
PREPRIN
T

Runtime Analysis of Whole-System Provenance
Thomas Pasquier*

University of Bristol
Xueyuan Han

Harvard University
Thomas Moyer
University of North

Carolina at Charlotte

Adam Bates
University of Illinois at

Urbana-Champaign

Olivier Hermant
MINES ParisTech

PSL Research University

David Eyers
University of Otago

Jean Bacon
University of Cambridge

Margo Seltzer
University of

British Columbia

ABSTRACT
Identifying the root cause and impact of a system intrusion remains
a foundational challenge in computer security. Digital provenance
provides a detailed history of the flow of information within a com-
puting system, connecting suspicious events to their root causes.
Although existing provenance-based auditing techniques provide
value in forensic analysis, they assume that such analysis takes
place only retrospectively. Such post-hoc analysis is insufficient for
realtime security applications; moreover, even for forensic tasks,
prior provenance collection systems exhibited poor performance and
scalability, jeopardizing the timeliness of query responses.

We present CamQuery, which provides inline, realtime prove-
nance analysis, making it suitable for implementing security applica-
tions. CamQuery is a Linux Security Module that offers support for
both userspace and in-kernel execution of analysis applications. We
demonstrate the applicability of CamQuery to a variety of runtime
security applications including data loss prevention, intrusion detec-
tion, and regulatory compliance. In evaluation, we demonstrate that
CamQuery reduces the latency of realtime query mechanisms, while
imposing minimal overheads on system execution. CamQuery thus
enables the further deployment of provenance-based technologies to
address central challenges in computer security.
Preprint: the final version of this paper will appear in the pro-
ceedings of the 25th ACM Conference on Computer and Com-
munications Security in October 2018 (https://www.sigsac.org/ccs/
CCS2018/).

1 INTRODUCTION
Timely investigation of system intrusions remains a notoriously diffi-
cult challenge [65, 93, 95]. While security monitoring tools provide
an initial notification of foul play [13, 40, 85, 90, 94, 96], these
indicators are rarely sufficient in and of themselves. Instead, crafting
an appropriate response to a security incident often requires scour-
ing terabytes of audit logs to determine an adversary’s method of
entry, how their reach spread through the system, and their ultimate
mission objective. Such investigations not only require a human-
in-the-loop, but are excruciatingly slow, at times requiring months
of investigation and thousands of employee hours [55]. This de-
lay between an event’s occurrence and its diagnosis represents a
tremendous window of opportunity for attackers – as they continue
to exploit the system, defenders are still just getting their bearings.

Digital provenance (or provenance for short) refers to the data
being used in a variety of ways to address the challenges of forensic

*Part of this work was completed at Harvard University and at the University of
Cambridge.

audits. By parsing individual records into causal relationship graphs
that describe a system’s execution, provenance enables defenders to
leverage the full historical context of a system and to reason about
the interrelationships between different events and objects. With
provenance, forensic investigations can trace back a given security
indicator (e.g., a port scan) to the attacker’s point of entry (e.g., a
malicious email attachment) [52] and then trace forward from the
entry point to determine what other actions the attacker has taken on
the system.

Unfortunately, provenance-based auditing’s growing popularity
has uncovered significant limitations in its performance and scalabil-
ity. Early efforts to integrate provenance querying into production
systems indicated that, even for modestly small organisations (e.g.,
150 workstations), forensic queries can take on the order of hours
or days to complete [60]. In an actual attack scenario, where a
timely incident response could make the difference between vic-
tory and defeat, such delays are unacceptable. Moreover, to date,
provenance-aware systems have supported causal reasoning only as
an after-the-fact forensic activity [53]; this is unfortunate, because
provenance is also invaluable to a variety of runtime security tasks
such as access control [75, 76], integrity measurement [91], and
regulatory compliance [8, 15, 67, 80]. To date, the design of low
latency mechanisms for realtime provenance analysis has not been
given adequate consideration in the literature.

The goal of this work is to bridge the gap between runtime se-
curity monitoring and post-hoc forensic analysis. In support of this
goal, we consider methods for the deep integration of provenance
capture and analysis within the operating system. We introduce Cam-
Query, a framework that supports runtime analysis of provenance
and thus enables its practical use for a variety of security applica-
tions. CamQuery pairs a runtime kernel-layer reference monitor –
expanding and modifying CamFlow [78] – with a novel query mod-
ule mechanism that enables runtime provenance analysis and even
mediation of system events. CamQuery modules present a familiar
vertex-centric API, as popularized by modern graph processing sys-
tems such as GraphChi [56] and GraphX [39]. In these vertex-centric
platforms, full-graph analysis routines are expressed in terms of a
small program that runs in parallel on every vertex (node) in the
system. The graph-structured nature of provenance data makes this
model a good fit and permits use of a familiar API. While these ap-
plications run directly over the live provenance stream, provenance
can be simultaneously persisted to facilitate additional post-mortem
and/or forensic analysis.

To demonstrate the generality of CamQuery, we consider sev-
eral exemplar query applications in § 5. 1) a data loss prevention
scheme [18] popular in provenance-security based community; 2)

1

https://www.sigsac.org/ccs/CCS2018/
https://www.sigsac.org/ccs/CCS2018/

PREPRIN
T

PcktA

PcktB

Q1P1

P2

S1

S2

T1

T2

version

Flows
info.

Figure 1: A simple provenance DAG: two processes (P and Q)
exchange packets (PcktA and PcktB) through their respective
sockets (S and T).

a provenance based intrusion detection scheme; 3) a mechanism to
apply constraints on information flow; and 4) a provenance signa-
ture scheme. These case studies illustrate the rich space of design
possibilities that are enabled through runtime provenance analysis.
The source code for CamQuery, along with associated applications
and datasets, is available at http://camflow.org.

This paper makes the following contributions:
CamQuery: We present the design and implementation of CamQuery,
an analysis framework over a live provenance stream.
Whole-system provenance modelling: our work is the first to pro-
vide automated modelling of whole-system provenance through
static analysis of the Linux kernel source code.
Exemplar Applications: We demonstrate CamQuery’s efficacy in
security-related applications, such as preventing loss of sensitive
data or assuring log integrity.
Performance Evaluation: We rigorously evaluate the performance
of CamQuery to demonstrate its effectiveness in realistic operating
environments.
Availability: We released an open-source implementation of Cam-
Query. Based on the Linux Security Modules framework, CamQuery
is immediately deployable on millions of systems worldwide.

2 BACKGROUND
To provide context for the rest of the paper, we first introduce the
concept of whole-system provenance and then outline some short-
comings of existing systems.

2.1 Whole-System Provenance
The W3C [19] defines provenance as a directed acyclic graph (DAG)
where vertices represent entities (data), activities (transformations of
data) and agents (persons or organisations), and edges represent rela-
tionships between those elements. Fig. 1 presents a simple example.
In our context, entities are kernel objects, such as inodes, messages,
and network packets; activities are tasks; and agents are users and
groups.

In practice, it is impossible to represent a mutable process or file as
a single vertex while simultaneously ensuring that the graph remains
acyclic [21]. For example, in a naive representation, a process that
both reads and writes a file immediately creates a cycle, because the
process depends on the file (due to the read), and the file depends
on the process (due to the write). Cycles are problematic. Edges
in the provenance graph represent dependencies between the states

of different objects and express causal relationships. Therefore, an
object must depend only on the past (i.e., the state of an object cannot
depend on a future state). The most commonly used cycle avoidance
technique is to create multiple vertices per entity or activity [71],
each representing a version or state of the corresponding object. We
can see in Fig. 1 that new versions of the process P and sockets S
and T are created as information flows through these objects.

Using provenance graphs, we can detect and provide attribu-
tion for malicious behaviour [42] or actively prevent attacks us-
ing provenance-based access control [75]. However, using prove-
nance to prevent actions requires that provenance is “complete and
faithful to actual events” [81]. Missing events could sever connec-
tions, resulting in failure to reveal an important information flow;
errant provenance could falsely implicate a benign process. Pohly
et al. [81] demonstrated that it was possible to satisfy such require-
ments by building provenance capture around the reference monitor
concept [11] to mediate all events that should appear in the prove-
nance graph. They called this approach whole-system provenance,
which records events from system initialisation to shutdown.

2.2 Issues With Provenance Architectures
Existing provenance capture architectures were not designed with
realtime support for security applications in mind. Therefore, unsur-
prisingly, they have some fundamental limitations. The traditional
whole-system provenance capture stack, as first implemented in
PASSv1 [71], is built of the following five layers:
● the capture layer records system events;
● the collection layer transports provenance information to where
it may be used (e.g., using messaging middleware such as Kafka [2]
or Flume [1]);
● the storage layer transforms system events into a provenance
graph and persists it;
● the query layer extracts provenance through queries relevant for
a particular analysis;
● the analysis layer interprets the provenance in the context of an
application.

The use of whole-system provenance for runtime security applica-
tions is a relatively recent phenomenon. Bates et al. [18] demonstrate
provenance-based techniques to prevent loss of sensitive data in an
enterprise, while Han et al. [42] use provenance to detect errant or
malicious processes in a cloud environment. Both of their systems
were built on top of the conventional stacks described above. We
argue that such an approach is suboptimal for provenance-based
security applications, incurring latency penalties arising from the
need to store data before querying or analyzing it. Specifically, when
the goal of provenance analysis is mediation, delaying that anal-
ysis until after the data has been stored is impractical. Therefore,
while existing architectures may be appropriate for post-mortem
forensic investigations, they are not ideal for runtime security appli-
cations. The goal of our work is to enable such applications through
the introduction of vertex-centric, real-time, analysis of streaming
provenance.

2

http://camflow.org

PREPRIN
T

P1 G1 S1
w1 r5

v2

F1

P2 G2 Q2 S2

r3

Q1

w12w7

v6r4 v9

r10

r8

v11
Flows

info.
version

Figure 2: A demonstration of how path queries can be calcu-
lated through label propagation. The red (shaded) boxes in-
dicate those vertices (with versions in subscripts) to which
the “confidential” label is propagated. Confidential information
flows from file F to socket S, through process P, file G, and pro-
cess Q. ri, vi, and wi stand for read, version, and write, respec-
tively. The subscripts i represent event ordering.

3 RUNTIME ANALYSIS FRAMEWORK
In the previous section, we made the case for realtime analysis over
the provenance data stream. We now present the design of Cam-
Query, a framework for enabling such analysis to support runtime
provenance-based security applications.

