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Abstract
SPIRE is the first incremental methodology for designing the inter-
mediate representations (IR) of compilers that target parallel pro-
gramming languages. Its core philosophy is to extend in a sys-
tematic manner the IRs found in the compilation frameworks of
sequential languages. Avoiding the often-used ad-hoc approach of
encoding all parallel constructs as “fake” function calls, SPIRE en-
ables the leveraging of current compilers for sequential languages
to address both control and data parallel constructs while preserv-
ing as much as possible the correctness of existing analyses for
sequential code. This upgrading process is formalized as an “inter-
mediate representation transformer” at the syntactic and semantic
levels. We show this can be done via the addition of only three
global parallel traits on top of any sequential IR, namely execu-
tion, synchronization and data distribution, precisely defined via a
formal semantics and rewriting rules.

We use the sequential intermediate representation of PIPS, a
comprehensive source-to-source compilation platform, as a use-
case for our approach. We introduce SPIRE parallel primitives, ex-
tend PIPS intermediate representation and show how example code
snippets from different programming languages can be represented
this way. A formal definition of SPIRE operational semantics is
provided, built on top of the one used for the sequential intermedi-
ate representation.

We assess the generality of our proposal by showing how dif-
ferent sequential IRs, namely the LLVM and WHIRL IRs of the
widely used LLVM and Open64-based OpenUH compilers, can
be systematically extended to handle parallelism using the SPIRE
methodology. Experimentally, SPIRE has been implemented in
PIPS, and the resulting parallel IR used successfully to perform
OpenMP and MPI parallel code generation as part of the PIPS par-
allelization process; it is also being implemented within the LLVM
compiler to validate its use in parsing explicitly-parallel Open-
SHMEM programs and enabling important optimizations for one-
sided communications using loop tiling and communication vec-
torization.

[Copyright notice will appear here once ’preprint’ option is removed.]
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pilers
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1. Introduction
The growing importance of parallel computers and the search for
an efficient programming model led, and is still leading, to a pro-
liferation of parallel programming languages such as, currently,
Cilk [37], Chapel [7], X10 [5], Habanero-Java [9], OpenMP [6],
CAF [33], OpenSHMEM [4] or MPI [3]. To adapt to such an evolu-
tion, compilers need to be equipped with internal intermediate rep-
resentations (IR) for parallel programs. The choice of a proper par-
allel IR (PIR) is of key importance, since the efficiency and power
of the transformations and optimizations these compilers can per-
form are closely related to the selection of a proper program repre-
sentation paradigm.

How are current compilers surviving without PIR? A com-
mon technique for introducing parallel constructs in sequential
IRs, adopted for instance by GCC, LLVM [27] and Open64-based
OpenUH [28], is to encode them as “fake” function calls; although
simple, this ad-hoc solution prevents high-level reasoning about
parallel languages while possibly introducing semantic inconsis-
tencies in existing sequential program analyses. Worse, users im-
plicitly rely upon the lack of interprocedural analyses within many
compilers to preserve the semantics of programs even in the pres-
ence of code optimizations. This approach clearly is not satisfac-
tory and, given the wide variety of existing programming models,
it would be better, from a software engineering point of view, to find
a parallel-specific IR, hopefully as general and simple as possible.

Existing proposals for program representation techniques al-
ready provide a basis for the exploitation of parallelism via the
encoding of control and/or data flow information. HPIR [38] or In-
sPIRe [20] are instances that operate at a high abstraction level,
while the hierarchical task, stream or program dependence graphs
(we survey these notions in Section 6) are better suited to graph-
based approaches. Yet many more existing compiler frameworks
use traditional representations for sequential-only programs [36],
and changing their internal data structures or adding specific built-
ins to deal with parallel constructs is a difficult and time-consuming
task. The general methodology introduced in this paper, which ex-
tends sequential intermediate representations into as structured as
possible parallel ones, strives to minimize the number of introduced
built-ins, which hinder program analyses, while allowing the ex-
pression of as much parallelism as possible.
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Why do we need Incremental Parallel Intermediate Repre-
sentations? The main practical motivation of our proposal is to pre-
serve the many years of development efforts invested in huge com-
piler platforms such as GCC (more than 7 million SLOC), LLVM
(more than 1 million SLOC), PIPS [19] (600,000 SLOC), OpenUH
(more than 3 million SLOC)... when upgrading their intermediate
representations to handle parallel languages. We provide an evo-
lutionary path for these large software developments via the intro-
duction of the Sequential to Parallel Intermediate Representation
Extension (SPIRE) methodology that we show that can be plugged
into existing compilers in a rather simple manner.

