the following
BackwardSchedule algorithm to compute its optimal backward schedule:

• Binary search for the latest date p of Oi such that the constrained backward
scheduling problem (r′i = p)∧B(Oi, Si) is feasible. If there is such p, define
the modified deadline of Oi as d′i

def
= p + pi. Else the original scheduling

problem is infeasible.
• To find if a constrained problem (r′i = p) ∧ B(Oi, Si) is feasible, convert

the transitive dependences from Oi to all the other Oj ∈ Si into release
dates; then, remove the dependences. This yields a relaxation, which is a
scheduling problem P |ri; di; pi = 1|•.
• Optimally solve this P |ri; di; pi = 1|• relaxation using a lower-level GLSA

with the earliest di first priority (Jackson’s rule). This gives the feasibility
status of the relaxation.

7

Leung, Palem and Pnueli [10] also propose the following ModifiedDeadlines
algorithm that enables to compute the fixpoint modified deadlines with only
n applications of the BackwardSchedule algorithm:

(i) Propagate the constraints of the release dates and the deadlines along the
transitive dependence delays. This yields the dependence-consistent modi-
fied release dates {r′i}1≤i≤n and the initial modified deadlines {d′i}1≤i≤n.

(ii) Define and initialize sets P as ∅ and U as {Oi}1≤i≤n.
(1) Select Oi ∈ U such that r′i is maximal and Oi has no successors in U .
(2) Compute d′i by BackwardSchedule of B(Oi, P) and update d′j for all Oj ∈

U − {Oi} along the transitive dependence delays lij
+.

(3) Remove Oi from U and add it to P . Go to (1) until U is empty.

If any backward scheduling problem B(Oi, P) is infeasible, then the original
scheduling problem is also infeasible. Theorem 7 of [10] proves that the fixpoint
modified deadlines computed by the BackwardSchedule algorithm are actual
deadlines of the original problem whenever this problem is feasible.

Let us now consider the set of dates {σ∗i
def
= d′i − 1}1≤i≤n derived from the fix-

point modified deadlines computed by the ModifiedDeadlines algorithm. These
dates are not a schedule, as some resource constraints may be violated.

Proposition 2 ([10]) The set of dates {σ∗i
def
= d′i − 1}1≤i≤n computed by the

ModifiedDeadlines algorithm of Leung, Palem and Pnueli is a pseudo-schedule.

2 The Regular Unwinding Framework

2.1 Resource-Constrained Modulo Scheduling Problems

A modulo scheduling problem is a cyclic scheduling problem where all opera-
tions have the same processing period λ ∈ lN, also called the initiation interval.
Being 1-periodic instead of K-periodic, the modulo schedules might exclude
all optimal solutions of a given cyclic scheduling problem instance. However,
in applications to software compilation and high-level synthesis, 1-periodic
schedules are preferred because of the code size increase of the K-periodic
schedules. In cases where such code size increase can be afforded, pre-unrolling
the loop and optimizing the common computations across the unrolled loop
body before modulo scheduling yields better results.

Compared to cyclic scheduling problems, a main simplification of modulo
scheduling problems is that they can be described, solved or relaxed by only

8

considering the set of generic operations {Oi}1≤i≤n. In particular, by introduc-
ing the modulo schedule dates {σi}1≤i≤n such that ∀i ∈ [1, n],∀k > 0 : σki =
σi + (k − 1)λ, the uniform dependence constraints become:

Oi

θji ,ω
j
i≺ Oj =⇒ σki + θji ≤ σ

k+ωji
j =⇒ σi + θji − λω

j
i ≤ σj

In our extended α|β|γ scheduling problem denotation, a modulo scheduling
problem at period λ is specified by adding πi = λ in the β field.

Let {σi}1≤i≤n denote the modulo schedule dates of a set of generic operations
{Oi}1≤i≤n. A resource-constrained modulo scheduling problem is defined by [7]:

• Uniform dependence constraints: for each such dependence Oi

θji ,ω
j
i≺ Oj, a

valid modulo schedule satisfies σi + θji − λω
j
i ≤ σj. The dependence graph

without the carried dependences is a DAG.
• Cumulative modulo resource constraints: each operation Oi requires ~bi ≥ ~0

resources for all the time intervals [σi+kλ, σi+kλ+pi[, k ∈ lN and the total

resource use at any time cannot exceed a given availability ~B. The integer
value pi is the processing time of Oi.

The first difficulty of modulo scheduling problems is that the constraints are
parametric with the period λ. To solve modulo scheduling problems, one has
to select a value of λ, then try to build a schedule. If scheduling fails, a new
attempt is made at a higher λ. In the classic modulo scheduling framework
[14], the search of a feasible period λ starts from λmin

def
= max(λrec, λres), where:

λrec
def
= maxC

⌈∑
C
θji∑

C
ωji

⌉
: C dependence circuit

λres
def
= max1≤r≤R

⌈∑n

i=1
pib

r
i

Br

⌉
: R = dim(~B)

That is, λrec is the minimum λ such that there are no positive latency circuits
in the dependence graph and λres is the minimum λ such that the renewable
resources ~B are not over-subscribed.

Once a particular λ is assumed, most modulo scheduling problems still cannot
be solved by classic machine scheduling techniques. Indeed, the modulo re-
source constraints introduce operation resource requirements of infinite extent.
Also, the uniform dependence graph may include circuits (directed cycles), un-
like machine scheduling precedence graphs that are acyclic. Even without the
circuits, some modulo dependence latencies θji − λω

j
i may also be negative.

The classic modulo scheduling heuristic is the modulo list scheduling algorithm

9

-�

ADD

MUL

O1

O2

O3•1

•2

•3•1

•2

λ

Fig. 4. Modulo list scheduling with λ = 3.

of Rau & Glaeser [13]. Given a value of λ, this heuristic applies a Graham list

scheduling algorithm where each operation Oi requires ~bi resources. Then any
resource used by Oi at date t is also considered busy at dates t+kλ,∀k ∈ lN in
order to satisfy the modulo resource constraints. Modulo list scheduling must
be repeatedly applied with increasing values of λ until it succeeds.

Let us illustrate the classic modulo scheduling on the example of Figure 1.

The dependence circuit {O1

1,0
≺ O2, O2

3,0
≺ O3, O3

1,2
≺ O1} imply σ2 − σ1 ≥

1 ∧ σ3 − σ2 ≥ 3 ∧ σ1 − σ3 ≥ 1− 2λ. By summing these inequalities we get:

0 ≥ 1 + 3 + 1− 2λ =⇒ λ ≥ λrec =
⌈

1 + 3 + 1

2

⌉
= 3

There is only one adder and there are two additions executed per iteration,
so the resource constraints yield another lower bound λ ≥ λres =

⌈
2
1

⌉
. There-

fore, the minimum feasible λ of this example is λmin
def
= max(λrec, λres) = 3.

Applying modulo list scheduling assuming λ = 3 yields the modulo schedule
illustrated in Figure 4, which spans 5 cycles.