3.1 Threat Model & Assumptions
We design CamQuery with consideration for an adversary that has
gained remote access to a host. Once the adversary has gained access
to the machine, they may engage in typical attacker behaviour such
as installing malware, escalating their privilege level, or engaging in
anti-forensic activities to hide evidence of their misdeeds. However,
we make the common assumption that the adversary does not have
physical access to the machine. Broadly, the goal of CamQuery is to
securely facilitate the provenance-based analysis of the adversary’s
actions in real time.
Trusted Computing Base (TCB): The TCB of CamQuery includes
a capture mechanism to generate a provenance graph from system
events and a query mechanism to process the provenance at runtime,
which we discuss at greater length in the remainder of this section.
Because any loaded kernel module is granted unrestricted access
to kernel memory, we assume that the entire kernel is distributed
and installed in a trusted state, which is a typical assumption in
kernel-layer security mechanisms. This assumption is made more
reasonable through the use of integrity measurement techniques such
as remote attestation and module signatures. Protecting the capture
mechanism from attackers who are able to alter kernel behaviour is
an important but orthogonal issue that we discuss in § 7.
Secure Provenance Store: If we wish to store provenance for post-
mortem forensic analysis, an adversary must not be able to corrupt it.
We assume the availability of secure provenance storage, which can
be achieved through a variety of known techniques. For example,
Hasan et al. [44] present a hash-chain-based method for protect-
ing provenance, while Bates et al. [18] secure provenance storage
and transmission through the use of type enforcement. By layering
these systems, it becomes possible to ensure full-stack trustworthy
provenance.
Checkpointing: We assume that CamQuery is deployed on a host
that does not leverage checkpointing. Checkpointing systems pose a

challenge for all provenance systems, because restoring a checkpoint
effectively moves a system backwards in time. As a demonstrative
example of this problem, consider a policy to prevent conflicts of
interest [22], e.g., a policy to prevent a user who has read the Coca-
Cola recipe from also reading the Pepsi recipe. If checkpointing
could be used to rollback the system to a state before the Coca-Cola
recipe was read, an adversary could easily violate the policy.

3.2 Motivating Example
To identify the operational requirements of CamQuery, we ground
our discussion in a prior example of provenance-based runtime
security applications. Bates et al. [18] present a loss prevention
scheme (LPS) that disallows confidential information to be sent to
an external IP address by issuing provenance ancestry queries on all
network transmissions. Because this application was implemented
on a conventional provenance capture stack, query latency rapidly
became the bottleneck – even when the user queried a relatively
small graph stored in an in-memory database, the responses took
upward of 21ms. Worse, because response latency grew linearly with
the size of the graph, one would expect this application to quickly
grow unusable under realistic conditions.

In contrast to ancestry queries, an alternative method of imple-
menting LPS would be to propagate security labels along the prove-
nance graph in realtime, as demonstrated in Fig. 2. Because each
object will be associated with the correct security label at the en-
forcement point, graph traversal is no longer necessary and an au-
thorization decision can be made in constant time. Note that while
this approach is akin to taint tracking, a provenance-based approach
allows for the expression of more complex queries than is possible
in a conventional taint-tracking system. With a provenance-based
approach, we can express subtle propagation constraints based on
properties of the graph (we demonstrate this in Example #1 in
§ 5). For example, Bates et al.’s LPS system propagates labels only
along certain edge types, which is not possible in a data-centric
taint-analysis system.

This approach to performing LPS can be generalized to a vari-
ety of other runtime security applications.1 For example, in access
control [75, 76], stream-based analysis can be used to express con-
straints on the properties of paths in the graph in a manner similar
to computation tree logic (e.g., all paths from an external socket
must not lead to disk until they have gone through an anti-virus
process) [28]. Such constraints can be evaluated by building primi-
tives above a value propagation algorithm. This allows, for example,
policies such as declassification and path disjointedness to be built
to enforce conflict-of-interest constraints [22]. With this in mind,
the goal of CamQuery is to facilitate runtime security applications
such as those considered above. In addition, as we show in § 5, the
framework is sufficiently rich to be used, for example, to generate
feature vectors in an intrusion detection setting.

3.3 Overview
Fig. 3 presents an overview of the CamQuery framework. CamQuery
captures system events using LSM and NetFilter hooks; those
events are transformed into a provenance graph within the capture
module (i.e., CamFlow). The capture module feeds graph elements

1We return to the subject of example provenance-based security applications in § 5.

3

PREPRIN
TProvenance Capture

RelayFS interface

Messaging MW

kernel

local

remote

Provenance records

LKM query

LKM query

user-space

Provenance Service User-space query

Remote Query

Provenance records

LSM hooks

NetFilter Hooks

Figure 3: An overview of the CamQuery framework.

(i.e., edges and vertices) to stacked CamQuery queries, which are ei-
ther built directly into the kernel or implemented as a loadable kernel
module. The kernel trasfers these graph elements to user space for 1)
consumption by user space queries; 2) recording for post-hoc analy-
sis; or 3) transmission to a remote machine. CamQuery embodies the
design goal of ensuing a standard query implementation mechanism,
independent of the three deployment options, discussed in § 4.

3.4 Provenance Monitor
Like prior kernel-layer provenance capture systems (e.g., LPM [18],
HiFi [81]), CamFlow introduces a provenance monitor in the kernel.
A provenance monitor is a provenance capture mechanism that sat-
isfies the reference monitor concept [10], possessing the properties
of complete mediation, tamperproofness, and verifiability. The rele-
vance of these guarantees in the context of provenance capture is that
they ensure that the provenance history is complete and accurate,
even in the presence of an active attacker. While past provenance
monitors generally only denied system accesses if they were unable
to generate a new record of the access (e.g., out of memory), Cam-
Query exposes a general mechanism for system mediation, allowing
security applications to authorize or deny new access based on the
provenance history of the concerned principals. Further details are
in § 4.2.

3.5 CamQuery API
CamQuery provides an API, inspired by graph-processing frame-
works such as GraphChi [56] and GraphX [39], enabling straight-
forward implementation of value propagation applications. A query
application consists of three functions:
(1) init: called upon query initiation to initialize the query’s vari-
ables;
(2) out_edge(v, e): called on every outgoing edge e of vertex v;
(3) in_edge(e, v): called on every incoming edge e of vertex v.

CamQuery invokes out_edge and in_edge in a manner guaran-
teeing that edges are processed according to the partial order implied
in paths in the graph and in topological order of the vertices.

1 # d e f i n e KERNEL_QUERY
2 # i n c l u d e " i n c l u d e / camquery . h "
3

4 s t a t i c l a b e l _ t c o n f i d e n t i a l ;
5

6 s t a t i c vo id i n i t (vo id) {
7 c o n f i d e n t i a l = g e t _ l a b e l (" c o n f i d e n t i a l ") ;
8 }
9

10 s t a t i c i n t o u t _ e d g e (un ion prov_msg * node , un ion prov_msg *
edge) {

11 s w i t c h (e d g e _ t y p e (edge)) {
12 c a s e RL_WRITE :
13 c a s e RL_READ:
14 c a s e RL_SND :
15 c a s e RL_RCV :
16 c a s e RL_VERSION :
17 c a s e RL_VERSION_PROCESS :
18 c a s e RL_CLONE :
19 i f (h a s _ l a b e l (node , c o n f i d e n t i a l))
20 a d d _ l a b e l (edge , c o n f i d e n t i a l) ;
21 }
22 r e t u r n 0 ;
23 }
24

25 s t a t i c i n t i n _ e d g e (un ion prov_msg * edge , un ion prov_msg *
node) {

26 i f (h a s _ l a b e l (edge , c o n f i d e n t i a l)) {
27 a d d _ l a b e l (node , c o n f i d e n t i a l) ;
28 i f (node_ type (node) == ENT_INODE_SOCKET)
29 r e t u r n PROVENANCE_RAISE_WARNING;
30 }
31 r e t u r n 0 ;
32 }
33

34 QUERY_NAME("My Example Query ") ;
35 QUERY_DESCRIPTION("An example que ry ") ;
36 QUERY_AUTHOR(" John Doe ") ;
37 QUERY_VERSION(" 0 . 1 ") ;
38 QUERY_LICSENSE("GPL") ;
39 r e g i s t e r _ q u e r y (i n i t , in_edge , o u t _ e d g e) ;

Listing 1: CamQuery query in C.

CamQuery calls the developer-defined out_edge and in_edge
functions with two parameters containing edge and node data struc-
tures. These structures expose attributes of the underlying kernel
objects they represent (e.g., inode, process, shared memory), allow-
ing the developer to referance or modify the objects associated with
the new system event. For example, the data structure representing
a process vertex contains information such as UID, GID, names-
paces, security context, system and user time, memory consumption,
etc.; in turn, the edge data structure contains information such as
offset, flags, mode, etc.. There are around two dozen vertex types,
e.g., path, network addresses, network packet, and shared memory
states (complete list online [7]). Similarly, there are over three dozen
different edge types covering families of system calls (complete list
online [6]). By specifying conditional constraints on the processing
of vertex/edge labels and values, developers can express specific,
complex queries.

In addition to the manipulation of the provenance objects and
existing kernel objects, CamQuery also provides functions that allow
developers to associate new labels or values with edges and vertices

4

PREPRIN
T

(e.g., add_label, add_ptr). Listing 1 shows a query that imple-
ments a loss-prevention scheme, which we describe at greater length
in § 5. Associating labels with graph elements allows developers to
easily implement, in a few lines of code, mechanisms such as taint
tracking, information flow control, or access control. Futhermore,
using data structure association it is possible to build more com-
plex graph analytics. For example, we show in § 5 how to associate
complex data structures with kernel objects and perform inlined
computation while traversing the graph. From that, we can compute,
at runtime, feature vectors used to perform intrusion detection.

CamQuery explicitly decouples the graph analysis implementation
from the underlying kernel infrastructure. The goal is to allow devel-
opment of new provenance modules with a minimum of engineering
effort. For example, traditional taint tracking or information flow con-
trol implementations require extensive engineering effort [54, 84],
while it is possible to implement these applications in CamQuery
using only a few dozen lines of code.

4 IMPLEMENTATION
We have implemented CamQuery for Linux 4.14.15 and validated its
use on Fedora 27. The work presented here is fully implemented,
used in multiple research projects, and is available online on GitHub
(https://github.com/CamFlow) under a GPL v2 license.

4.1 Capture Mechanism
We built CamQuery on top of the CamFlow provenance capture sys-
tem [3, 78, 79], our actively-maintained provenance monitor built
as a stackable Linux Security Module (LSM) [68]. Compared to
other existing capture techniques [33, 71], an LSM-based approach
ensures that CamFlow can observe and mediate all information flows
between processes and kernel objects [27, 31, 35, 50] (see § 4.2 for
further discussion).