SPIRE is based on only three key concepts for extension: (1) the
parallel vs. sequential execution of groups of statements such as se-
quences, loops and general control-flow graphs, (2) the global syn-
chronization characteristics of statements and the specification of
finer grain synchronization via the notion of events and (3) the han-
dling of data distribution for different memory models. To describe
how this approach works, we use SPIRE to extend the intermediate
representation (IR) [11] of PIPS, a comprehensive source-to-source
compilation and optimization platform, and illustrate its generality
by applying SPIRE to LLVM, a widespread SSA-based compila-
tion infrastructure, and OpenUH, an Open64-based compiler for
parallel languages.

The design of SPIRE is the result of many trade-offs between
generality and precision, abstraction and low-level concerns. On
the one hand, and in particular when looking at source-to-source
optimizing compiler platforms adapted to multiple source lan-
guages, one needs to be able to represent as many of the existing
(and, hopefully, future) parallel constructs while minimizing the
number of new concepts introduced in the parallel IR. Yet, keeping
only a limited number of hardware-level notions in the IR, while
good enough to deal with all parallel constructs, could entail con-
voluted rewritings of some high-level parallel flows. We used an
extensive survey of key parallel languages, namely Cilk, Chapel,
X10, Habanero-Java, OpenMP and CAF and libraries, namely MPI
and OpenSHMEM, to guide our design of SPIRE, while showing
how to express their relevant parallel constructs within SPIRE.

The four main contributions of this paper are:

• SPIRE, a new, simple, parallel intermediate representation ex-
tension methodology for designing the parallel IRs used in com-
pilation frameworks;
• the small-step, operational semantics of the SPIRE transforma-

tion process, to formally define how its key parallel concepts
are added to existing systems;
• an evaluation of the generality of SPIRE, by showing how the

SPIRE methodology can be applied to the IRs of PIPS, LLVM
and OpenUH.
• the experimental application of SPIRE in PIPS, yielding a par-

allel IR that has been successfully used for both automatic
OpenMP and MPI task-level parallelization; a second imple-
mentation, into the LLVM compiler, is being performed to val-
idate SPIRE for the parsing of the parallel language OpenSH-
MEM and enabling important optimizations for one-sided com-
munications using loop tiling and communication vectorization.

After this introduction, we describe our use-case sequential IR,
part of the PIPS compilation framework, in Section 2. Our parallel
extension proposal, SPIRE, is introduced in Section 3, where we
also show how simple illustrative examples written in Habanero-
Java, CAF, Chapel and OpenSHMEM can be easily represented
within SPIRE. The formal operational semantics of SPIRE is given
in Section 4. Section 5 illustrates the generality of SPIRE by apply-
ing it on LLVM and WHIRL and discusses performance results. We

survey existing parallel IRs in Section 6. We discuss future work
and conclude in Section 7.

2. PIPS (Sequential) IR
Since this paper introduces SPIRE as an extension formalism for
existing intermediate representations, a sequential, base case IR is
needed to present our proposal. We chose the IR of PIPS, a source-
to-source compilation and optimization platform [19], to showcase
our approach, since it is readily available, well-documented and
encodes both control and data dependences. To help support our
claim of the generality of our approach, Section 5.1 illustrates two
other applications of SPIRE, on LLVM [27] and WHIRL [2].

We provide in Figure 1 a high-level description of a slightly
simplified subset of the intermediate representation of PIPS, the
part that is directly related to the parallel paradigms in SPIRE. It is
specified using Newgen [22], a Domain Specific Language for the
definition of set equations from which a dedicated API is automat-
ically generated to manipulate (creation, access, IO operations...)
data structures implementing these set elements.