2.2 Unwinding the Modulo Scheduling Problem

Given a modulo scheduling problem with the operation set {Oi}1≤i≤n, uni-

form dependences {Oi

θji ,ω
j
i≺ Oj}(i,j)∈E, release dates {ri}1≤i≤n and deadlines

{di}1≤i≤n its p-unwinded scheduling problem is defined by:

Operation Set {Ok
i }

1≤k≤p
1≤i≤n with schedule dates {σki }

1≤k≤p
1≤i≤n

Dependence Constraints σki + θji ≤ σ
k+ωji
j ,∀(i, j) ∈ E, ∀k ∈ [1, p− ωji]

Resource Requirements ~bki
def
= ~bi ∧ pki

def
= pi,∀i ∈ [1, n],∀k ∈ [1, p]

Release Dates rki
def
= ri + (k − 1)λ, ∀i ∈ [1, n],∀k ∈ [1, p]

Deadlines dki
def
= di + (k − 1)λ, ∀i ∈ [1, n],∀k ∈ [1, p]

We assume a modulo scheduling problem with release dates and deadlines and
the objective is to find a modulo schedule that minimizes the period λ.

We denote ω̄
def
= max(i,j)∈E ω

j
i , ω̂

def
= dmaxi di−minj rj

λ
e − 1 and Ω

def
= max(ω̂, ω̄).

10

Proposition 3 The dependence graph of a p-unwinded scheduling problem is
acyclic with non-negative dependence latencies for any p > 0.

PROOF. The modulo scheduling problem is defined such that the depen-
dence graph without the carried dependences is acyclic. Unwinding the carried
dependences yield dependences Ok

i ≺ Ol
j with l = k + ωji > k. Therefore the

p-unwinded scheduling problem dependence graph has a topological sort.

Definition 4 A p-unwinded schedule is s-successive λ-stationary starting at
iteration q if ∃q ∈ [1, p− s],∀i ∈ [1, n],∀k ∈ [q, q + s− 1] : σki + λ = σk+1

i .

By induction, a s-successive λ-stationary p-unwinded schedule starting at it-
eration q also satisfies: ∀k ∈ [1, s],∀i ∈ [1, n] : σqi + kλ = σq+ki .

Proposition 5 Given a modulo schedule {σi}1≤i≤n at period λ, for any p > 0

the set of dates {σki
def
= σi + (k − 1)λ}1≤k≤p

1≤i≤n is a p-successive λ-stationary p-
unwinded schedule.

PROOF. From the definition of the p-unwinded scheduling problems, the set
of dates {σki

def
= σi + (k − 1)λ}1≤k≤p

1≤i≤n satisfies the dependence and the resource
constraints. This p-unwinded schedule is also p-successive λ-stationary.

Definition 6 An interesting schedule is a p-unwinded schedule such that ∃q ∈
[1, p] : {σi

def
= σqi }1≤i≤n is a modulo schedule.

Lemma 7 Given a p-unwinded scheduling problem, if two operations Ok
i and

Ol
j overlap then |l − k| ≤ ω̂

def
= dmaxi di−minj rj

λ
e − 1.

PROOF. If Ok
i and Ol

j overlap then rki < dlj and rlj < dki . This is equivalent
to (k − l)λ < dj − ri and (l − k)λ < di − rj. Therefore |l − k|λ < max(dj −
ri, di − rj)⇒ |l − k| < max(dj−ri,di−rj)

λ
≤ dmaxi di−minj rj

λ
e ⇒ |l − k| < ω̂ + 1.

Theorem 8 Given a λ-feasible modulo scheduling problem, any s-successive
λ-stationary p-unwinded schedule with s ≥ Ω is an interesting schedule.

PROOF. Assume a Ω-successive λ-stationary p-unwinded schedule starting
at iteration q. The proof principle is to show that the dates {σi def

= σqi }1≤i≤n
satisfy the constraints of the modulo scheduling problem at period λ.

11

For any uniform dependence Oi

θji ,ω
j
i≺ Oj of the modulo scheduling problem, the

corresponding constraint is σi+θji −λω
j
i ≤ σj, that is, σqi +θji ≤ σqj +λωji . The

p-unwinded schedule satisfies σqi + θji ≤ σ
q+ωji
j and we have σ

q+ωji
j = σqj + λωji

from Definition 4 since ωji ≤ ω̄ ≤ Ω, so σqi + θji ≤ σqj + λωji .

For the resources, assume the dates {σi def
= σqi }1≤i≤n violate the cumulative

modulo resource constraints. This implies that ∃t,∃J ⊆ [1, n],∃ki1 , ki2 , . . . ∈
lN : t ∈ ∩j∈J [σij+kijλ, σij+kijλ+pij [∧

∑
j∈J

~bij >
~B. Letm ∈ J such that kim is

minimal. Then all the intervals [σij+(kij−kim)λ, σij+(kij−kim)λ+pij [overlap
at date t− kimλ. For any j ∈ J , the date σij + (kij − kim)λ satisfies the release

date and deadline constraints of operation O
q+kij−kim
ij . We apply Lemma 7 to

the operations pairs (Oq
im , O

l
j ∈ {O

q+kij−kim
ij }j∈J) so ∀j ∈ J : 0 ≤ kij−kim ≤ ω̂.

Thanks to ω̂-successive λ-stationarity starting at iteration q, we have ∀j ∈ J :

σij + (kij − kim)λ = σ
q+kij−kim
ij and this yields the contradiction that the p-

unwinded schedule has resource conflicts. So the dates {σi def
= σqi }1≤i≤n do not

violate the cumulative modulo resource constraints.

Definition 9 Two scheduling problems are equivalent iff the solution of one
yields a solution of the other in pseudo-polynomial time or both are infeasible.

Corollary 10 A modulo scheduling problem at period λ is equivalent to any
p-unwinded scheduling problem that has a Ω-successive λ-stationary schedule.

PROOF. First assume a feasible modulo scheduling problem at period λ.
By Proposition 5, this yields a p-successive λ-stationary p-unwinded schedule,
including p ≥ Ω. Conversely, assume a p-unwinded scheduling problem that
has a Ω-successive λ-stationary schedule. By Theorem 8, it is an interesting
schedule. This yields a modulo schedule in pseudo-polynomial time.

2.3 Regular Unwinded Scheduling Problems

We proved in §2.2 that λ-stationarity for Ω iterations yields a modulo sched-
ule. We show now that λ-regularity for enough iterations implies λ-stationarity.
Intuitively, if a λ-regular p-unwinded schedule is not λ-stationary, then the dis-
tance between some schedule dates σki and their deadline dki strictly decreases
as p increases, so for large enough p the p-unwinded problem is infeasible.

Definition 11 Given a p-unwinded scheduling problem at period λ with op-
eration set {Ok

i }
1≤k≤p
1≤i≤n , a corresponding schedule {σki }

1≤k≤p
1≤i≤n is regular if: ∀i ∈

12

[1, n],∀k ∈ [1, p− 1] : σki + λ ≤ σk+1
i .

Lemma 12 If a λ-regular p-unwinded schedule is not s-successive λ-stationary,
then: ∀q ∈ [1, p− s],∃i ∈ [1, n] : σqi + sλ < σq+si .

PROOF. For any p-unwinded schedule that is not s-successive λ-stationary,
by Definition 4: ∀q ∈ [1, p− s],∃i ∈ [1, n],∃k ∈ [q, q + s− 1] : σki + λ 6= σk+1

i .
By λ-regularity, σli + λ ≤ σl+1

i ,∀l ∈ [1, p − 1]. Adding these inequalities for
l ∈ [q, q + s− 1] yields the result, as ∃k ∈ [q, q + s− 1] : σki + λ < σk+1

i .