Recording exact interactions between shared states (e.g., mmap
files, shmem etc.) is challenging. CamFlow records those interactions
by conservatively assuming that information always flows between
processes and shared states. We represent shared states as entities. In
the provenance graph, we add a relation from a process to the associ-
ated shared states when it receives information (e.g., reading a file),
and a relation from the associated shared states to the process when
it sends information (e.g., writing a file). We track shared memory
by parsing through the memory data structure (mm_struct) associ-
ated with each task. Additionally, we extended CamFlow to track
provenance at the thread level rather than the process level. Note that
CamFlow is the first whole-system provenance capture mechanism
to do so. Process memory is represented as a shared state between
threads in the provenance graph. We made these changes on top of
the original design of CamFlow to obtain more accurate provenance
and consequently more accurate results in security applications such
as intrusion backtracking [52]. However, conservatively assuming
the existence of information flows can lead to false positives. We
discuss this limitation and its potential solutions in § 7.

To support runtime analysis, further changes to CamFlow were
necessary. Existing provenance capture mechanisms, including past
versions of CamFlow, do not directly generate graph elements in the
kernel but instead generate logs of events that are processed in user
space as part of the storage layer [18, 33, 70, 71, 81]. We extended

CamFlow to generate the graph directly at the point of capture for
two reasons: 1) event ordering is easier, as opposed to previous
systems’ complex computations to reconstruct kernel states and
event orderings in user space; 2) more importantly, event ordering is
made a precondition of the graph analysis in kernel space.

We modified the capture mechanism to embed limited provenance
metadata alongside kernel objects to perform cycle avoidance in the
kernel [70, 71]. The cycle avoidance algorithm is entirely based
on local properties of a node (i.e., information about incoming and
outgoing information flows) and does not require maintenance of
any global state. Fundamentally, we create a new version any time an
object that sent information receives new information. This guideline
guarantees global acyclicity and avoids the creation of a new state
of an object that depends on the future.

Finally, we modified CamFlow to publish graph components (i.e.,
edges and vertices) as the system executes, while providing the
following two partial ordering properties: 1) all incoming edges to a
vertex are published before any outgoing ones; 2) edges and vertices
along a path are published in order. CamQuery processes edges and
vertices as they are published.

4.2 Ensuring Completeness and Accuracy
The design and implementation of CamQuery extend the guarantees
of past provenance monitors to support runtime provenance analysis.
The introduction of a query mechanism, which is described below,
can be used to further restrict system access. The standard mecha-
nisms used to secure the deployment of past provenance monitors
are applicable to our system. It naturally follows that CamQuery pos-
sesses the same security properties as do past provenance monitors,
Therefore, we omit a complete security analysis, and instead refer
interested readers to the work of Bates et al. [18] for a detailed
analysis of the security properties of provenance monitors.

Past provenance monitor implementations (e.g., Hi-Fi [81] and
LPM [18]) derive security properties from the guarantees provided
by the formal verification of LSM placement [27, 31, 50, 98], en-
suring that they capture all interactions between kernel objects. We
extend this prior assessment of provenance completeness and accu-
racy:
Completeness: We want to ensure that all flows of information
between kernel objects are properly recorded. The LSM frame-
work [68] was originally implemented to support Mandatory Access
Control (MAC) schemes but not information flow tracking. Recent
work by Georget et al. [34, 35] demonstrated, through static analysis
of the kernel code base, that the LSM framework is applicable to
information flow tracking, and that by adding a small number of
LSM hooks, it was possible to properly intercept all information
flows between kernel objects. Building on their work, we maintain
a patch [5] to the LSM framework that allows CamFlow, and by ex-
tension CamQuery, to provide stronger guarantees than do previous
whole-system provenance capture mechanisms.
Accuracy: We also provide accuracy guarantees for the recorded
provenance. We automatically analyse kernel source code to model
the provenance generated by any CamFlow-supported LSM hook (see

5

https://github.com/CamFlow

PREPRIN
T

path

process_memory

named_process

inode

namedtask

memory_read

version_entity

version_activity

xattr

setxattr

setxattr_inode

Figure 4: Provenance model for the inode_post_setxattr
hook.

task Xmemory W file Zxattr Y

memory read set xattr set xattr inode

Figure 5: A whole-system provenance subgraph representing a
valid instance of the model shown in Fig. 4.

Fig. 4 and Fig. 5 for an example of such a model). We then manu-
ally verify that all models meet our expectations.2 Finally, through
static analysis, we identify the LSM hooks associated with each sys-
tem call and generate the associated provenance model, which we
again manually verify. This process is embedded in our continuous
integration testing, with results automatically updated in our Git
repository [4] so that as the capture mechanism and the underlying
kernel evolve, we ensure the accuracy of our provenance capture.
We welcome meaningful scrutiny by third parties. We believe this
work is the first attempt towards formalisation of whole-system
provenance.

We continue work on automated and formal analysis of whole-
system provenance capture. Our future plans include combining
static analysis techniques with dynamic provenance model bench-
marking, as described in e.g., Chan et al. [23]. Although we currently
just assume a correct implementation of the ordering properties de-
scribed in § 4.1, our goal is to formalize these as well.

2Unfortunately, manual verification currently requires significant knowledge of the
Linux kernel.

4.3 CamQuery Query Configurations
Depending on the security and performance requirements of a de-
ployment, it may not always be practical to embed analysis applica-
tions in the kernel. For example, computationally expensive analysis
may affect system stability, or a proprietary analysis tool may need
to be run on a separate host from the capture point. Therefore, our
implementation supports a variety of different configuration options
that enable built-in kernel level analysis, loadable kernel module
analysis, local, user-level analysis, and remote user-level analysis
on a machine subscribed to the provenance stream. While all of the
deployment options run the same code, only the in-kernel implemen-
tations can prevent policy violations; like previous systems, the user
space and remote implementations can only detect violations after
the fact.
Kernel-Based Configurations: CamQuery implements in-kernel
queries using either Loadable Kernel Modules (LKM) or directly
linked objects. LKMs are dynamically loaded object files that run in
kernel space and have access to a subset of the kernel API. Directly
linked objects allow for shipping queries as part of the kernel.

Loading a query LKM invokes the register_query function,
which in turn invokes the init function. After registration, the kernel
invokes out_edge and in_edge whenever CamFlow records a new
event. Given the partial ordering property of our collection, a vertex
v will receive all values propagated through an in-edge before out_-
edge runs on its outgoing edges. If several queries are loaded, they
execute sequentially in their load order. These functions are actually
executed before the actions they describe, because they are executed
from LSM framework hooks designed to implement Mandatory
Access Control schemes. This enables CamQuery to prevent policy
violations rather than merely detecting them.

CamQuery maintains approximately 20 bytes of provenance state
for kernel objects, e.g., inode, cred. By associating provenance
with the kernel objects themselves, queries have access to the kernel
objects, granting them visibility into kernel states. Provenance for
long-lived kernel states, such as inodes, persists across reboots
through the use of extended attributes.

While the focus of this paper is enabling runtime query and
analysis, we observe that our framework creates opportunities at
other layers of the provenance stack as well. For example, we were
able to rewrite CamFlow’s optional selective capture mechanism [78]
using CamQuery to reflect the modular nature of this component.
This mechanism makes it possible to limit provenance captured to a
process, an object, or characteristics of the provenance graph, e.g.,
recording the actions of only those processes belonging to a specific
SELinux context e.g., to track the actions of an httpd server.
User space Configurations: The user space implementations of
CamQuery operate similarly to the kernel one. Rather than producing
an LKM, user-level queries produce a service that reads provenance
records from either relayfs or a messaging middleware. Queries
process the stream by placing records into a sorted in-memory edge
list and a persistent vertex map.

The CamQuery capture mechanism writes records to per-core re-
layfs files that are read in per-core batches, producing a collection
of partially-ordered edge lists that are not necessarily totally ordered.
To facilitate ordered processing of edges, a user space utility per-
forms a merge of the per-core lists as follows – for an out-edge e

6

PREPRIN
T

received at time t, all in-edges must have been received by t +T ,
where T is the QoS threshold. At regular time intervals, the query
processes all the edges satisfying t < now−T .

Rather than using timestamps to order edges, we use edge IDs;
the capture mechanism guarantees that edge ID ordering respects
the ordering properties described in § 4.1. In a similar manner, we
use provenance DAG causality relationships on network packets to
produce a partial order across machines. We then merge the per-core
edge lists and the network packets to produce a sorted edge list. The
query processes each edge sequentially by invoking the in_edge
and out_edge functions.

In addition to maintaining a list of edges, a user space query
maintains a map of vertices. We discard an edge after it is processed;
we discard a vertex either after processing an edge referencing a
new version of the vertex or after terminating events specific to the
object (e.g., a network packet will not be referenced after it has
been received or a process will not be referenced after it has been
terminated). We show in § 6 that, in practice, this represents a small
memory footprint.

Vertex garbage collection relies on the semantics of system events.
We therefore record events relating to the life cycle of long-lived
objects (e.g., representing in the graph process kernel data structures
being freed). These events are not necessarily pertinent to the track-
ing of information flows, but greatly help with garbage collection. If
the framework were to be applied to other types of provenance (e.g.,
Spark provenance [49]), the garbage collection algorithm would
require different domain knowledge.

Converting the code in Listing 1 to its user space equivalent is
trivial. We modify Line 1 to reflect the proper target, currently one of
MW_QUERY or RELAY_QUERY, indicating from where the service will
obtain data (a middleware-provided data stream or relayfs, respec-
tively). We add two more query attributes after line 39. QUERY_MSG
specifies the messaging middleware broker address and topic. Note
that although the kernel transmits information to relayfs before
executing the action corresponding to the query, as we do not control
when user processes are scheduled, we cannot guarantee that the
query service has an opportunity to process the provenance before
the corresponding action is taken. As such, the user level imple-
mentation, and by extension the distributed one, can guarantee only
violation detection, not prevention.
Discussion: The different guarantees available from different Cam-
Query configurations provide a rich set of trade-offs. While in-kernel
queries have access to the underlying kernel data structures and can
prevent events from occurring, they incur overhead on every sys-
tem call. § 6 illustrates this power/performance trade-off. On the
other hand, user space queries can perform runtime monitoring only,
raising alerts relatively quickly, but not quickly enough to prevent
events from occurring. However, such queries can build on existing
libraries to e.g., perform log analysis [78]. Additionally, the sched-
uler is responsible for scheduling user space queries, so it can more
easily adjust to system workload as shown in § 6.

5 EXAMPLE APPLICATIONS
We designed CamQuery to enable development of important security
and compliance applications, such as intrusion detection [42, 43],

A

C

D E

B

in = 0in = 0

in = 0 in = 2

in = 2

ID = {{2}, {0, 0}}

ID = {{2}, {0, 2}}

ID = {{0}}ID = {{0}}

ID = {{0}}

Figure 6: Calculating vertices’ structural identity (Depth=1).

Algorithm 1 Encoding Structure Identity (pseudo code).