Control flow in PIPS IR is represented via instructions, mem-
bers of the disjoint union (+) set instruction. An instruction
can be either a simple call or a compound instruction, i.e., a for
loop, a sequence or a control flow graph. A call instruction rep-
resents built-in or user-defined function calls; for instance, assign
statements are represented as calls to the “:=” function. The call
set is not defined here.

Instructions are included within statements, which are members
of a cartesian product set (x) that also incorporates the declarations
of local variables; thus a whole function is represented in PIPS IR
as a statement. In Newgen, a given set component can be distin-
guished using a prefix such as declarations here; all named
objects such as user variables or built-in functions in PIPS are mem-
bers of the entity set (the value set denotes constants while the
“*” symbol introduces Newgen list sets).

Compound instructions can be either (1) a loop instruction,
which includes an iteration index variable with its lower, upper
and increment expressions and a loop body (the expression
set definition is not provided here), (2) a sequence of statements,
encoded as a list, or (3) a control, for control flow graphs.

Programs that contain structured (continue, break and
return) and unstructured (goto) transfers of control are han-
dled in the PIPS intermediate representation via the control set.
A control instruction has one entry and one exit node; a node
in a graph is labeled with a statement and its lists of predecessor
and successor control nodes. Executing a control instruction
amounts to following the control flow induced by the graph suc-
cessor relationship, starting at the entry node, while executing the
node statements, until the exit node is reached.

instruction = call + forloop + sequence + control;
statement = instruction x declarations:entity*;
entity = name:string x type x storage;
storage = return:entity + ram + rom:unit;
forloop = index:entity x lower:expression x

upper:expression x step:expression x
body:statement;

sequence = statements:statement*;
control = entry:node x exit:node;
node = statement x predecessors:node* x

successors:node*;

Figure 1: Simplified Newgen definitions of the PIPS IR
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3. SPIRE, a Sequential to Parallel IR Extension
Methodology

In this section, we present in detail the SPIRE methodology, which
can be used to add parallel concepts to sequential IRs. After in-
troducing our design philosophy, we describe the application of
SPIRE on the PIPS IR. We illustrate these SPIRE-derived con-
structs with code excerpts from various parallel programming lan-
guages; our intent is not to provide here general rewriting tech-
niques from these to SPIRE (this would be way out of the scope of
this paper), but to provide hints on how such rewritings might pos-
sibly proceed. In Section 5.1, using LLVM and WHIRL, we show
that our approach is general enough to be adapted to other IRs.

3.1 Design Approach
SPIRE intends to be a practical methodology to extend existing
sequential IRs to adapt to parallelism issues, either to generate par-
allel code from sequential programs or address explicitly parallel
programming languages. Interestingly, the idea of seeing the is-
sue of parallelism as an extension over sequential concepts is in
sync with Dijkstra’s view that “parallelism or concurrency are op-
erational concepts that refer not to the program, but to its execu-
tion.” [14]. If one accepts such a vision, adding parallelism exten-
sions to existing IRs, as advocated by our approach with SPIRE,
can thus, at a fundamental level, not be seen as an afterthought but
as a consequence of the fundamental nature of parallelism.

Our design of SPIRE does not pretend to be minimalist but to be
as seamlessly as possible integrable within actual IRs, while able
to handle as many parallel programming constructs as possible.
To be successful, our design point must provide proper trade-offs
between generality, expressibility and conciseness of representa-
tion. We used an extensive survey of existing parallel languages to
guide us during this design process. Table 1, which extends the one
provided in [25], summarizes the main characteristics of eight re-
cent and widely used parallel languages and libraries: Chapel, X10,
Habanero-Java, OpenMP, Cilk, CAF, OpenSHMEM and MPI. The
main constructs used in each language to launch task and data par-
allel computations, perform synchronization, introduce atomic sec-
tions and transfer data in the various memory models are listed.
Our main finding from this analysis is that, to be able to deal with
parallel programming, one needs to add to a given sequential IR the
ability to specify (1) the parallel execution of groups of statements,
(2) the synchronization between statements and (3) data layout, i.e.,
how memory is modeled in a given parallel language.

The last line of Table 1 shows that SPIRE is based on the in-
troduction of only ten key notions, collected in three groups: (1)
execution, via the parallel and reduced constructs; (2) syn-
chronization, via the spawn, barrier, atomic and event con-
structs; and (3) data distribution, via send, recv and location
constructs.