Theorem 13 Given a λ-feasible modulo scheduling problem, ∀s > 0,∃r >
0,∀p > r: any λ-regular p-unwinded pseudo-schedule is s-successive λ-stationary.

PROOF. By contradiction, assume ∃s > 0,∀r > 0,∃p > r: a λ-regular p-
unwinded pseudo-schedule is not s-successive λ-stationary. From Lemma 12
this implies ∀q ∈ [1, p− s],∃i ∈ [1, n] : σqi + sλ+ 1 ≤ σq+si .

From the definition of the deadlines of the p-unwinded scheduling problem,
we have dqi + sλ = dq+si , so each inequality becomes ∀q ∈ [1, p− s],∃i ∈ [1, n] :
σqi − d

q
i + 1 ≤ σq+si − dq+si .

Summing over i ∈ [1, n] yields the inequality ∀q ∈ [1, p−s] :
∑

1≤i≤n(σqi −d
q
i)+

1 ≤ ∑1≤i≤n(σq+si −d
q+s
i). Then for each q ∈ (1, 1+s, . . . 1+zs), with z

def
= bp−1

s
c,

we sum this inequality and obtain
∑

1≤i≤n(σ1
i −d1

i)+z ≤ ∑1≤i≤n(σ1+zs
i −d1+zs

i).

By increasing z
def
= bp−1

s
c, we get

∑
1≤i≤n(σ1

i−d1
i)+z ≥ 0, so 0 ≤ ∑1≤i≤n(σ1+zs

i −
d1+zs
i) ⇒ ∃i : σ1+zs

i ≥ d1+zs
i and the λ-regular p-unwinded pseudo-schedule is

infeasible for any z ≥ ∑1≤i≤n(d1
i − σ1

i).

In particular,
∑

1≤i≤n(di − ri) =
∑

1≤i≤n(d1
i − r1

i) ≥
∑

1≤i≤n(d1
i − σ1

i), so z ≥∑
1≤i≤n(di − ri) ensures infeasibility. Finally, a choice of r ≥ s

∑
1≤i≤n(di −

ri) + s ensures that the λ-regular p-unwinded pseudo-schedule is infeasible.
This completes the contradiction.

Corollary 14 Given a λ-feasible modulo scheduling problem, ∀s > 0, if p >
s
∑

1≤i≤n(di − ri) + s then any λ-regular p-unwinded pseudo-schedule is s-
successive λ-stationary.

Corollary 15 A modulo scheduling problem is equivalent to any of its λ-
regular p-unwinded scheduling problems, with p > ρ̄

def
= Ω

∑
1≤i≤n(di − ri) + Ω.

13

-λ -λ

-λ -λ -λ

ADD

MUL

O1
1

O1
2

O1
3O2

1

O2
2

O2
3O3

1

O3
2

Fig. 5. Schedule for the 3-regular unwinded problem.

PROOF. Corollary 14 ensures that any λ-regular p-unwinded schedule with
p > Ω

∑
1≤i≤n(di − ri) + Ω is Ω-successive λ-stationary. By Corollary 10, this

is equivalent to modulo scheduling.

Corollary 15 provides the foundations of the regular unwinding framework:
to solve a modulo scheduling problem at period λ, build a λ-regularized p-
unwinded scheduling problem with p > ρ̄. In practice, λ-regularizing a p-
unwinded scheduling problem means adding enough constraints σki + λ ≤
σk+1
i (that is, dependence arcs Ok

i ≺ Ok+1
i of latency λ) to ensure that

the p-unwinded schedules are λ-regular. Either this λ-regularized p-unwinded
scheduling problem is feasible and we convert its solution to a modulo sched-
ule; or, it is not feasible and there is no modulo schedule at period λ.

In Figure 5, we illustrate regular unwinding for λ = 3.

2.4 Semi-Regular Unwinded Scheduling Problems

Consider the cases where the p-unwinded schedule is only partially λ-regular,
that is, λ-regularity only holds for the instances of a subset {Oi}i∈R of the
generic operations, with R ⊂ [1, n]. Theorem 13 generalizes as follows:

Theorem 16 Given a λ-feasible modulo scheduling problem, ∀s > 0,∃r >
0,∀p > r: any p-unwinded pseudo-schedule that is λ-regular on the index set
R ⊂ [1, n] is s-successive λ-stationary on {σki }

1≤k≤p
i∈R .

PROOF. Given the hypothesis, the theorem states that ∃q ∈ [1, p− s],∀i ∈
R, ∀k ∈ [q, q + s− 1] : σki + λ = σk+1

i (Definition 4). The proof is identical to
the proof of Theorem 13, except that i ∈ [1, n] is replaced by i ∈ R.

Corollary 17 Given a λ-feasible modulo scheduling problem and R ⊂ [1, n],
∀s > 0, if p > s

∑
i∈R(di − ri) + s then any p-unwinded pseudo-schedule λ-

regular on R is s-successive λ-stationary on {σki }
1≤k≤p
i∈R .

14

Among the partially λ-regular p-unwinded scheduling problems, we are es-
pecially interested in cases where R equals D, the index set of the generic
operations that are not independent.

Definition 18 A λ-semi-regularized p-unwinded scheduling problem is an
unwinded scheduling problem where the λ-regularizing dependences are only
added to the instances of the generic operations that are not independent.

Definition 19 The dependent schedule of a p-unwinded scheduling problem
is the partial schedule {σki }

1≤k≤p
i∈D , with D the index set of the generic operations

that are not independent in the modulo scheduling problem.

Let us now focus on the properties of the dependence-consistent release dates
of p-unwinded scheduling problems in case of λ-semi-regularization.

Lemma 20 For any feasible λ-semi-regularized p-unwinded scheduling prob-
lem, the set of dependence-consistent release dates {r′ki }

1≤k≤p
1≤i≤n defined as r′ki

def
=

max(rki ,maxOlj∈predOki
(rlj + pj + lij

+)) is a λ-regular pseudo-schedule.

PROOF. By definition, the set {r′ki }
1≤k≤p
1≤i≤n satisfies the release dates and the

dependence constraints of the p-unwinded scheduling problem. It also satisfies
the deadlines else the p-unwinded scheduling problem is infeasible, so it is a
pseudo-schedule. The λ-regularity follows from the λ-semi-regularization and
from the λ-stationarity of the release dates of the independent operations.

Definition 21 A q-full λ-stationary schedule is a solution to a p-unwinded
scheduling problem such that: ∀i ∈ [1, n],∀k ∈ [q, p− 1] : σki + λ = σk+1

i

In other words, the q-full λ-stationary schedules are the s-successive λ-stationary
p-unwinded schedules starting at iteration q with q = p− s.

Theorem 22 For any feasible λ-semi-regularized p-unwinded scheduling prob-
lem, if the pseudo-schedule of the dependence-consistent release dates {r′ki }

1≤k≤p
1≤i≤n

is ω̄-successive λ-stationary starting at iteration q, then it is q-full λ-stationary.

PROOF. The dependence-consistent release dates of the independent op-
erations are λ-stationary, so we focus on the dependent operations. By hy-
pothesis, ∃q ∈ [1, p − ω̄],∀i ∈ D,∀k ∈ [q, q + ω̄ − 1] : r′ki + λ = r′k+1

i

(Definition 4). We need to prove ∀i ∈ D,∀k ∈ [q, p − 1] : r′ki + λ = r′k+1
i

(Definition 21). This is done by induction once we show that ∀q ∈ [1, p − ω̄],
if ∀i ∈ D, ∀k ∈ [q, q+ ω̄− 1] : r′ki +λ = r′k+1

i then ∀i ∈ D, r′q+ω̄i +λ = r′q+ω̄+1
i .