1: function OUT_EDGE(vertex, edge)
2: Calculate DTW between its own ID and parent ID
3: Publish feature vector
4: Write to the edge its own ID
5: function IN_EDGE(edge, vertex)
6: Increment vertex in-degree counter
7: Read and save parent ID
8: Merge parent ID to build own ID

enforcement of software licenses, and compliance with data regu-
lation [77, 80]. During development, we implemented several al-
gorithms inspired by the literature to validate the suitability of the
framework. In this way, we ensured that we could implement mean-
ingful provenance analysis at runtime in widely different use cases.
We provide the examples below to illustrate the range of applications
that can be implemented with CamQuery.
Example #1: Data Loss Prevention. We first demonstrate how the
framework works with a relatively simple graph processing algo-
rithm implementing the loss prevention scheme of Bates et al. [18],
which prevents sensitive data from leaving a system (as discussed in
§ 3.2 and shown in Fig. 2).

Listing 1 shows the implementation of this application. The query
contains four main components: the init function (lines 6–8), the
out_edge function (lines 10–23), the in_edge function (lines 25–
32), and a set of query attribute statements (lines 34–39). Before
query registration, CamQuery executes the query attribute statements
to set the query’s properties exactly once. Then, during registration,
it calls the init function exactly once. Subsequently, CamQuery
invokes in_edge and out_edge for every edge in every active query.

The LPS scheme considers only certain flows of information as
meaningful in the context of the policy. Therefore, it propagates la-
bels (lines 19–20) only over the relevant flows (line 11–18), raising a
warning if the label ever reaches a socket (lines 26–29). In more com-
plex scenarios, developers can maintain global states within a query
or associate more complex data structures with edges or vertices.
Notably, we emphasize that Listing 1 contains all of the required
runtime logic for a label-based loss-prevention system, demonstrat-
ing the efficiency with which security applications can be expressed
in CamQuery. Outside of this application, our LPS scheme assumes
only: 1) a labeling state that tags sensitive information sources with
the confidential label, 2) that correctness requires handling explicit

7

PREPRIN
T

information flow only, not side channels, and 3) that sensitive in-
formation that reaches a system exit point (e.g., a socket) raises a
warning.

We can design more complex algorithms around programmable
label propagation. An example extension uses label propagation to
detect abnormal behaviour in a system. For example, one can easily
use CamQuery to track the origin of executables and sensitive data as
previously labelled. An indicative abnormal system behaviour might
be an executable that did not originate from a trusted repository
manipulating sensitive data. Once a potentially harmful pattern is
detected, techniques such as intrusion backtracking [52] can be
used to manually assess the situation. Other more sophisticated,
automated techniques are also available; we refer interested readers
to the work by Eshete et al. [30], which describes, in more depth, use
cases of provenance for label-based intrusion detection techniques.
Example #2: Intrusion Detection. Recent work explores how to
improve the efficacy of Intrusion Detection Systems (IDS) using
provenance [42]. With this work as inspiration, we show how to
implement anomaly detection using CamQuery. Provenance-based
intrusion detection is still a nascent field that has not yet been demon-
strated to be robust against a realistic active adversary; we use it
merely as a demonstration of CamQuery’s ability to allow for the
construction of complex feature vectors.

Our proposed approach to provenance-based intrusion detection
is based on unsupervised learning techniques. Our goal is to learn
how the system normally behaves, build a model of such behaviour,
and detect large deviations from the model. We generate provenance
graphs from the executions of our system in a controlled environment
under normal conditions. As in previous work [42, 43], we capture
provenance data during multiple runs of a cloud application under a
representative workload and build a model of normal behaviour.

Our example IDS uses a replicator neural network [46] (RNN,
also known as an autoencoder) to detect anomalies in a graph. An
RNN consists of an encoder and a decoder. The encoder performs
compression of the feature vector. The decoder then reconstructs
the input feature vector from the compressed vector. The objective
of training is to minimise the distance between the input of the
encoder and the output of the decoder. RNNs are often used for
outlier detection, as they often have difficulty reconstructing feature
vectors that diverge significantly from the training dataset. In our
case, we leverage this behavior to detect abnormal structures in the
provenance graph. Using CamQuery, we construct a feature vector
for every vertex, which is composed of the following three parts: 1)
vertex attributes (e.g., vertex type, security context, UID, namespace,
etc.); 2) changes of some attributes over time (e.g., UID, memory
or CPU usage for processes, etc.); and 3) the structural identity [83]
of the vertex, which represents the graph structure surrounding the
vertex.

Structural identity is a vectorisation of the graph neighborhood,
which represents the context in which a vertex exists, and is critical
for anomaly identification in outlier detection [48] and intrusion
detection [24]. We define a neighborhood as the n−ancestry of a
vertex, because descendants are unknown when we generate feature
vectors at runtime. The structural identity is built from ancestor
in-degrees. For each vertex, we maintain a list, L, of length n+ 1.
Let i be the 0-based index of each element of this list. L0 is the
in-degree of the vertex itself and Li, i > 0 is an in-degree sequence,

Vulnerability ID Detection rate False positive
MariaDB race condition exploit [36] 100% 0%
MySQL root privilege escalation [37] 50% 0%
Nagios core root privilege escalation [38] 90% 0%

Table 1: Preliminary results for our CamQuery IDS mecahnism.

Q1) path existence
∃p : A ⇒ B;
Q2) existence of a vertex on all paths between two vertices
∀p : A ⇒ B,∃v ∈ p,v , A AND v , B;
Q3) absence of a vertex on all paths between two vertices
∀p : A ⇒ B,v < p;
Q4) path disjointedness
∀v ∈ p,v < p′;
Q5) constraints on properties and types in a path
∀v ∈ p, if vtype = T then P(v), for a specified property P and type T.

Figure 7: CamQuery can be used to query a variety of informa-
tion flow properties. Here, we denote a path from vertex A to
vertex B as p : A ⇒ B.

a list consisting of the in-degrees of the ith generation ancestors.
Thus, a vertex with two parents, each of which has no ancestors,
is associated with the following list: {{2},{0,0}}; Fig. 6 shows a
concrete example.

Following Ribeiro et al. [83], we use Dynamic Time Warping
(DTW), a technique for calculating the similarity between two tem-
poral sequences [20], to calculate the distance between two in-degree
sequences. We then populate the feature vector of a vertex with each
of the DTW distances between a vertex and its ancestry. This set of
distance is the structural identity of the vertex.

CamQuery propagates in-degree sequences along each path of a
provenance graph. Using the out_edge function, each vertex passes
its in-degree sequence to its descendants. A child vertex receives se-
quences from all of its parent vertices and updates its own sequences
using the in_edge function. Algorithm 1 illustrates this. When the
out_edge function runs, the vertex contains enough information to
calculate its structural identity.

Table 1 shows some preliminary results of the intrusion detec-
tion scheme. We generate training data by executing unexploited
instances of each vulnerable application. We then test the IDS by
running a collection of normal and abnormal application executions.
While a full-fledged evaluation of our IDS mechanism is beyond the
scope of this paper, we measure the computational cost of feature
vector generation in § 6.
Example #3: Information Flow. CamQuery can execute single-pass
algorithms that rely on value propagation along paths in the graph.
For example, we implemented the simple primitives summarized in
Figure 7. Each implementation required just a few dozen lines of C
code. The data loss prevention scheme introduced in Example #1,
for example, tests for path existence (Q1).

Using these queries, CamQuery can aid in the enforcment or au-
diting of regulatory compliance. The Sarbanes-Oxley act (SOX)
applies to publicly held US corporations. The intent of the law is to
establish security controls and accountability of personnel to protect

8

PREPRIN
T

against data tampering to hide fraud. While the law itself does not
specifically address computing systems, every major corporation
today relies heavily on computers to process financial data and re-
port to the Securities and Exchange Commission (SEC). Specifically,
Sections 302 and 404 detail the required safeguards for data to en-
sure accuracy in financial reporting and required disclosures. To be
SOX compliant, an organization must carefully consider and have
policies for data creation, publishing, retention, access, distribution,
and lifecycle.

We consider here just three of the cases mentioned above. The
first control is data access (Section 302.4.B), which requires that
companies have controls in place to track accesses to data and ensure
that company officers are aware of all relevant data. The provenance
records kept as forensic evidence ensure full compliance with the re-
quirement to track data access. A report detailing all the data entities
appearing in the captured provenance could inform company officers
of the “relevant” data. Additionally, corporations could instantiate
policies to detect accesses that do not comply with the act.

The second control we consider is data creation and the ability
for a reporting officer to attest that the reported information is valid.
This requires that data must not be tampered with before reports
are created and filed with the SEC. We can write CamQuery policies
that restrict data access to only those users and activities involved
in report generation. There are multiple ways to express this, one of
which would be to label activities that are known to be acceptable,
then write policies that verify that all activities between data genera-
tion and the SEC filing are labelled as such. This is a query of type
Q5. An alternative is to label all unacceptable techniques, e.g., using
a text editor on the data, and check that no such activities appear in
the path between the data and SEC filing. This is a Q3 type of query.

Sarbanes-Oxley Title V deals with analyst conflicts of interest. It
requires financial analysts to disclose conflicts of interest, ensuring
that investors are not being misled by the biases of a financial ana-
lyst. These conflicts of interest can be avoided using separation of
concerns policies [22] that create information barriers preventing the
exchange of information that would produce a conflict of interest. As
a specific example, consider a financial analyst who is working with
one company (Company A) as part of a hostile takeover of another
company (Company B). Information concerning the takeover must
not be transmitted to the brokerage department that could use the
information to alter customer investments to increase profits for the
financial company. This is a Q4 type of query.
Example #4: Graph Integrity. To ensure the integrity of our prove-
nance graph, we implemented the directed acyclic graph signature
scheme proposed by Aldeco-Pérez et al. [9]. This technique is often
cited in the literature as a solution to provenance integrity.

The system generates a chain of hashes according to the graph
structure, as shown in Fig. 8. The capture mechanism then signs these
hashes. The analysis engine can re-calculate the hashes for a graph
to verify that they correspond to the signed value. An advantage of
this scheme is efficient verification, as it is not necessary to verify
the entire graph to verify vertex V .

We leverage a kernel keyring infrastructure for key management
(we took inspiration from eCryptfs [41]) and the cryptographic API
to perform related operations. The resulting solution is a heavy-
weight, in-kernel query in the evaluation in § 6. While it was easy to

V1

V2 V3 V4

V5 V6 V7 V8

E1

E2 E3

E4 E5

E6

E7

E8

h5 = H(V5)

h6 = H(V6) h7 = H(V7)

h8 = H(V8)

h2 = H(V2, E4, h5)

h1 = H(V1, E1, h2, E2, h3, E3, h4)

h4 = H(V4, E7, h7, E8, h8)

h3 = H(V3, E5, h6, E6, h7)

Figure 8: CamQuery can be used to assure integrity by generat-
ing a signed provenance graph.

implement graph signing in CamQuery, unsurprisingly, creating sig-
natures on every system call incurs significant overhead, even when
the cryptographic algorithm itself is relatively lightweight. Our mea-
surements suggest that the provenance graph signature scheme [9] is
impractical at scale and inadequate when whole-system provenance
capture is considered. It also serves as a cautionary tale: while it
is easy to implement a variety of applications using CamQuery, not
all such applications will exhibit acceptable performance. Creat-
ing provenance integrity schemes that are practical at scale is an
important open problem beyond the scope of this paper.