3.2 Execution
The issue of parallel vs. sequential execution appears when dealing
with groups of statements, which in our case study correspond to
members of the forloop, sequence and control sets. To
apply SPIRE to PIPS sequential IR, an execution attribute is
added to these sequential set definitions:

forloop’ = forloop x execution;
sequence’ = sequence x execution;
control’ = control x execution;

The primed sets forloop’ (expressing data parallelism) and
sequence’ and control’ (implementing control parallelism)
represent SPIREd-up sets for the PIPS parallel IR. Of course, the

‘prime’ notation is used here for pedagogical purpose only; in prac-
tice, an execution field is added in the existing IR representation.
The definition of execution is straightforward:

execution = sequential:unit +
parallel:scheduling + reduced:unit;

scheduling = static:unit + dynamic:unit +
speculative:unit + default:unit

where unit denotes a set with one single element; this encodes
a simple enumeration of cases for execution. A parallel (resp.
reduced) execution attribute asks for all loop iterations, sequence
statements and control nodes of control statements to be all
launched in parallel, in an implicit flat fork/join (resp. left-to-right,
tree-like) fashion. SPIRE is an extendable framework; this can be
shown with the generalization of the definition of parallel do-
main in order to handle other features such as dynamic scheduling,
speculation, etc.

An example, in the left side of Figure 2, from Chapel, illustrates
its forall data parallelism construct and a reduce operation,
which can be encoded with a SPIRE parallel loop and a SPIRE
reduced loop.

forall i in 1..n do
t[i] = i;

var (sumVal) = + reduce
([i in 1..n] f(i),
1..n);

forloop(i,1,n,1,
t[i] = i,
parallel(default));

forloop(i,1,n,1,
sumVal = sumVal+f(i),
reduced)

Figure 2: SPIRE version of forall and reduce in Chapel

3.3 Synchronization
The issue of synchronization is a characteristic feature of the run-
time behavior of one statement with respect to other statements. In
parallel code, one usually distinguishes between two types of syn-
chronization: (1) collective synchronization between threads using
barriers, and (2) point-to-point synchronization between participat-
ing threads. We suggest this can be done in two parts.

3.3.1 Collective Synchronization
SPIRE extends sequential intermediate representations in a straight-
forward way by adding a synchronization attribute to the specifica-
tion of statements:

statement’ = statement x synchronization;

Coordination by synchronization in parallel programs is often man-
aged via coding patterns such as barriers, used for instance when a
code fragment contains many phases of parallel execution where
each phase should wait for the precedent ones to proceed. We de-
fine the synchronization set via high-level coordination char-
acteristics useful for optimization purposes:

synchronization = none:unit + spawn:entity +
barrier:unit + atomic:reference;

Assume S is the statement with a synchronization attribute:

• none specifies the default behavior, i.e., independent with re-
spect to other statements, for S;
• spawn induces the creation of an asynchronous task S, while

the value of the corresponding entity is the user-chosen num-
ber of the thread that executes S. By convention, we say that
spawn creates processes in the case of the message-passing
and PGAS memory models, and threads, in case of the shared
memory model;
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Execution Synchronization Memory
Language/ Parallelism Reduction Task Task Atomic Point-to- Model Data

Library creation join section point distribution
Chapel forall reduce begin on sync sync sync PGAS implicit
(Cray) coforall atomic (Locales)

cobegin
X10 foreach reduce async at finish atomic next PGAS implicit

(IBM) future force (Places)
Habanero- foreach accumulator async at finish atomic next PGAS implicit
Java (Rice) future isolated get (Places)
OpenMP omp for omp omp task omp taskwait omp critical — Shared private,

omp sections reduction omp section omp barrier omp atomic shared...
Cilk — — spawn sync cilk lock — Shared —

(MIT)
CAF implicit co reduce — sync all critical event post PGAS []

(Cray) sync images end critical event wait (Images)
OpenSHMEM start pes shmem sum — shmem barrier all shmem set lock shmem wait PGAS shmem put
(UH & ORNL) shmem max ... shmem barrier shmem clear lock shmem wait until (PEs) shmem get