The set {r′ki }
1≤k≤p
i∈D can be seen as the result of a longest path computation

on the λ-semi-regularized p-unwinded problem dependence graph, augmented

15

with arcs of latency ri between a root node and the dependent operations of the
first iteration {O1

i }i∈D. The λ-regularizing arcs ensure r′ki ≥ ri + kλ,∀i ∈ D.

By definition of a pseudo-schedule, the entering dependences of any dependent
operation in iteration q+ ω̄ are satisfied by the dependence-consistent release

dates: O
q+ω̄−ωji
i

θji≺ Oq+ω̄
j ⇒ r′

q+ω̄−ωji
i + θji ≤ r′q+ω̄j . First consider the carried

dependences, that is, ωji > 0. As ∀i ∈ D, ∀k ∈ [q, q+ω̄−1] : r′ki +λ = r′k+1
i , the

dependence inequality becomes r′
q+ω̄−ωji+1
i + θji ≤ r′q+ω̄j + λ after adding λ to

both sides. Thus the date r′q+ω̄j + λ satisfies the carried entering dependences

of Oq+ω̄+1
j ,∀j ∈ D. Now consider the non-carried dependences, that is, ωji = 0.

The dependence inequality is r′q+ω̄i + θji ≤ r′q+ω̄j ⇒ r′q+ω̄i + λ+ θji ≤ r′q+ω̄j + λ,

so the dates {r′q+ω̄j +λ}j∈D satisfy the non-carried dependences of iteration q+

ω̄+ 1. Finally, no smaller pseudo-schedule dates are possible for {Oq+ω̄+1
j }j∈D

by λ-semi-regularization. This implies ∀j ∈ D, r′q+ω̄+1
j = r′q+ω̄j + λ.

Corollary 23 For any feasible λ-semi-regularized p-unwinded scheduling prob-
lem, if p > ρD

def
= ω̄

∑
i∈D(di−ri)+ω̄, then the pseudo-schedule of the dependence-

consistent release dates {r′ki }
1≤k≤p
1≤i≤n is ρD − ω̄-full λ-stationary.

PROOF. From Corollary 17, if p > ρD then the pseudo-schedule of the
dependence-consistent release dates is ω̄-successive λ-stationary. This succes-
sive λ-stationarity appears at the latest at iteration ρD − ω̄.

3 UET Modulo Scheduling on Parallel Machines

Although the regular unwinding framework applies to the resource-constrained
modulo scheduling problems, we now focus on parallel machines with UET
operations in order to obtain pseudo-polynomial time solutions.

3.1 Dependence-Free Modulo Scheduling

We start with a sufficient condition for the GLSA to build λ-regular schedules,
even when the p-unwinded problem is not λ-regularized.

Theorem 24 In case of UET operations and parallel machines, running the
GLSA on a p-unwinded scheduling problem without dependences and with a
priority function P such that P (Ok

i) < P (Ol
j)⇒ P (Ok+1

i) < P (Ol+1
j) yields a

λ-regular p-unwinded schedule.

16

�� �� �� ���
� ���� ���� ���� ��

Ol′
j′

Ol
j Ok

i

Ol′+1
j′

Ol+1
j

σk+1
i − λ σk+1

iσki

Ok+1
i

Fig. 6. Illustration of the proof of Theorem 24.

PROOF. [Figure 6] Assume that the p-unwinded schedule is not λ-regular.
Let Ok

i be the earliest scheduled operation such that σki + λ > σk+1
i . At date

σk+1
i −λ, operation Ok

i is available, as rki = rk+1
i −λ ≤ σk+1

i −λ. Since operation
Ok
i was not scheduled at date σk+1

i − λ < σki even though it was available and
from the UET hypothesis, there must exist operations Ol

j, O
l′
j′ , . . . that are

all scheduled at date σk+1
i − λ, meaning they have a higher priority than

Ok
i . At date σk+1

i , the operations Ol+1
j , Ol′+1

j′ , . . . are also available, because

σlj = σk+1
i − λ ⇒ rlj ≤ σk+1

i − λ ⇒ rl+1
j ≤ σk+1

i . These operations cannot be

scheduled earlier, that is, σl+1
j < σk+1

i , because σl+1
j ≥ σlj + λ by λ-regularity

and σlj = σk+1
i −λ. Thus, operation Ok+1

i is scheduled before at least one of the

operations Ol+1
j , Ol′+1

j′ , . . ., meaning it has a higher priority. This contradicts
the hypothesis on the priority function P .

Corollary 25 The modulo scheduling problem P |ri; di; pi = 1; πi = λ|• can be
solved in pseudo-polynomial time.

PROOF. Build the p-unwinded scheduling problem with p > ρ̄. This yields
a problem P |ri; di; pi = 1|• that is optimally solved by the GLSA using the
earliest di first priority. The priority P (Ok

i)
def
= dki

def
= di + (k − 1)λ of a p-

unwinded scheduling problem satisfies the condition of Theorem 24 2 , so the
resulting schedule if feasible is λ-regular for ρ̄ iterations. By Corollary 15, this
is equivalent to modulo scheduling.

3.2 Modulo Scheduling a Dependence Circuit

Consider modulo scheduling problems that include uniform dependences in
addition to release dates and deadlines. When the p-unwinded problem is λ-
regularized, this yields a dependence structure that is too complex in general
for pseudo-polynomial time solutions. However we show now that regular un-
winding of a dependence circuit yields a monotone chain-order graph, which
is optimally scheduled by the LPPA.

2 In case Oki and Olj have the same deadline, we order them by lower index i, j first.

17

���� ���� ���� ����@@ ���

- - -�� @@R
vi vj vk vj′w(vi, vj) w(vj , vk) w(vk, vj′)

w(vi, vj′)

w(vi, vk)←W

Fig. 7. Illustration of the proof of Theorem 27.

Lemma 26 For any monotone chain-order graph, if increasing the weight
of some arc violates the monotone property, then it can be restored without
changing the transitive weights.

PROOF. [Figure 7] Assume a chain order whose arc weights w satisfy the
monotone property: ∀(vi, vj), (vi, vk) ∈ E : pred vj ⊆ pred vk ⇒ w(vi, vj) ≤
w(vi, vk). Select arbitrary vi, vk and increase w(vi, vk) to some value W .

Consider the vi successors vj and vj′ . For vj between vi and vk in the chain,
w(vi, vj) ≤ w(vi, vk) still holds. For vj′ after vk in the chain, w(vi, vk) ≤
w(vi, vj′) may no longer hold. Increasing w(vi, vj′) to w(vi, vk) = W for all
nodes vj′ after vk in the chain restores the monotone property. This increase
does not change the transitive weights because w(vi, vj′) = w(vi, vk) ≤ w(vi, vk)+
w(vk, vj′), thanks to the non-negativity of the weight function.

Theorem 27 Unwinding a problem P |circuit(θji , ω
j
i);
∑
ωji = 1; ri; di; pi =

1;πi = λ|• and λ-regularizing it yields a P |chainOrder(mono lji); ri; di; pi =
1|• problem.