6 EXPERIMENTAL EVALUATION
We evaluate both the in-kernel and local user-space implementations
to determine how much overhead CamQuery introduces and how that
overhead is split between provenance capture and query support.

We use workloads derived from those found in the whole-system
provenance literature to provide meaningful points of comparison.
We run the benchmarks on a bare metal Fedora 27 machine, with
Linux kernel 4.14.15 and CamFlow 0.3.10 with an Intel i7-7700 2.8
GHz CPU and 32 GiB of RAM. Due to space constraints, we present
only a subset of our results. Instructions on obtaining our code and
reproducing all our results are available online (http://camflow.org)
following recommendations by Collberg et al. [26]. Throughout the
evaluation, we refer to the following setup:
vanilla: unmodified Linux 4.14.15 kernel;
capture: whole-system provenance capture;
nil: nil in-kernel query (in_edge and out_edge simply return zero);
lps: the loss prevention scheme in-kernel query described in § 5
Example #1;
sign: the provenance signature in-kernel query described in § 5
Example #4;
ids: the user-space query building feature vectors for the IDS de-
scribed in § 5 Example #2.

6.1 In-kernel Queries
Micro-benchmark: We used LMbench [66] to illustrate the impact
of the provenance capture and query on system call performance.
Table 2 and Fig. 9 present a subset of LMbench results. Our prove-
nance capture overhead is comparable to that reported for other
systems [18, 81]. This is as expected and provides a sanity check.

9

http://camflow.org

PREPRIN
T

stat write open/close file fork+exit pipe UNIX socket
0

2

4

6

tim
e x

tim
e v

an
ill

a

vanilla capture nil lps sign lpm

Figure 9: Normalised overhead of queries (LPM capture overhead as reported in [18] is given when available).

Test Type vanilla capture nil lps sign
Process tests, times in µs, smaller is better

stat 1.20 2.44 2.48 2.46 3.24
read 0.22 0.35 0.35 0.36 1.05
write 0.15 0.31 0.32 0.31 1.01
open/close file 2.04 3.21 3.24 3.28 4.00
fork+exit 87.6 85.5 86.6 85.7 89.8
fork+shell 862 860 866 855 861

Latencies in µs, smaller is better
pipe 3.47 3.92 4.05 3.88 4.91
UNIX socket 3.70 6.44 6.61 6.47 7.28

Table 2: LMbench measurements.

More interesting is that the addition of online querying introduces
relatively little overhead.

Indeed, execution time of a single system call is equal to Vs+nsC+
Q+msC, where Vs is the execution time of the system call s on a
vanilla kernel. ns is the number of edges in the graph corresponding
to the system call s (e.g., a socket send event contains at least
2 edges, one from the process to the socket, and the other from
the socket to the packet, and potentially edges corresponding to
kernel object versions). ms is the number of vertices in the graph
corresponding to the system call s. C is the cost of capture and Q
is the cost of the query. The relative overhead is higher when Vs is
small, as C and Q are independent of the underlying system call
execution time. The overhead of LPM [18] (and of other previous
provenance capture systems e.g., [71, 81]) is Vs +Cs where Cs is
the cost of capturing the event corresponding to s, as LPM records
system events rather than directly producing the graph structure (see
§ 4.1).

One of the advantages CamQuery provides over prior work is a
drastic reduction in the time between an attack and its detection.
Bates et al. [18] reported that it took their system 21ms to evaluate
the same policy and further noted that “these results are highly
dependent on the size of the graph. [Their] test graph, while large [6.5
million vertices, and 6.8 million edges], would inevitably be dwarfed
by the size of the provenance on long-lived systems” [18]. The
authors suggested that the performance could be further improved
by using deduplication [92] and pre-pruning techniques [14, 78].
However, they did not evaluate the performance impact of such
improvements. They did, however, report that graph size can be
reduced by up to 89% through pre-pruning techniques [14, 17]. Even
if we assume that the reduction produces a proportional improvement
in query time, the resulting 2.31ms per query is several orders of

0 50 100 150 200
0

10
20
30
40

0 50 100 150 200
0

50

100

O
ve

rh
ea

d
(i

n
%

)

0 50 100 150 200
0

500

1,000

Number of queries

Figure 10: Benchmark results (unpack in green/top, build in
red/middle and postmark in blue/bottom) as a function of the
number of active queries (we run 0 to 200 concurrent lps
queries). Note the difference in the y axes for the different
benchmarks.

magnitude larger than the overhead imposed by CamQuery for a
similar application (lps in Table 2).
Macro-benchmark: We contextualise the significance of the over-
head measured in the micro-benchmarks using the Phoronix test
suite [57]. We select benchmarks commonly used in the system
provenance literature. Consistent with the micro-benchmark results,
the macro-benchmark results (Table 3) show that provenance capture
introduces negligible overhead for the kernel build benchmark and
up to 15% overhead for Postmark. For reference, we also include
reported overheads for prior systems (PASS and LPM). As the Linux
kernel versions (2.6.x for the two mentioned systems vs 4.14.15 for
CamQuery) and the underlying hardware vary greatly across these
evaluations, the results simply provide context and suggest that Cam-
Query exhibits capture overhead comparable to prior systems. The
overhead is higher for benchmarks where the number of system
calls per unit of time is larger, as the overhead is only incurred on
interactions between a process and the system call interface.

10

PREPRIN
T

Test Type vanilla capture nil lps sign PASS LPM
Execution time in seconds, smaller is better

unpack 14.98 15.48 (3%) 15.63 (4%) 15.76 (5%) 16.68 (11%) NA NA
build 402 411 (2%) 416 (3%) 417 (3%) 448 (11%) 15.6% 2.7%

4kB to 1MB file, 10 subdirectories,
4k5 simultaneous transactions, 1M5 transactions

postmark 127 145 (14%) 144 (13%) 146 (15%) 226 (78%) 11.5% 7.5%
Table 3: Macro-benchmark results. PASS [70] and LPM [18] overhead as reported by the authors.

Query stacking: The prior results show that a single query intro-
duces acceptable overhead; next we assess the impact of an increas-
ing number of queries executing concurrently. We run the macro-
benchmarks from Table 3 with a varying number of active queries
and show the results in Fig. 10. On the positive side, overhead in-
creases linearly with the number of queries. On the negative side,
the Postmark overhead is particularly high, because it is a system-
intensive workload, and system calls trigger query evaluation. While
build and unpack spend approximately 10% and 18% of their time,
respectively, in the kernel, Postmark spends 85% of its time in the
kernel, making 253,000 system calls per second (over twice the rate
of the other benchmarks). It should be noted that production systems
running hundreds of queries is unrealistic. Further, we plan to ex-
plore the possibility of merging a set of queries into a single module,
with the goal of reducing the number of redundant operations. This
is a non-trivial task left for future work.

6.2 User space queries

Test Type vanilla in-kernel overhead userspace overhead
(over capture) (over capture)

Execution time in seconds, smaller is better
unpack 14.98 15.76 5% 15.91 6%
build 402 417 4% 427 6%

4kB to 1MB file, 10 subdirectories,
4k5 simultaneous transactions, 1M5 transactions

postmark 127 146 15% 147 15%
Table 4: Overhead of the lps query when compiling the Linux
kernel.

Next, we want to evaluate the performance impact of running
queries in user space. We compare the overhead of the vanilla and
lps in-kernel configurations from the previous section to that of the
lps user space configuration, where the query is run as a systemd
managed service running on the same machine as the workload,
reading provenance from relayfs. Table 4 shows the results for the
Linux kernel unpack and build benchmark and Postmark. Note that
the user space overhead is only minimally larger than the in-kernel
overhead.

We next investigate how user space queries impact system work-
load by running the nil query and the complex ids query. The
ids query generates feature vectors used by a machine learning
algorithm to perform intrusion detection. We run the kernel build
benchmark as our system workload, as it generates a relatively large
and complex graph (just over 25 million edges were processed by

0 100 200 300 400

0

5

10

id
s

qu
er

y
(%

cp
u

us
ag

e)

0 100 200 300 400

0

5

10

Seconds

ni
l

qu
er

y
(%

cp
u

us
ag

e)

Figure 11: Percentage of CPU usage per core (each colour rep-
resents one of the eight cores) used by the ids (top) and nil
(bottom) queries during a kernel compilation.

each query) when compared with the other two benchmarks. At regu-
lar intervals, we record the memory and per-core CPU consumption
of the two queries.

In contrast to kernel queries, the user space query runs at regular
intervals, processing all the newly arrived edges. Relayfs creates
a ring buffer mapped to a pseudofile per CPU core to transmit data
to the query service. The service runs one reader thread per core,

11

PREPRIN
T0 100 200 300 400

0

100

200

300

Seconds

M
eg

ab
yt

es

Figure 12: Memory used by the ids (blue/square) and nil (red/-
triangle) queries during a kernel compilation.

reading the data from its relayfs file and populating the edge list
and the vertex map. Another thread, the processing thread, sorts
the edge list and performs the query at regular time intervals. As
shown in Table 4, the core running the processing thread reaches
about 9% utilization for the ids query and 4% for the nil query,
while the other cores, which are running reader threads, have a CPU
utilization between 0% and 2%. The user space query competes with
other workloads on the system for CPU time, which may degrade
application performance. The multi-colored nature of the lines in
Table 4 shows that the processing thread moves among the cores.

Fig. 12 illustrates the memory consumption for the same queries.
The memory used by the user space query corresponds to the list
of edges and vertices (which includes the propagated values). The
memory usage stabilises, as vertices are garbage collected, to around
305 MB for the ids query and 125 MB for the nil query.

7 CHALLENGES & DISCUSSION
CamQuery has limitations and raises interesting questions that go
beyond the particular framework presented here.
Query Language: CamQuery uses a programmable graph process-
ing framework to express policies, rather than the seemingly more
user-friendly DSL approach. A DSL would undoubtedly need to
be designed with a particular application in mind (e.g., compliance
enforcement, access control, etc.) and it would be challenging to
make it amenable to queries such as the intrusion detection feature
vector computation. We believe that such languages are important
but are part of individual applications rather than a general frame-
work. We plan to explore the design and development of a DSL for
the provenance-based access-control scenario.