MPI MPI Init MPI Reduce MPI Spawn MPI Finalize — — Distributed MPI Send
MPI Barrier MPI Recv...

signal Shared, send, recv,
SPIRE parallel reduced spawn barrier atomic wait Distributed, location

PGAS

Table 1: Mapping of SPIRE to parallel languages constructs (implicit means the compiler will insert launch code)

• barrier specifies that all the child threads spawned by the
execution of S are suspended before exiting until they are all
finished;
• atomic predicates the execution of S to the acquisition of a

lock to ensure exclusive access; at any given time, S can be ex-
ecuted by only one thread. Locks are logical memory addresses,
represented here by a member of the PIPS IR reference set
(not specified in this paper).

3.3.2 Event API: Point-to-Point Synchronization

Handling point-to-point synchronization using decorations on ab-
stract syntax trees is too constraining when one has to deal with a
varying set of threads that may belong to different parallel parent
nodes. Thus, SPIRE deals with this last class of coordination by
introducing new values, of type event. SPIRE extends the under-
lying type system of the existing sequential IRs with a new basic
type, namely event:

type’ = type + event:unit ;

Values of type event are counters, in a manner reminiscent of
semaphores [13]. The programming interface for events is defined
by the following functions:

• event newEvent(int i) is the creation function of events,
initialized with the integer i that specifies how many threads
can execute wait on this event without being blocked;
• void signal(event e) increments by one the event

value of e;
• void wait(event e) blocks the thread that calls it until

the value of e is strictly greater than 0. When the thread is
released, this value is decremented by one.

Note that the void return type will be replaced by int in practice,
to enable the handling of error values, and that a free function may
be needed in some languages.

In a first example of possible use of this event API, the construct
future used in X10 can be seen as the spawning of the computa-
tion of foo(). The end result is obtained via the call to the force
method; such a mechanism can be easily implemented in SPIRE us-

ing an event attached to the running task; it is signaled when the
task is completed and waited by the force method.

A second example, taken from Habanero-Java, illustrates how
point-to-point synchronization primitives such as phasers and the
next statement can be dealt with using the Event API (see Fig-
ure 3, left). The async phased keyword can be replaced by
spawn. In this example, the next statement is equivalent to the
following sequence:

signal(ph); wait(ph); signal(ph);

where the event ph is initialized to newEvent (-(n-1)). The
second signal is used to resume the suspended tasks in a chain-
like fashion.

finish{
phaser ph = new phaser();
for(j = 1;j <= n;j++){
async phased(

ph<SIG_WAIT>){
S;
next;
S′;
}
}
}

barrier(
ph = newEvent(-(n-1));
j = 1;
loop(j <= n,
spawn(j,

S;
signal(ph);
wait(ph);
signal(ph);
S’);

j = j+1))

Figure 3: SPIRE variant of a phaser in Habanero-Java

Even though our proposal based on events is able to repre-
sent high-level point-to-point synchronization constructs such as
phasers, its admittedly low level of abstraction makes dealing with
source-to-source optimization algorithms difficult. The phaser ex-
ample illustrates the kind of trade-offs we had to make when adding
as much parallelism as possible to sequential IRs without introduc-
ing too many specific parallel-related constructs via SPIRE.

3.4 Data Distribution
The ability of handling the various memory models used by par-
allel languages is an important issue when designing a generic in-
termediate representation. One currently considers there are three
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main parallel memory models: shared, message passing and, more
recently, PGAS. The Partitioned Global Address Space memory
model, which appears in languages such as CAF, Habanero-Java,
X10 and Chapel, introduces various new notions such as image,
place or locale to label portions of a logically-shared memory
that processes may access, in addition to complex APIs for dis-
tributing data over these portions.

3.4.1 Memory Information
SPIRE is able to handle all three memory models using specific
memory information, namely private, shared and pgas. Each pro-
cess has its own private memory; the address of a shared variable
refers, within each thread, to the same physical memory location;
pgas memory is distributed evenly among different processes. In
this last case, e.g., in OpenSHMEM and CAF, all processes have
their own view of pgas memory.