PROOF. Unwinding a problem P |circuit(θji , ω
j
i);
∑
ωji = 1; ri; di; pi = 1; πi =

λ|• yields a dependence graph that is a chain 3 .

For any nodes vi, vj, vk such that vj is the direct successor of vi in and vk a
transitive successor of vi in the chain, create arc (vi, vk) and assign weight θji
to all arcs leaving vi. The result is a monotone chain order whose transitive
latencies are the same as the transitive latencies of the original chain, so the
scheduling problem constraints are unchanged.

Now add the λ-regularizing dependence arcs to the monotone chain order
graph. Each such arc is parallel to an existing arc (vi, vk) and if not redundant,
this has the effect of increasing w(vi, vk) to λ. By Lemma 26, we restore the
monotone property without changing the scheduling constraints.

Corollary 28 The modulo scheduling problem P |circuit(θji , ω
j
i);
∑
ωji = 1; ri; di; pi =

1;πi = λ|• can be solved in pseudo-polynomial time.

3 If
∑
ωji = k the p-unwinded dependence graph has k independent chains.

18

PROOF. Build the λ-regularized p-unwinded scheduling problem with p > ρ̄.
By Theorem 27, this yields a P |chainOrder(mono lji); ri; di; pi = 1|• problem.
A monotone chain order is a particular case of monotone interval order, which
is optimally solved by the LPPA. As any feasible schedule is λ-regular for ρ̄
iterations, by Corollary 15 this is equivalent to modulo scheduling.

Corollary 29 Unwinding a problem P |subCircuit(θji , ω
j
i);
∑
ωji = 1; ri; di; pi =

1;πi = λ|• and λ-semi-regularizing it yields a P |subChainOrder(mono lji); ri; di; pi =
1|• problem.

PROOF. First consider the operations in the dependence circuit. After un-
winding, their instances are λ-regularized. Proof of Theorem 27 ensures that
the resulting problem is P |chainOrder(mono lji); ri; di; pi = 1|•. Now add the
instances of the independent operations to the p-unwinded problem. Thanks
to λ-semi-regularization, these operations instances remain independent. The
end result is a P |subChainOrder(mono lji); ri; di; pi = 1|• problem.

3.3 Properties of the Leung-Palem-Pnueli Pseudo-Schedule

Given a p-unwinded scheduling problem with UET operations, consider the
pseudo-schedule {σ∗ki

def
= d′ki − 1}1≤k≤p

1≤i≤n computed by the ModifiedDeadlines al-
gorithm of Leung, Palem and Plueli described in §1.3. These dates satisfy the
dependence constraints of the p-unwinded problem, so if the p-unwinded prob-
lem is λ-regularized, its LPPA pseudo-schedule is λ-regular. A more difficult
question we study in this section is whether the LPPA pseudo-schedule of a
λ-semi-regularized p-unwinded scheduling problem is λ-regular.

Lemma 30 Given a feasible p-unwinded scheduling problem, {r′ki }
1≤k≤p
1≤i≤n its

dependence-consistent release dates and Ok
i , i ∈ [1, n] − D any independent

operation, the supporting set of Ok
i is included in {Ol

j}
max(1,k−ω̂)≤l≤p
1≤j≤n .

PROOF. Leung, Palem and Pnueli [10] characterize the supporting set at
date t of operation Ok

i as Support(Ok
i , t)

def
= succOk

i ∪{Ol
j ∈ indepOk

i : r′lj ≥ t}.
In case of the independent operations, succOk

i = ∅ and taking t = r′ki provides
a safe approximation of the supporting set of Ok

i . Moreover, r′lj ≥ r′ki ⇒ dlj >
rki ⇒ (k − l)λ < dj − ri ⇒ k − l ≤ ω̂ ⇒ l ≥ k − ω̂.

Theorem 31 For any λ-semi-regularized p-unwinded scheduling problem, if
the pseudo-schedule of the dependence-consistent release dates {r′ki }

1≤k≤p
1≤i≤n is

19

��
��
��
��

�
�
�
� �
�
�
�

�
�
�
� �
�
�
�

�
�
�
�

�
�
�
��
�
�
�

�
�
�
�

�
�
�
��
�
�
�

B′(Ok+1
i , Sk+1

i)

B(Oki , S
k
i)

Ok+1
i d′p−1

j′ d′p
j′

d′pjd′p−1
j

d′p−2
j′

d′p−2
j

d′p−1
j′

d′p−1
j

d′p
j′

d′pj

Oki

Fig. 8. Illustration of the proof of Theorem 31 with λ = 4.

q-full λ-stationary, the fixpoint modified deadlines of the algorithm of Leung,
Palem and Pnueli are λ-regular starting at iteration q + ω̂.

PROOF. Follow the BackwardSchedule algorithm, which processes the op-
erations in an order compatible with the highest dependence-consistent re-
lease dates r′qi first and starts from an initial set of deadlines that are the
dependence-consistent deadlines. The dependence-consistent deadlines are λ-
stationary in case of independent operations and are λ-regular in case of depen-
dent operations thanks to λ-semi-regularization. So the dependence-consistent
deadlines are λ-regular: ∀i ∈ [1, n],∀k ∈ [1, p− 1] : d′ki + λ ≤ d′k+1

i .

A first remark is that the fixpoint modified deadlines of the dependent op-
erations {d∗ki }

1≤l≤p
i∈D are guaranteed to be λ-regular. Indeed, in case Ok

i is a
dependent operation, Ok+1

i is its direct successor by λ-semi-regularization, so
the backward scheduling problem B(Ok

i , S
k
i) is such that Ok+1

i ∈ Ski . The reg-
ularizing arc between Ok

i and Ok+1
i ensures d∗ki + λ ≤ d∗k+1

i . So there remains
to prove that the fixpoint modified deadlines of the independent operations
are λ-regular: ∀i ∈ [1, n]−D,∀k ∈ [q + ω̂, p− 1] : d∗ki + λ ≤ d∗k+1

i .

[Figure 8] Assume i ∈ [1, n] − D and k ∈ [q + ω̂, p]. Because Ok
i is an inde-

pendent operation, the fixpoint modified deadline d∗ki is the result of optimal

backward scheduling on problem B(Ok
i , S

k
i), with Ski

def
= {Ol

j}
max(1,k−ω̂)≤l≤p
1≤j≤n by

Lemma 30. Define B′(Ok+1
i , Sk+1

i) as problem B(Ok+1
i , Sk+1

i) with time trans-
lated by−λ. We claim thatB(Ok

i , S
k
i) is more constrained thanB′(Ok+1

i , Sk+1
i),

whose optimal backward scheduling resulted in d∗k+1
i −λ. First, the dependent-

consistent release dates are λ-stationary for all the operations involved in Ski ,
because k ≥ q + ω̂ and thanks to the q-full λ-stationarity of the modified re-
lease dates. Second, consider any deadline d′lj or d∗lj that constrains B(Ok

i , S
k
i).

If l = p, there is no corresponding deadline in B′(Ok+1
i , Sk+1

i). Else, the corre-
sponding deadline is d′l+1

j −λ ≥ d′lj or d∗l+1
j −λ ≥ d∗lj by the λ-regularity of the

dependence-consistent deadlines and of the already computed fixpoint modi-
fied deadlines. In any case, B(Ok

i , S
k
i) is more constrained than B′(Ok+1

i , Sk+1
i)

and this implies d∗ki ≤ d∗k+1
i − λ.