We note also that, concurrent to this study, Gao et al. [32] in-
troduced SAQL, a novel domain-specific query language to aid in
forensic investigation. SAQL is designed for post-mortem analy-
sis, and is thus both orthogonal and fully interoperable with our
methodology for runtime analysis (i.e., it can be used on CamQuery’s

persistent storage). We plan to explore how SAQL’s features could
be expressed in runtime analysis through our vertex-centric query
API.
Distributed Systems: A challenge for CamQuery is the ability to
reason about computations that occur in a distributed system. The
user space implementation can be extended to support these sys-
tems with relative ease, but doing so eliminates the possibility of
performing policy enforcement (see § 4.3). Supporting enforcement
in a distributed system requires that the query be partitioned into per-
machine segments combined into a kernel enforcement mechanism.
This partitioning necessitates the ability for the system to validate
that the other machines in the system will accurately enforce the
policy, i.e., they are high-integrity and have the necessary enforce-
ment mechanisms and provenance policies loaded. Once a machine
validates the integrity and suitability of a system, it must generate a
“proof” that the policy has been enforced.

The ability to perform policy enforcement would open up new
opportunities for CamQuery in distributed settings, but also new
challenges. For example, it enables CamQuery to function as the
building block for a secure distributed taint propagation system with
the potential to allow sophisticated logic using complex labels. To
implement such a system, however, two important considerations
must be taken into account, among others. First, we must ensure that
CamQuery is: minimally invasive; fully integrated into the existing
network stack; and is compatible with non-provenance-aware hosts,
especially if we hope to insert arbitrarily complex taint information
in network packets. Second, transmission must be authenticated and
tamperproof to e.g., man-in-the-middle attack. The latter might be
addressed by existing secure network protocols such as IPSec, but
technical challenges remain.
Trust: The ability for a system to prove statements about its in-
tegrity and processing state is best suited to trusted computing, e.g.,
trusted hardware and remote attestation. In the above distributed
system setting, there is a need for systems to generate “proofs” of
their current state. These proofs need to account for several system
characteristics, including 1) the current integrity state of the system
(hardware, firmware, software, etc.); 2) the currently loaded policies
and; 3) the current state of the data being processed. To prove the
current integrity state of the system and the currently loaded policies,
we can turn to techniques such as the Linux Integrity Measurement
Architecture (IMA) [86]. IMA measures the load-time integrity of
user space applications and files read by root. These measurements
are stored in the Trusted Platform Module (TPM) to support remote
attestation, i.e., generating an unforgeable proof of the measurements
stored in the TPM. The TPM is an inexpensive trusted hardware
component that provides a small amount of protected storage for
measurements and cryptographic keys. These measurements can be
signed by a key loaded into the TPM to support remote attestation,
proving the current integrity state of the loaded system. IMA will
measure the policies being loaded as an LKM as long as the policy
loading is done by root since the default policy measures all files
read by root. The remote attestation allows a remote verifier to de-
termine the current state of the kernel and user-space applications.
What is still needed are mechanisms that enable a remote verifier to
validate that the currently loaded policies are correctly enforced.
Storage: The issue of storing provenance is orthogonal to the topic
of this paper. However, we believe that the work presented here

12

PREPRIN
T

represents a paradigm shift in provenance systems. Whole-system
provenance implementations have been faced with the issue of build-
ing a back-end that can ingest high throughput [69], provide integrity
and non-repudiability [12], and handle large volumes of data while
providing low latency queries. Decoupling query performance from
storage overhead introduces myriad new architectures for such sys-
tems.
False positives from flow tracking: A well-understood limitation
of the proposed approach is the potential for false positives when
information flows are inferred. For example, if a task reads from
a file and writes to another, whole-system provenance capture sys-
tems conservatively assume that information was transferred, even
though it is not necessarily always the case. Conservatively inferring
information flow via shared memory is another major source of false
positives. Similar issues also arise in most system-level information
flow control or taint tracking systems. A potential solution to re-
duce the number of false inferences is to capture information flow
within applications, using techniques such as bitcode transforma-
tion [89], binary rewriting [25, 58], or static analysis [73]. Such
techniques are related to provenance layering [70], the capture of
internal application provenance alongside system level provenance
to improve the accuracy of provenance records. While the capture
of such provenance is a well-understood problem, its analysis and
scalability remain relatively unexplored.

8 RELATED WORK
We place this work both in the context of prior work on whole-system
provenance capture and more general information flow tracking
approaches, as techniques such as Information Flow Control and
Taint Tracking share many characteristics with provenance collection
systems.
Provenance Systems. There have been several provenance cap-
ture mechanisms implemented in the Linux kernel [18, 64, 71, 81].
LPM [18] uses provenance DAGs to enforce information flow con-
straints by querying graphs at sink points (e.g., at the network in-
terface). The authors verify that paths from a source A to a sink B
respect some well-defined properties expressed in the query. How-
ever, their approach requires performing database queries where
query latency is a function of the graph size, which increases linearly
over time. Therefore, it suffers from a lack of scalability, slowing
down over time as provenance accumulates. CamQuery addresses this
issue by executing queries at runtime over the provenance stream,
introducing bounded overhead independent from the graph size as
shown in § 6.
Provenance Reduction. Recently, the issue of provenance storage
and query performance has received considerable attention in the
literature. LogGC performs garbage collection on redundant events
that have no forensic value [59], while BEEP [58] and MPI [63] im-
prove post-mortem analysis by solving the problem of dependency
explosion. The PrioTracker [60] accelerates forensic queries by prior-
itizing the traversal of rare events in large provenance graphs. These
systems primarily exist at either the storage and query layer of the
provenance stack; in tackling the issue of log reduction through taint
tracking, the ProTracer employs a similar approach to CamQuery
by merging the capture and storage layers [64]. While this work
has led to dramatic improvement in the efficiency of provenance,

CamQuery achieves the orthogonal but interrelated goal of improving
provenance performance through deep integration of analysis rou-
tines with the underlying capture framework. An interesting avenue
for future research would be considering how the above reduction
techniques could be incorporated into the flattened provenance stack
that CamQuery envisions.
Provenance Applications. Provenance has been leveraged in the
service of a variety of security applications. Because provenance
can be used to generate a model of known-good executions of a
system, recent work has considered using provenance data to perform
anomaly detection [42, 45]. Han et al. [42] use machine learning
(ML) algorithms to detect outlier graph structures. Hassan et al. use a
graph grammar to build deterministic finite state automata and verify
that the graph can be parsed. Unlike the example shown in § 5, where
we generate data as the graph is being produced, they accumulate
provenance to generate “windows” that are then analysed. We have
shown in § 5 that it was possible to generate feature vectors for the
ML-based approach. It should also be possible to implement the
graph parsing stage (i.e., detection stage) of Bates et al.’s work using
the CamQuery framework.

Park et al. [76] formalise the notion of provenance-based access
control (PBAC) systems along three dimensions: 1) the type of data
used to make decisions (observed vs. disclosed provenance [21]);
2) object dependencies (information flow between objects) vs. user
dependencies (information flow between users); and 3) whether
policies are available to the system or learned through the traversal
of provenance graphs; CamQuery, like most PBAC systems in the
literature ([16, 88]), uses observed provenance, although it could
be augmented by disclosed provenance. Layering of provenance
systems [70] could enable such a capability, although we are not
aware of any layered PBAC enforcement model. We plan to explore
this approach in future work, with both application level [70] and
network level provenance [101].
Information Flow Control Systems. Previous work on informa-
tion flow control enforcement at the OS level, such as HiStar [97],
Flume [54] and Weir [74], uses labels to define security and integrity
contexts that constrain information flows between kernel objects.
Labels map to kernel objects, and a process requires decentralized
management capabilities to modify its labels. Point-to-point access
control decisions are made to evaluate the validity of an information
flow. Through transitivity, it is possible to express constraints on a
workflow (e.g., collected user information can only be shared with
third parties as an aggregate). SELinux [87] provides a similar infor-
mation flow control mechanism but without decentralized manage-
ment. A typical way of representing and thinking about information
flow in a system is through a directed graph. However, current object
labelling abstractions do not take advantage of this representation,
and it is difficult to reason about when defining policies. CamQuery
differs from these systems in that it allows the implementation of
such mechanisms directly on the graph abstraction.
Taint Tracking Systems. Techniques such as “coloring” [47] or
tainting [72] of data and resources have been proposed as a means
to detect data misuse. TaintDroid [29] implements such an approach
in the Android OS to detect applications disclosing personal infor-
mation to an unexpected third party (e.g., disclosing the owner’s
contact list to advertisers). CamQuery can be used to achieve similar
results as taint tracking systems but provides more control through

13

PREPRIN
T

its expressive query mechanism on how taints are propagated within
the system. Furthermore, the provenance records, kept as forensic
evidence, provide a rich resource that can be mined to identify,
understand, and explain the source of a disclosure.
Security Monitoring. In today’s enterprise environments, security
incidents occur when a primary indicator of compromise is triggered
from security monitoring software such as an anti-virus detection
alert or a blacklisted URL in the organisation’s network logs [61]. In
current security products, such indicators report only limited context
as to the circumstances under which the alert occurred, e.g., process
ID or packet header information, but do not report the historical chain
of events that led to the suspicious activity. Past work has attempted
to compensate for this lack of lineage through the fusion [13, 40] or
correlation [85, 90, 94, 96] of multiple indicators of the compromise.
However, it does not address the fundamental limitation that security
monitoring tools lack the ability to reason over the entire context of
a system execution. Thus, attack reconstruction has typically been
relegated to (offline) forensic analysis [51, 52, 59, 62–64, 82, 99,
100]. In contrast, CamQuery provides a mechanism to build runtime
security monitoring based on the entire history of system execution,
thus representing a significant step forward compared to the state-of-
the-art.

9 CONCLUSION
More than a decade ago, PASS [71] represented a paradigm shift in
how we think about provenance capture, moving from application-
specific capture, to a system-wide holistic mechanism. In this paper,
CamQuery rethinks how we envision provenance applications, sev-
ering the always-present, implicit link to database back-ends. We
make the distinction between runtime detection applications which
should be built above live streams of provenance data to identify
policy violations or anomalies, and forensic applications that run
post-mortem, leveraging database support to provide explanations.
By drastically rethinking the conventional provenance architecture,
we are able to reduce the time between an event (such as an attack,
data leakage, non-compliance with regulation, etc.) and its detection,
by several orders of magnitude, while simultaneously storing the
data for post-mortem forensic investigation. We continue to actively
develop CamFlow and CamQuery as we investigate provenance appli-
cations. The work is entirely open-source and we invite others to
build upon it.

AVAILABILITY
The work presented in this paper is open-source and available for
download at http://camflow.org/ under a GPL v2 license.

ACKNOWLEDGMENTS
This work was supported by the US National Science Foundation
under grants SSI-1450277 End-to-End Provenance, CNS-1750024
CAREER and CNS-1657534 Transparent Capture and Aggregation
of Secure Data Provenance for Smart Devices. Early versions of
CamFlow open source software were supported by UK Engineering
and Physical Sciences Research Council grant EP/K011510 Cloud-
SafetyNet.