To handle memory information, SPIRE extends the definition of
the storage feature of entities by specifying where a given entity is
stored, i.e., within private, shared or pgas memory. This is done by
adding a location domain to the storage domain of PIPS IR:

storage’ = storage x location;
location = private:unit + shared:unit +

pgas:unit;

Since SPIRE is designed to extend existing IRs for sequential
languages, it can be straightforwardly seen as using, by default,
a shared memory model when parallel constructs are added.

We show below two examples related to pgas memory. First,
in CAF, coarrays, which are extension of Fortran arrays, are pgas
arrays. A coarray has codimensions, which specify the image to
which it belongs. In the following example, the dest coarray of
20 elements will be visible and accessible remotely by all images.

integer(len=20) :: dest[*]

Our second example shows an OpenSHMEM statement allocating
dest, which is also remotely accessible by all PEs (Processing
Elements).

dest = (int*)shmalloc(sizeof(int)*20);

3.4.2 Two-Sided Memory Access
In order to take into account the explicit distribution required by the
message passing memory model used in parallel languages such as
MPI, SPIRE introduces the send and recv blocking functions for
implementing communication between processes:

• void send(int dest, entity buf) transfers the value
of Entity buf to the process numbered dest;
• void recv(int source, entity buf) receives in
buf the value sent by Process source.

Non-blocking communications can be easily implemented in
SPIRE using the above primitives within spawned statements.
Also, broadcast collective communications, such as defined in MPI,
can be seen as wrappers around send and recv operations. When
the master process and receiver processes want to perform a broad-
cast function, then, if this process is the master, its broadcast oper-
ation is equivalent to a loop over receivers, with a call to send as
body; otherwise (receiver), the broadcast is a recv function. Note
that after optimization phases of the compiler, we generate back, at
the backend phase, runtime library calls in order to take advantage
of support for optimized lower level communication functions.

3.4.3 One-Sided Memory Access
In one-sided communications, only the source or destination pro-
cess participates in asynchronous memory accesses, decoupling
thus data transfer and synchronization. In order to take into account

the explicit distribution required by the PGAS memory model used
in parallel languages such as CAF or libraries such as OpenSH-
MEM, SPIRE extends the traditional semantics of memory ac-
cesses and assignments. Since the information needed for speci-
fying remote accesses is already present in the location domain
of entities, there is no need to gather again this information (see
Section 4.2). Put operations copy data from a local source memory
area to a memory area of the remote target (get are dual operations).
The following function call in OpenSHMEM:

shmem_int_put(dest, src, 20, pe);

can be represented in SPIRE by:

for(i=1,20)
dest{pe}[i]= src[i]

where location of dest is pgas. The entity domain is ex-
tended to handle expressions in the left hand side of assignments.
Note that at code generation phase (after optimizations), this loop
of assignments will ultimately be transformed back to the runtime
library call shmem int put(dest, src, 20, pe).

4. SPIRE Operational Semantics
The purpose of the formal definition described in this section is to
provide a solid foundation for program analyses and transforma-
tions. It is a systematic way to specify our IR extension mecha-
nism, something seldom present in IR definitions. It also illustrates
how SPIRE leverages the syntactic and semantic level of sequen-
tial constructs to parallel ones, preserving the sequential traits and,
thus, related analyses.

Fundamentally, at the syntactic and semantic levels, SPIRE is a
methodology for expressing representation transformers, mapping
the definition of a sequential language IR to a parallel version. We
define the operational semantics of SPIRE in a two-step fashion: we
introduce (1) a minimal core parallel language that we use to model
fundamental SPIRE concepts and for which we provide a small-
step operational semantics and (2) rewriting rules that translate the
more complex constructs of SPIRE in this core language.

4.1 Sequential Core Language
Illustrating the transformations induced by SPIRE requires the def-
inition of a sequential IR basis, as was done above, via PIPS IR.
Since we focus here on the fundamentals, we use as core language
a typical, minimal sequential language of statements S in Stmt,
based on identifiers I in Ide and expressions E in Exp. Sequential
statements are: (1) nop for no operation, (2) I=E for an assign-
ment of E to I, (3) S1;S2 for a sequence and (4) loop(E,S) for
a while loop.