20

Corollary 32 For any feasible λ-semi-regularized p-unwinded scheduling prob-
lem, if the dependence-consistent release dates are q-full λ-stationary, the fix-
point modified deadlines of Leung, Palem and Pnueli are λ-stationary from
iteration q + ω̂ to iteration p− ρ̄+ Ω with ρ̄

def
= Ω

∑
1≤i≤n(di − ri) + Ω.

PROOF. By Theorem 31, the LPPA pseudo-schedule is λ-regular starting at
iteration q + ω̂. Corollary 14 applies to the pseudo-schedule {σ∗ki }

q+ω̂≤k≤p
1≤i≤n , so

for p > q+ ω̂−1 + ρ̄, this pseudo-schedule is Ω-successive λ-stationary. As the
ModifiedDeadlines algorithm builds the pseudo-schedule in reverse topological
sort order, Ω-successive λ-stationarity appears first in the higher iterations,
then extends to the lower iterations because optimal backwards scheduling
maximizes the pseudo-schedule dates.

This result is useful by itself for heuristic modulo scheduling: when applying
the LPPA to a λ-semi-regularized p-unwinded scheduling problem, there is
no need to run the BackwardSchedule algorithm after the fixpoint modified
deadlines become λ-regular for Ω iterations.

3.4 Modulo Scheduling a Dependence Sub-Circuit

While Corollary 28 provides a first pseudo-polynomial solution to modulo
scheduling problems that involve both a dependence circuit with dependence
delays and resource constraints, there remain strong motivations to include
independent operations outside the dependence circuit in modulo scheduling
problems. Indeed, given a complex modulo scheduling problem, the relaxation
obtained by keeping only its most constraining dependence circuit and making
the operations outside this circuit independent would be stronger than the
existing practice of computing λres and λrec independently (§2.1).

Proposition 33 Given a feasible problem P |subCircuit(θji , ω
j
i);
∑
ωji = 1; ri; di; pi =

1;πi = λ|• at period λ, the pseudo-schedule of the dependence-consistent re-
lease dates {r′ki }

1≤k≤p
1≤i≤n of its λ-semi-regularized p-unwinded problem is 2-full

λ-stationary.

PROOF. Consider the longest path problem introduced in the proof of The-
orem 22 to compute the dependence-consistent release dates of the dependent
operations. Assume ∃i ∈ D : r′2i +λ < r′3i . This implies the dependence circuit
has a cumulative latency greater that λ, so the modulo scheduling problem
is not feasible at period λ. Thus, whenever the modulo scheduling problem is
feasible at period λ, ∀i ∈ D : r′2i + λ = r′3i , then Theorem 22 applies.

21

Theorem 34 Assume a GLSA schedule of a λ-semi-regularized p-unwinded
scheduling problem such that the dependent schedule {σki }

1≤k≤p
i∈D is s-successive

λ-stationary starting at iteration q. If the GLSA priority function P satisfies
∀k, l ∈ [q, q + s− 1] : P (Ok

i) < P (Ol
j)⇒ P (Ok+1

i) < P (Ol+1
j), then the partial

schedule {σki }
q+ω̂≤k≤q+s−ω̂
1≤i≤n is λ-regular.

PROOF. The schedule dates of the dependent operations are λ-stationary
hence λ-regular for all iterations in [q, q + s], so we only need to show that
the schedule dates of the independent operations are regular for all iterations
k ∈ [q + ω̂, q + s− ω̂].

By Lemma 7, any two operations Ok
i and Ol

j can only overlap if |l−k| ≤ ω̂, so
the independent operations of iterations k ∈ [q+ ω̂, q+s− ω̂] can only overlap
with the dependent operations whose iterations l ∈ [q, q + s].

[Figure 6] Follow the proof principles of Theorem 24, a contradiction based on
the definition of Ok

i as the earliest scheduled operation such that σki +λ > σk+1
i .

In the current proof, operation Ok
i can only be independent by hypothesis.

The proof of Theorem 24 considers operations Ol
j, O

l′
j′ , . . . scheduled at date

σk+1
i − λ and needs that operations Ol+1

j , Ol′+1
j′ , . . . be available at date σk+1

i .

In the current proof, some Ol
j may be dependent. However the λ-stationarity

of the dependent operations ensures that Ol+1
j is available at date σk+1

i , so the
remainder of the proof of Theorem 24 carries unchanged.

Corollary 35 The modulo scheduling problem P |subCircuit(θji , ω
j
i);
∑
ωji =

1; ri; di; pi = 1; πi = λ|• can be solved in pseudo-polynomial time.

PROOF. Build the λ-semi-regularized p-unwinded scheduling problem. By
Corollary 29, this yields P |subChainOrder(mono lji); ri; di; pi = 1|•. This
problem is a particular case of P |intOrder(mono lji); ri; di; pi = 1|•, which
is optimally solved by the LPPA.

Let p1 be some unwinding amount. By Proposition 33, for the p1-unwinded
problems we consider, the pseudo-schedule of the dependence-consistent re-
lease dates {r′ki }

1≤k≤p1
1≤i≤n is 2-full λ-stationary. By Corollary 32, the LPPA pseudo-

schedule {σ∗ki
def
= d′ki −1}1≤k≤p1

1≤i≤n is λ-stationary from iteration 2+ ω̂ to iteration
p1 − ρ̄+ Ω. So for the LPPA GLSA that uses the fixpoint modified deadlines
P (Ok

i)
def
= d′ki as priorities, we have ∀k, l ∈ [2 + ω̂, p1− ρ̄+ Ω− 1],∀i, j ∈ [1, n] :

P (Ok
i) < P (Ol

j)⇒ P (Ok+1
i) < P (Ol+1

j).

Select p2 such that the dependent schedule constructed by this GLSA is s2-
successive λ-stationary starting at iteration q2, under the requirements q2 ≥

22

d′itu + 1

� �� ��
� ���
� ���
� ��

�� �� -
�����)
�
�
�
��=

6 66

�� ��
�

6 Σ
tu σi

Ok

Oj

Oj′

Oj′′ Oi

Σ′

Fig. 9. The core proof of the Leung-Palem-Pnueli algorithm.

2 + ω̂ and s2 ≥ ρ̄ + 2ω̂. This is achieved by any dependent schedule that is
s3-successive λ-stationary with s3 ≥ s2+2+ω̂. By Corollary 17, this is ensured
for any p2 > s3

∑
i∈D(di− ri) + s3. Finally, by taking p

def
= max(p1 + ρ̄−Ω, p2),

Theorem 34 ensures the p-unwinded schedule is λ-regular for ρ̄ successive
iterations. As any feasible p-unwinded schedule is λ-regular for ρ̄ iterations,
by Corollary 15 this is equivalent to modulo scheduling.

4 UET Modulo Scheduling on Typed Task Systems

In order to generalize the parallel machine modulo scheduling problems of
Section 3 to typed task systems, we need to extend the algorithm of Leung,
Palem and Plueli [10] to solve ΣP |subChainOrder(monolji); ri; di; pi = 1|•.