REFERENCES
[1] Accessed 20th August 2018. Apache Flume. https://flume.apache.org/.
[2] Accessed 20th August 2018. Apache Kafka. https://kafka.apache.org/.
[3] Accessed 20th August 2018. CamFlow. http://camflow.org/.
[4] Accessed 20th August 2018. CamFlow automated reports. https://github.com/

CamFlow/camflow-dev/tree/master/docs.
[5] Accessed 20th August 2018. CamFlow information flow patch. https://github.

com/CamFlow/information-flow-patch.
[6] Accessed 20th August 2018. CamFlow relations list. https://github.com/

CamFlow/camflow-dev/blob/master/docs/RELATIONS.md.
[7] Accessed 20th August 2018. CamFlow vertices list. https://github.com/

CamFlow/camflow-dev/blob/master/docs/VERTICES.md.
[8] Rocio Aldeco-Perez and Luc Moreau. 2009. Information Accountability sup-

ported by a Provenance-based Compliance Framework. (December 2009).
http://eprints.soton.ac.uk/268305/ Event Dates: Monday 7th – Wednesday 9th
December 2009.

[9] Rocío Aldeco-Pérez and Luc Moreau. 2010. Securing provenance-based audits.
In International Provenance and Annotation Workshop. Springer, 148–164.

[10] J. P. Anderson. 1972. Computer Security Technology Planning Study. Technical
Report ESD-TR-73-51. ESD/AFSC, Hanscom AFB, Bedford, MA.

[11] James P Anderson. 1972. Computer Security Technology Planning Study. Volume
2. Technical Report. Anderson (James P) and Co Fort Washington PA.

[12] Nikilesh Balakrishnan, Lucian Carata, Thomas Bytheway, Ripduman Sohan, and
Andy Hopper. 2017. Non-repudiable disk I/O in untrusted kernels. In Asia-Pacific
Workshop on Systems. 24:1–24:6.

[13] Tim Bass. 2000. Intrusion Detection Systems and Multisensor Data Fusion.
Commun. ACM 43, 4 (2000), 99–105.

[14] Adam Bates, KR Butler, and Thomas Moyer. 2015. Take only what you need:
leveraging mandatory access control policy to reduce provenance storage costs.
In Workshop on Theory and Practice of Provenance (TaPP’15). USENIX, 7–7.

[15] Adam Bates, Ben Mood, Masoud Valafar, and Kevin Butler. 2013. Towards
Secure Provenance-based Access Control in Cloud Environments. In Proceedings
of the Third ACM Conference on Data and Application Security and Privacy
(CODASPY ’13). ACM, New York, NY, USA, 277–284. https://doi.org/10.1145/
2435349.2435389

[16] Adam Bates, Ben Mood, Masoud Valafar, and Kevin Butler. 2013. Towards
secure provenance-based access control in cloud environments. In Conference
on Data and Application Security and Privacy. ACM, 277–284.

[17] Adam Bates, Dave Jing Tian, Grant Hernandez, Thomas Moyer, Kevin RB Butler,
and Trent Jaeger. 2017. Taming the Costs of Trustworthy Provenance through
Policy Reduction. Transactions on Internet Technology 17, 4 (2017), 34.

[18] Adam M Bates, Dave Tian, Kevin RB Butler, and Thomas Moyer. 2015. Trust-
worthy Whole-System Provenance for the Linux Kernel. In USENIX Security.
319–334.

[19] Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen Cress-
well, Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim McCusker,
Simon Miles, James Myers, Satya Sahoo, Luc Moreau, and Paolo et al. Missier.
2013. Prov-DM: The PROV Data Model. Technical Report. World Wide Web
Consortium (W3C). https://www.w3.org/TR/prov-dm/.

[20] Donald J Berndt and James Clifford. 1994. Using dynamic time warping to find
patterns in time series. In KDD workshop, Vol. 10. Seattle, WA, 359–370.

[21] Uri Braun, Simson Garfinkel, David A Holland, Kiran-Kumar Muniswamy-
Reddy, and Margo I Seltzer. 2006. Issues in automatic provenance collection. In
Provenance and annotation of data. Springer, 171–183.

[22] David FC Brewer and Michael J Nash. 1989. The Chinese Wall security policy.
In Symposium on Security and Privacy. IEEE, 206–214.

[23] Sheung Chi Chan, Ashish Gehani, James Cheney, Ripduman Sohan, and Hassaan
Irshad. 2017. Expressiveness Benchmarking for System-Level Provenance. In
Workshop on the Theory and Practice of Provenance (TaPP’17). USENIX.

[24] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 15.

[25] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. 2006. Tainttrace: Efficient
flow tracing with dynamic binary rewriting. In Computers and Communications,
2006. ISCC’06. Proceedings. 11th IEEE Symposium on. IEEE, 749–754.

[26] Christian Collberg and Todd A Proebsting. 2016. Repeatability in computer
systems research. Commun. ACM 59, 3 (2016), 62–69.

[27] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. 2002. Runtime verification
of authorization hook placement for the Linux security modules framework.
In Conference on Computer and Communications Security (CCS’02). ACM,
225–234.

[28] E Allen Emerson and Joseph Y Halpern. 1982. Decision procedures and expres-
siveness in the temporal logic of branching time. In Symposium on Theory of
Computing. ACM, 169–180.

[29] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.
2014. TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer Systems (TOCS)

14

http://camflow.org/
https://flume.apache.org/
https://kafka.apache.org/
http://camflow.org/
https://github.com/CamFlow/camflow-dev/tree/master/docs
https://github.com/CamFlow/camflow-dev/tree/master/docs
https://github.com/CamFlow/information-flow-patch
https://github.com/CamFlow/information-flow-patch
https://github.com/CamFlow/camflow-dev/blob/master/docs/RELATIONS.md
https://github.com/CamFlow/camflow-dev/blob/master/docs/RELATIONS.md
https://github.com/CamFlow/camflow-dev/blob/master/docs/VERTICES.md
https://github.com/CamFlow/camflow-dev/blob/master/docs/VERTICES.md
http://eprints.soton.ac.uk/268305/
https://doi.org/10.1145/2435349.2435389
https://doi.org/10.1145/2435349.2435389
https://www.w3.org/TR/prov-dm/

PREPRIN
T

32, 2 (2014), 5.
[30] Birhanu Eshete, Rigel Gjomemo, Md Nahid Hossain, Sadegh Momeni, R Sekar,

Scott Stoller, VN Venkatakrishnan, and Junao Wang. 2016. Attack Analysis
Results for Adversarial Engagement 1 of the DARPA Transparent Computing
Program. arXiv preprint arXiv:1610.06936 (2016).

[31] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. 2005. Automatic placement of
authorization hooks in the Linux security modules framework. In Conference on
Computer and Communications Security (CCS’05). ACM, 330–339.

[32] Peng Gao, Xusheng Xiao, Din Li, Zhichun Li, Kangkook Jee, Zhenyu Wu,
Chung Whan Kim, Sanjeev R. Kulkarni, and Prateek Mittal. 2018. SAQL: A
Stream-based Query System for Real-Time Abnormal System Behavior Detec-
tion. In Proceedings of the 27th USENIX Security Symposium (Security’18).
Baltimore, MD, USA.

[33] Ashish Gehani and Dawood Tariq. 2012. SPADE: support for provenance
auditing in distributed environments. In International Middleware Conference.
ACM/IFIP/USENIX, 101–120.

[34] Laurent Georget, Mathieu Jaume, Guillaume Piolle, Frédéric Tronel, and Valérie
Viet Triem Tong. 2017. Information Flow Tracking for Linux Handling Concur-
rent System Calls and Shared Memory. In International Conference on Software
Engineering and Formal Methods. Springer, 1–16.

[35] Laurent Georget, Mathieu Jaume, Frédéric Tronel, Guillaume Piolle, and Valérie
Viet Triem Tong. 2017. Verifying the reliability of operating system-level in-
formation flow control systems in Linux. In International Workshop on Formal
Methods in Software Engineering (FormaliSE’17). IEEE/ACM, 10–16.

[36] Dawid Golunski. 2016. CVE-2016-6663: MySQL / MariaDB / PerconaDB
5.5.x/5.6.x/5.7.x - ’mysql’ System User Privilege Escalation / Race Condition.
https://www.exploit-db.com/exploits/40678/.

[37] Dawid Golunski. 2016. CVE-2016-6664: MySQL / MariaDB / PerconaDB
5.5.x/5.6.x/5.7.x - ’root’ System User Privilege Escalation. https://www.
exploit-db.com/exploits/40679/.

[38] Dawid Golunski. 2016. CVE-2016-9566: Nagios < 4.2.4 - Privilege Escalation.
https://www.exploit-db.com/exploits/40921/.

[39] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In Conference on Operating Systems Design and Imple-
mentation (OSDI’14), Vol. 14. 599–613.

[40] Guofei Gu, Alvaro A. Cárdenas, and Wenke Lee. 2008. Principled Reasoning and
Practical Applications of Alert Fusion in Intrusion Detection Systems. In Sympo-
sium on Information, Computer and Communications Security (ASIACCS’17).
ACM, 136–147.

[41] Michael Austin Halcrow. 2005. eCryptfs: An enterprise-class encrypted filesys-
tem for Linux. In Proceedings of the 2005 Linux Symposium, Vol. 1. 201–218.

[42] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and Margo
Seltzer. 2017. FRAPpuccino: Fault-detection through Runtime Analysis of
Provenance. In Workshop on Hot Topics in Cloud Computing (HotCloud’17).
USENIX.

[43] Xueyuan Han, Thomas Pasquier, and Margo Seltzer. 2018. Provenance-based
Intrusion Detection: Opportunities and Challenges. In Workshop on Theory and
Practice of Provenance (TaPP’18). ACM.

[44] Ragib Hasan, Radu Sion, and Marianne Winslett. 2009. The Case of the Fake
Picasso: Preventing History Forgery with Secure Provenance. In Conference on
File and Storage Technologies (FAST 09). USENIX.

[45] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas Moyer.
2018. Towards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs. In Network and Distributed Systems Security Symposium.
Internet Society.

[46] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. 2002.
Outlier detection using replicator neural networks. In International Conference
on Data Warehousing and Knowledge Discovery. Springer, 170–180.

[47] Kai Hwang and Deyi Li. 2010. Trusted cloud computing with secure resources
and data coloring. Internet Computing, IEEE 14, 5 (2010), 14–22.

[48] Dino Ienco, Ruggero G Pensa, and Rosa Meo. 2017. A semisupervised approach
to the detection and characterization of outliers in categorical data. IEEE Trans-
actions on Neural Networks and Learning Systems 28, 5 (2017), 1017–1029.

[49] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:
Data provenance support in Spark. Proceedings of the VLDB Endowment 9, 3
(2015), 216–227.