At the semantic level, a statement in Stmt is a very simple
memory transformer. A memory m ∈ Memory is a mapping
in Ide → V alue, where values v ∈ V alue = N + Bool can
either be integers n ∈ N or booleans b ∈ Bool. The sequential
operational semantics for Stmt, expressed as transition rules over
configurations κ ∈ Configuration = Memory × Stmt, is
given in Figure 4; we assume that the program is syntax- and type-
correct. A transition (m,S) → (m′,S’) means that executing
the statement S in a memory m yields a new memory m′ and
a new statement S’; we posit that the “→” relation is transitive.
Evaluation rules (see the case for assignments in Figure 4) encode
typical small-step operational semantics for the sequential part of
the core language. We assume that ξ ∈ Exp → Memory →
V alue is the usual function for expression evaluation.

4.2 SPIRE as a Language Transformer
Syntax At the syntactic level, SPIRE specifies how a grammar
for a sequential language such as Stmt is transformed, i.e., ex-
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v = ξ(E)m

(m,I = E)→ (m[I→ v],nop)
(1)

Figure 4: Stmt sequential transition rules (excerpt)

tended, with synchronized parallel statements. The grammar of
SPIRE(Stmt) in Figure 5 adds to the sequential statements
of Stmt (from now on, synchronized using the default none)
new parallel statements: a task creation spawn, a termination
barrier and two wait and signal operations on events or
send and recv operations for communication. Synchroniza-
tion atomic is defined via rewriting (see below). The statement
barrier wait(n), added here for specifying the multiple-step
behavior of the barrier statement in the semantics, is not acces-
sible to the programmer. Figure 3 provides the SPIRE representa-
tion of a program example.

Note that the grammar of Ide is also extended to SPIRE(Ide)
in Figure 5 to add the possibility of performing a memory access
to the pgas identifier I located on Process E, noted I{E} . This
extension of Ide naturally carries over to Exp.

S ∈ SPIRE(Stmt)::=
nop | I=E | S1;S2 | loop(E,S) |
spawn(I,S) |
barrier(S) | barrier_wait(n) |
wait(I) | signal(I) |
send(I,I′) | recv(I,I′)

I ∈ SPIRE(Ide)::= I | I{E}

Figure 5: SPIRE(Stmt) and SPIRE(Ide) syntaxes

Semantic Domains As SPIRE extends grammars, it also ex-
tends semantics. The set of values manipulated by SPIRE(Stmt)
statements extends the sequential V alue domain with events e ∈
Event = N , that encode events current values; we posit that
ξ(newEvent(E))m = ξ(E)m.

Parallelism is managed in SPIRE via processes (or threads).
We introduce control state functions π ∈ State = Proc →
Configuration×Procs to keep track of the whole computation,
mapping each process i ∈ Proc = N to its current configuration
(i.e., the statement it executes and its own view of memory) and the
set c ∈ Procs = P(Proc) of the process children it has spawned
during its execution.

In the following, we note dom(π) = {i ∈ Proc/π(i) is
defined} the set of currently running processes, and π[i → (κ, c)]
the state π extended at i with (κ, c). A process is said to be finished
if and only if all its children processes, in c, are also finished, i.e.,
when only nop is left to execute: finished(π, c) is thus equal to
∀i ∈ c, π(i) = ((mi,nop), ci) ∧ finished(π, ci).

Memory Models The memory model for sequential languages
is that of a unique address space for identifiers. In our parallel
extension, the memory configuration for a given process or thread
may vary according to whether a variable is shared or pgas, or
whether message passing is used. We suggest to adopt the same
semantic rules, detailed in Figure 6, to deal with all models, but
introduce two additional notions to handle the required distinctions
between them. First, some constructs will make more sense in one
model than an other, i.e., send/receive in message passing, events
in shared address spaces and pgas variables in PGAS. Second, we
impose constraints on the control states π used in the operational
semantics. Namely, for all threads (or processes) i and i′ with
π(i) = ((m,S), c) and π(i′) = ((m′,S′), c′), we impose that,

for all identifiers I whose storage includes a location that has
value shared, one must have m(I) = m′(I). No such constraint
is needed for private or pgas locations.