4.1 The Leung-Palem-Pnueli Algorithm Correctness Arguments

The correctness of the Leung-Palem-Pnueli algorithm (LPPA) is based on two
arguments. The first proves that the fixpoint modified deadlines computed by
the ModifiedDeadlines and the BackwardSchedule algorithms are deadlines of
the original problem, so a schedule that misses a modified deadline on a feasible
problem is not optimal. Moreover, in [10] Leung, Palem and Pnueli prove
the correctness of the ModifiedDeadlines and the BackwardSchedule algorithms
without relying on the dependence structure of the scheduling problem.

The second correctness argument of the LPPA is that the GLSA with the
lowest fixpoint modified deadlines first as priorities does not miss any fixpoint
modified deadlines. Let us call core this GLSA. Let Oi be the earliest operation
that misses its fixpoint modified deadline d′i in the core GLSA schedule. Leung,
Palem and Pnueli [10] show that an earlier operation Ok necessarily misses its
fixpoint modified deadline d′k in the same schedule for each particular class of
problems considered. This contradiction on the choice of Oi ensures that the
core GLSA schedule does not miss any fixpoint modified deadline.

The details of the proof rely on a few definitions and observations illustrated

23

in Figure 9. An operation Oj is said saturated if d′j ≤ d′i. Define tu < d′i as
the latest time step that is not filled with saturated operations. If tu < 0 the
problem is infeasible. Else, some scheduling slots at tu are either empty or filled
with unsaturated operations. Define the operation set Σ

def
= {Oj saturated :

tu < σj < d′i} ∪ {Oi}. Define the operation subset Σ′
def
= {Oj ∈ Σ : r′j ≤ tu}.

For any operation Oj ∈ Σ′, there must exist a constraining operation Ok in the
core GLSA schedule that prevents the scheduling of Oj at date tu or earlier.
This constraining operation Ok is a direct predecessor of operation Oj and the
precedence constraint σk + pk + ljk = σj implies σk + 1 + ljk > tu.

Consider problem P |intOrder(mono lji); ri; di; pi = 1|•. In an interval order,
given two operationsOi andOj, either predOi ⊆ predOj or predOj ⊆ predOi.
This is easily understood by referring to the underlying intervals that define
the interval order. Also, any transitive predecessor (successor) of some opera-
tion in an interval order is also a direct predecessor (successor). Select some
Oj′ among Oj ∈ Σ′ such that | predOj| is minimal. Each operation in predOj′

is a predecessor of all operations in Σ′ and no predecessor of Oj′ is in Σ′. Thus,
the constraining operation Ok of Oj′ is a predecessor of all operations in Σ′.

A Σ-stable backward schedule is any optimal backward schedule {σ′i}i:Oi∈{Ok}∪Sk
for some B(Ok, Sk) with Σ ⊆ Sk and the same dependence-consistent release
dates and fixpoint modified deadlines as seen by the core GLSA. Thanks to the
stability of the fixpoint modified deadlines, we may assume that a Σ-stable
backward schedule exists for any Σ and Ok. A key observation is that any
Σ-stable backward schedule must slot the m(d′i − tu − 1) + 1 operations of Σ
between tu+1 and d′i on m processors. This implies that at least one operation
Oj ∈ Σ′ has a backward schedule date σ′j ≤ tu.

Since ∃Oj ∈ Σ′ : σ′j ≤ tu in any Σ-stable backward schedule, we have σ′k + 1 +

ljk ≤ tu and the fixpoint modified deadline d′k of Ok is such that d′k + ljk ≤ tu.

By the monotone property, predOj′ ⊆ predOi ⇒ lj
′

k ≤ ljk for Oj′ selected

above and ∀Oj ∈ Σ′, so d′k + lj
′

k ≤ tu. However in the core GLSA schedule

σk + 1 + lj
′

k > tu, as operation Ok is constraining Oj′ . Thus Ok misses its
fixpoint modified deadline d′k, contradicting the choice of Oi.

4.2 Extension of the Leung-Palem-Pnueli Proof to Typed Task Systems

Scheduling problems on typed task systems generalize the parallel machine
scheduling problems by assigning a type τi to each operation Oi and by provid-
ing a bounded number of processors of each type. Jansen [9] gives a polynomial
algorithm for the problem ΣP |intOrder; pi = 1|Cmax.

Definition 36 The type distribution of a problem ΣP |β|• is creation of as

24

many parallel parallel machine scheduling problems as there are types, where:

• Each parallel machine scheduling problem only contains the processors and
the operations of a particular type.

• The dependence graph of each parallel machine scheduling problem is ob-
tained from the transitive closure of the original dependence graph weighted
with the transitive latencies, induced by the operations of the particular type.

• The release dates and deadlines of each parallel machine scheduling problem
are obtained by making them dependence-consistent with the transitive clo-
sure of the original dependence graph weighted with the transitive latencies

Solving all the parallel machine scheduling problems resulting from type dis-
tribution is only a relaxation of the original problem on typed task systems.
In simple cases, solving this relaxation also solves the original problem.

Lemma 37 The GLSA with Jackson’s rule optimally solves ΣP |ri; di; pi = 1|•

PROOF. Apply type distribution of the problem ΣP |ri; di; pi = 1|•. This
yields independent problems P |ri; di; pi = 1|•, each of which is optimally
solved by the GLSA with Jackson’s rule.

Theorem 38 The algorithm of Leung, Palem and Pnueli extended to typed
task systems solves any feasible ΣP |intOrder(mono lji); ri; di; pi = 1|•.

PROOF. In order to apply the LPPA to solve typed task systems, we need
to show its correctness on the two arguments discussed §4.1. For the Modi-
fiedDeadlines and the BackwardSchedule algorithms, we keep them unchanged
except that the BackwardSchedule algorithm solves a series of ΣP |ri; di; pi =
1|• to find the optimal backward schedule dates. By Lemma 37, these sub-
problems are optimally solved by the GLSA with Jackson’s rule. Thus the first
correctness argument of the LPPA, that is, the fixpoint modified deadlines are
deadlines of the original problem, still holds.

The second correctness argument of the LPPA is essentially unchanged. Let τi
be the type of the earliest operation Oi that misses its fixpoint modified dead-
line d′i. The contradiction proceeds by defining tu,Σ,Σ

′ on the processors and
the tasks whose type equals τi. As in the parallel machine case, monotonicity
allows to show by contradiction that the core GLSA algorithm does not miss
any modified deadlines, thus proving the second correctness argument of the
LPPA on typed task systems and monotone interval orders.

25

4.3 Application to Dependence Sub-Circuit on Typed Task Systems

By using similar arguments as in §3.4, we now show that the modulo scheduling
problem ΣP |subCircuit(θji , ω

j
i);
∑
ωji = 1; ri; di; pi = 1; πi = λ|• can be solved

in pseudo-polynomial time.

Corollary 39 Unwinding ΣP |subCircuit(θji , ω
j
i);
∑
ωji = 1; ri; di; pi = 1; πi =

λ|• and λ-semi-regularizing it yields a ΣP |subChainOrder(mono lji); ri; di; pi =
1|• problem.

PROOF. Same as Corollary 29, as resource constraints are not involved.

Theorem 40 The modulo scheduling problem ΣP |subCircuit(θji , ω
j
i);
∑
ωji =

1; ri; di; pi = 1; πi = λ|• can be solved in pseudo-polynomial time.