[50] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. 2004. Consistency analysis
of authorization hook placement in the Linux security modules framework. ACM
Transactions on Information and System Security (TISSEC) 7, 2 (2004), 175–205.

[51] Xuxian Jiang, A. Walters, Dongyan Xu, E.H. Spafford, F. Buchholz, and Yi-Min
Wang. 2006. Provenance-Aware Tracing of Worm Break-in and Contamina-
tions: A Process Coloring Approach. In International Conference on Distributed
Computing Systems (ICDCS’06). IEEE, 38–38.

[52] Samuel T King and Peter M Chen. 2003. Backtracking intrusions. ACM SIGOPS
Operating Systems Review 37, 5 (2003), 223–236.

[53] Ryan KL Ko, Markus Kirchberg, and Bu Sung Lee. 2011. From system-centric
to data-centric logging-accountability, trust & security in cloud computing. In
Defense Science Research Conference and Expo (DSR), 2011. IEEE, 1–4.

[54] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans
Kaashoek, Eddie Kohler, and Robert Morris. 2007. Information flow control for
standard OS abstractions. In ACM SIGOPS Operating Systems Review, Vol. 41.
ACM, 321–334.

[55] George Kurtz. 2010. Operation Aurora Hit Google, Others. Available at
http://securityinnovator.com/index.php?articleID=42948§ionID=25.

[56] Aapo Kyrola, Guy E Blelloch, Carlos Guestrin, et al. 2012. GraphChi: Large-
Scale Graph Computation on Just a PC. In Conference on Operating Systems
Design and Implementation (OSDI’12), Vol. 12. 31–46.

[57] Michael Larabel and Matthew Tippett. [n. d.]. Phoronix test suite. http:
//www.phoronix-test-suite.com.

[58] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition. In Proceedings of NDSS ’13.

[59] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: Garbage
Collecting Audit Log. In Conference on Computer and Communications Security
(CCS’13). ACM, 1005–1016.

[60] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysisfor
Enterprise Security. In Proceedings of the 25th ISOC Network and Distributed
System Security Symposium (NDSS’18). San Diego, CA, USA.

[61] John Lyle, Andrew P Martin, et al. 2010. Trusted Computing and Provenance:
Better Together. In Workshop on Theory and Practice of Provenance (TaPP’10).
USENIX.

[62] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu
Zhang, and Dongyan Xu. 2015. Accurate, Low Cost and Instrumentation-Free
Security Audit Logging for Windows. In Annual Computer Security Applications
Conference. ACM, 401–410.

[63] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. 2017. MPI: Multiple Perspective Attack Investigation with Semantic Aware
Execution Partitioning. In USENIX Security Symposium.

[64] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards
Practical Provenance Tracing by Alternating Between Logging and Tainting.
In Network and Distributed System Security Symposium (NDSS’16). Internet
Society.

[65] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot tracing: Dy-
namic causal monitoring for distributed systems. In Symposium on Operating
Systems Principles (SOSP’15). ACM, 378–393.

[66] Larry W McVoy, Carl Staelin, et al. 1996. lmbench: Portable Tools for Perfor-
mance Analysis. In USENIX Annual Technical Conference (ATC’96). 279–294.

[67] Luc Moreau and Mufajjul Ali. 2014. A provenance-based policy control frame-
work for cloud services. (May 2014). http://eprints.soton.ac.uk/364997/

[68] James Morris, Stephen Smalley, and Greg Kroah-Hartman. 2002. Linux security
modules: General security support for the Linux kernel. In USENIX Security
Symposium.

[69] Thomas Moyer and Vijay Gadepally. 2016. High-throughput ingest of data
provenance records into Accumulo. In High Performance Extreme Computing
Conference (HPEC’16). IEEE, 1–6.

[70] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A Holland, Peter Macko,
Diana L MacLean, Daniel W Margo, Margo I Seltzer, and Robin Smogor. 2009.
Layering in Provenance Systems. In USENIX Annual Technical Conference
(ATC’09).

[71] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I
Seltzer. 2006. Provenance-aware storage systems. In USENIX Annual Technical
Conference (ATC’06). 43–56.

[72] Divya Muthukumaran, Dan O’Keeffe, Christian Priebe, David Eyers, Brian
Shand, and Peter Pietzuch. 2015. FlowWatcher: Defending against Data Dis-
closure Vulnerabilities in Web Applications. In Conference on Computer and
Communications Security (CCS’15). ACM, 603–615.

[73] Andrew C Myers. 1999. JFlow: Practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 228–241.

[74] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016.
Practical DIFC enforcement on Android. In USENIX Security Symposium. 1119–
1136.

[75] Dang Nguyen, Jaehong Park, and Ravi Sandhu. 2013. A provenance-based access
control model for dynamic separation of duties. In International Conference on
Privacy, Security and Trust (PST’13). IEEE, 247–256.

[76] Jaehong Park, Dang Nguyen, and Ravi Sandhu. 2012. A provenance-based
access control model. In International Conference on Privacy, Security and Trust
(PST’13). IEEE, 137–144.

[77] Thomas Pasquier and David Eyers. 2016. Information Flow Audit for Trans-
parency and Compliance in the Handling of Personal Data. In Workshop on Legal
and Technical Issues in Cloud Computing and the Internet of Things (CLAW’16).
IEEE.

15

https://www.exploit-db.com/exploits/40678/
https://www.exploit-db.com/exploits/40679/
https://www.exploit-db.com/exploits/40679/
https://www.exploit-db.com/exploits/40921/
http://securityinnovator.com/index.php?articleID=42948§ionID=25
http://www. phoronix-test-suite. com
http://www. phoronix-test-suite. com
http://eprints.soton.ac.uk/364997/

PREPRIN
T

[78] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. 2017. Practical Whole-System Provenance
Capture. In Symposium on Cloud Computing (SoCC’17). ACM, ACM.

[79] Thomas Pasquier, Jatinder Singh, David Eyers, and Jean Bacon. 2015. Cam-
Flow: Managed Data-Sharing for Cloud Services. IEEE Transactions on Cloud
Computing (2015).

[80] Thomas Pasquier, Jatinder Singh, Julia Powles, David Eyers, Margo Seltzer, and
Jean Bacon. 2017. Data provenance to audit compliance with privacy policy in
the Internet of Things. Springer Personal and Ubiquitous Computing (2017).

[81] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. 2012.
Hi-Fi: collecting high-fidelity whole-system provenance. In Annual Computer
Security Applications Conference. ACM, 259–268.

[82] Phillip A. Porras, Martin W. Fong, and Alfonso Valdes. 2002. A Mission-Impact-
Based Approach to INFOSEC Alarm Correlation. In International Symposium
on Recent Advances in Intrusion Detection. Springer, 95–114.

[83] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017.
struc2vec: Learning Node Representations from Structural Identity. In Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM, 385–394.

[84] Indrajit Roy, Donald E Porter, Michael D Bond, Kathryn S McKinley, and Em-
mett Witchel. 2009. Laminar: Practical fine-grained decentralized information
flow control. In Conference on Programming Language Design and Implementa-
tion, Vol. 44. ACM.

[85] Alireza Sadighian, José M. Fernandez, Antoine Lemay, and Saman T Zargar. [n.
d.]. ONTIDS: A Highly Flexible Context-Aware and Ontology-Based Alert Cor-
relation Framework. In International Symposium on Foundations and Practice of
Security. Springer, 161–177.

[86] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn. 2004.
Design and Implementation of a TCG-based Integrity Measurement Architecture.
In USENIX Security Symposium, Vol. 13. 223–238.

[87] Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implementing
SELinux as a Linux security module. NAI Labs Report 1, 43 (2001), 139.

[88] Wai Kit Sze and R Sekar. 2015. Provenance-based Integrity Protection for
Windows. In Annual Computer Security Applications Conference. ACM, 211–
220.

[89] Dawood Tariq, Maisem Ali, and Ashish Gehani. 2012. Towards Automated
Collection of Application-Level Data Provenance.. In Workshop on Theory and
Practice of Provenance (TaPP’12).

[90] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer. 2004. Comprehensive ap-
proach to intrusion detection alert correlation. IEEE Transactions on Dependable

and Secure Computing 1, 3 (2004), 146–169.
[91] Frank Wang, Yuna Joung, and James Mickens. 2017. Cobweb: Practical Re-

mote Attestation Using Contextual Graphs. In Workshop on System Software for
Trusted Execution (SysTEX’17). ACM.

[92] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Yan Li, and Darrell DE
Long. 2013. Evaluation of a hybrid approach for efficient provenance storage.
ACM Transactions on Storage (TOS) 9, 4 (2013), 14.

[93] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Symposium on
Operating Systems Principles (SOSP’09). ACM, 117–132.

[94] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William Robert-
son, Ari Juels, and Engin Kirda. 2013. Beehive: Large-scale Log Analysis for
Detecting Suspicious Activity in Enterprise Networks. In Annual Computer
Security Applications Conference. ACM, 199–208.

[95] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2012.
Improving software diagnosability via log enhancement. ACM Transactions on
Computer Systems (TOCS) 30, 1 (2012), 4.

[96] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Conference on Networked Systems Design and Implementation
(NSDI’12). USENIX.

[97] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
2006. Making information flow explicit in HiStar. In Symposium on Operating
Systems Design and Implementation (OSDI’06). USENIX Association, 263–278.

[98] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. 2002. Using CQUAL for
Static Analysis of Authorization Hook Placement. In Proceedings of the 11th
USENIX Security Symposium.

[99] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. 2016.
Non-Intrusive Performance Profiling for Entire Software Stacks Based on the
Flow Reconstruction Principle. In Symposium on Operating Systems Design and
Implementation (OSDI’16). USENIX, 603–618.

[100] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding
Yuan, and Michael Stumm. 2014. Lprof: A Non-intrusive Request Flow Pro-
filer for Distributed Systems. In Conference on Operating Systems Design and
Implementation (OSDI’14). USENIX, Berkeley, CA, USA, 629–644.

[101] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo,
and Micah Sherr. 2011. Secure network provenance. In Symposium on Operating
Systems Principles (SOSP’11). ACM, 295–310.

16

	Abstract
	1 Introduction
	2 Background
	2.1 Whole-System Provenance
	2.2 Issues With Provenance Architectures

	3 Runtime analysis framework
	3.1 Threat Model & Assumptions
	3.2 Motivating Example
	3.3 Overview
	3.4 Provenance Monitor
	3.5 CamQuery API

	4 Implementation
	4.1 Capture Mechanism
	4.2 Ensuring Completeness and Accuracy
	4.3 CamQuery Query Configurations

	5 Example Applications
	6 Experimental Evaluation
	6.1 In-kernel Queries
	6.2 User space queries

	7 Challenges & discussion
	8 Related work
	9 Conclusion
	References