PROOF. Build the λ-semi-regularized p-unwinded scheduling problem. By
Corollary 39, this yields ΣP |subChainOrder(mono lji); ri; di; pi = 1|•. By The-
orem 38, this problem is optimally solved by the LPPA extended to typed task
systems. Then follow the proof of Corollary 35 in order to show that for any
p ≥ max(p1 + ρ̄−Ω, p2), the p-unwinded schedule is λ-regular for ρ̄ iterations.
By Corollary 15, solving the p-unwinded problem for such p is equivalent to
modulo scheduling.

The proof of Corollary 35 relies on Corollary 17, Corollary 32 and Theorem 34.
Corollary 17 is independent of the resource constraints. Corollary 32 and The-
orem 34 ultimately rely on the optimality of Jackson’s rule for scheduling
P |ri; di; pi = 1|• with the GLSA. By Lemma 37, the GLSA with Jackson’s
rule optimally solves ΣP |ri; di; pi = 1|• so Corollary 32 and Theorem 34 ex-
tend to typed task systems.

Summary and Conclusions

Modulo scheduling refers to cyclic scheduling with uniform dependences and
dependence delays, where the cyclic schedules must be 1-periodic with integral
period. We propose a new framework for resource-constrained modulo schedul-
ing, whose principle is to unwind the modulo scheduling problem and to apply
acyclic scheduling while ensuring that the schedule is λ-regular. Under the
general case of the RCPSP resource constraints [3], we prove the equivalence
between modulo scheduling at period λ and solving λ-regularized p-unwinded

26

problems, for p > ρ̄ of pseudo-polynomial size: either the λ-regularized p-
unwinded schedule is λ-stationary for enough iterations to yield a modulo
schedule of period λ; or, there is no modulo schedule of period λ.

Solving cyclic instruction scheduling problems by combining unwinding and
acyclic scheduling has been proposed earlier [2][1][6]. These approaches build
K-periodic cyclic schedules [7] where K is only known after the unwinded
schedule is built. Work in [2][1] focuses on heuristics for instruction schedul-
ing. Work by Chrétienne [6] studies the performance guarantees of Graham
list scheduling on 1-regular unwinded problems, but is restricted to parallel
processors and dependences without delays. These techniques require that the
dependence graph be a single strongly connected component.

In the area of 1-periodic cyclic scheduling techniques, state-of-the-art mod-
ulo instruction scheduling [14][15] use job-based list scheduling extended to
manage the modulo resource constraints. With job-based list scheduling, each
operation is scheduled in priority order, unlike Graham list scheduling where
the operations are scheduled in non-decreasing time order. In [14][15], the job-
based modulo list scheduling is augmented with bounded backtracking and is
reported with satisfactory results. In recent work, Brucker et al. [5] formulates
neighborhood functions for the 1-periodic cyclic job-shop problems and apply
them to Tabu search heuristics.

In contrast to those heuristic approaches and restricting assumptions, the
regular unwinding framework enables resource-constrained modulo scheduling
to benefit from any machine scheduling technique that applies to the regular
unwinded scheduling problems. As first applications, we solve the following
modulo scheduling problems in pseudo-polynomial time:

P |ri; di; pi = 1; πi = λ|•, based on the properties of the Graham list scheduling
algorithm with Jackson’s rule on the unwinded scheduling problems.

P |circuit(θji , ω
j
i);
∑
ωji = 1; ri; di; pi = 1; πi = λ|•, by applying the algorithm

of Leung, Palem and Pnueli [10] to the unwinded scheduling problems.
P |subCircuit(θji , ω

j
i);
∑
ωji = 1; ri; di; pi = 1; πi = λ|•, by combining the pre-

vious results with a proof that the fixpoint modified deadlines computed
by the algorithm of Leung, Palem and Pnueli [10] are almost λ-regular for
unwinded problem whose independent operations are not λ-regularized.

ΣP |subCircuit(θji , ω
j
i);
∑
ωji = 1; ri; di; pi = 1; πi = λ|•, by combining the pre-

vious result with a proof that the algorithm of Leung, Palem and Pnueli
[10] applies to typed task systems [9] in case of monotone sub-chain orders.

These results are directly relevant to the practice of cyclic instruction schedul-
ing that motivates our research. Given a resource-constrained and dependence-
constrained modulo scheduling problem, summarizing all dependences into re-
lease dates and deadlines while keeping those on the most constraining recur-

27

rence circuit with
∑
ωji = 1 yields a relaxation we can solve. This relaxation

is stronger than removing either all resource constraints or all dependence
constraints from the original modulo scheduling problem.

References

[1] A. Aiken, A. Nicolau, S. Novack. Resource-Constrained Software Pipelining.
IEEE Transactions on Parallel and Distributed Systems, 6, 12, pages 1248–
1270, 1995.

[2] F. Bodin, F. Charot. Loop Optimization for Horizontal Microcoded Machines.
Proceedings of the 1990 International Conference on Supercomputing, pages
164–176, 1990.

[3] P. Brucker, A. Drexl, R. Möhring, K. Neumann, E. Pesch. Resource-Constrained
Project Scheduling: Notation, Classification, Models, and Methods. European
Journal of Operational Research 112, 1999.

[4] P. Brucker. Scheduling Algorithms -4th ed.. Springer Verlag, 2004.

[5] P. Brucker, T. Kampmeyer. Tabu Search Algorithms for Cyclic Machine
Scheduling Problems. Journal of Scheduling, Vol. 8, No. 4, July 2005.

[6] Ph. Chrétienne. On Graham’s Bound for Cyclic Scheduling. Parallel Computing
26(9), pages 1163–1174, 2000.

[7] B. Dupont de Dinechin. From Machine Scheduling
to VLIW Instruction Scheduling. ST Journal of Research vol. 1, no. 2, 2004.
http://www.st.com/stonline/press/magazine/stjournal/vol0102/

[8] C. Hanen, A. Munier. A Study of the Cyclic Scheduling Problem on Parallel
Processors. DAMATH: Discrete Applied Mathematics and Combinatorial
Operations Research and Computer Science, 57, 1995.

[9] K. Jansen. Analysis of scheduling problems with typed task systems. Discrete
Applied Mathematics 52, pages 223–232, 1994.

[10] A. Leung, K. V. Palem, A. Pnueli. Scheduling Time-Constrained Instructions
on Pipelined Processors. ACM TOPLAS 23, 1, pages 73–103, Jan. 2001.

[11] K. V. Palem, B. Simons. Scheduling Time-Critical Instructions on RISC
Machines. ACM Transactions on Programming Languages and Systems
(TOPLAS) 15, 4, pages 632–658, Sept. 1993.

[12] C. Papadimitriou, M. Yannakakis. Scheduling Interval-Ordered Tasks. SIAM J.
of Computing, 8, 3, pages 405–409, 1979.

[13] B. R. Rau, C. D. Glaeser. Some Scheduling Techniques and an
Easily Schedulable Horizontal Architecture for High Performance Scientific
Computing. 14th Annual Microprogramming Workshop on Microprogramming
– MICRO-14, pages 183–198, Dec. 1981.

28

[14] B. R. Rau. Iterative Modulo Scheduling. The International Journal of Parallel
Processing, 24, 1, pages 3–64, Feb. 1996.

[15] J. Ruttenberg, G. R. Gao, A. Stoutchinin, W. Lichtenstein. Software
Pipelining Showdown: Optimal vs. Heuristic Methods in a Production Compiler.
SIGPLAN Conference on Programming Language Design and Implementation
– PLDI’96, May 1996.

29