Semantic Rules At the semantic level, SPIRE is a transition
system transformer, mapping rules such as the ones in Figure 4
to parallel, synchronized transition rules in Figure 6. A transition
(π[i → ((m,S), c)]) ⇒ (π′[i → ((m′,S’), c′)]) means that
the i-th process, when executing S in a memory m, yields a new
memory m′ and a new control state π′[i → ((m′,S’), c′)] in
which this process now will execute S′; additional children pro-
cesses may have been created in c′ compared to c. We posit that the
“⇒” relation is transitive. Rule 2 is a key rule to specify SPIRE
transformer behavior, providing a bridge between the sequential
and the SPIRE-extended parallel semantics; all processes can non-
deterministically proceed along their sequential semantics “→”,
leading to valid evaluation steps along the parallel semantics “⇒”.
The interleaving between parallel processes in SPIRE(Stmt) is
a consequence of (1) the non-deterministic choice of the value of
i within dom(π) when selecting the transition to perform and (2)
the number of steps executed by the sequential semantics. Note that
one might want to add even more non-determinism in our seman-
tics. Indeed, Rule 1 is atomic: loading the variables in E and the
store operation on I are performed in one sequential step. For lack
of space, we do not provide the simple intermediate steps in the se-
quential evaluation semantics of Rule 1 that would have removed
this artificial atomicity.

The remaining rules focus on parallel evaluation. Rules 3 and 4
extend the usual (sequential) assignment, since the accolades rep-
resent pgas identifiers. The difference with a simple assignment or
access is that the operation is performed in a remote memory area.
The use of the sequential expression evaluation function ξ prevents
remote accesses to be embedded within expressions; this is a con-
scious design decision, to ensure that sequential optimizations such
as strength reduction over private expressions remain valid.

In Rule 5, spawn adds to the state a new process n that executes
Swhile inheriting the parent memorym in a fork-like manner if the
process does not already exist; otherwise, n resumes its execution
and then executes S. The set of processes spawned by n is initially
equal to ∅, and n is added to the set of processes c spawned by i.
Rule 6 implements a rendezvous: a new process n executes S,
while Process i is suspended as long as finished is not true;
indeed, Rule 7 resumes execution of Process i when all the child
processes spawned by n have finished.

In Rules 8 and 9, I is an event, i.e., a counting variable
used to control access to a resource or to perform a point-to-
point synchronization, initialized via newEvent to a value equal
to the number of processes that will be granted access to it. Its
current value n is decremented every time a wait(I) statement
is executed and, when π(I) = n with n > 0, the resource can be
used or the barrier can be crossed. In Rule 9, the current value n′

of I is incremented; this is a non-blocking operation.
In Rule 10, p and p′ are two processes that communicate:

p sends the datum I to p′, while this later consumes it in I’.
Rewriting Rules The SPIRE concepts not dealt with in the

previous section are defined via their syntactic rewriting into the
core language. This is the case for both the treatment of the
execution attribute, the remaining coarse-grain synchronization
constructs and non-blocking communications. For lack of space,
these simple rewritings have been omitted from this paper but are
detailed in [24].

5. Validation
Assessing the quality of a methodology that impacts the definition
of a data structure as central for compilation frameworks as an
intermediate representation is a difficult task. This section provides
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κ→ κ′

π[i→ (κ, c)]⇒ π[i→ (κ′, c)]
(2)

p = ξ(E)m ∧ v = ξ(E′)m ∧ p 6= i

π[i→ ((m,I{E} = E′), c)][p→ ((m′,S’), c′)]⇒ π[i→ ((m,nop), c)][p→ ((m′[I→ v],S’), c′)]
(3)

p = ξ(E)m ∧ v = ξ(I’)m′ ∧ p 6= i

π[i→ ((m,I = I’{E}), c)][p→ ((m′,S’), c′)]⇒ π[i→ ((m[I→ v],nop), c)][p→ ((m′,S’), c′)]
(4)

n = ξ(I)m ∧ ((m′,S’), c′) = (n ∈ domain(π)) ? π(n) : ((m,nop), ∅)
π[i→ ((m,spawn(I,S)), c)]⇒ π[i→ ((m,nop), c ∪ {n})][n→ ((m′,S’;S), c′)]

(5)

n 6∈ dom(π) ∪ {i}
π[i→ ((m,barrier(S)), c)]⇒ π[i→ (m,barrier wait(n)), c)][n→ ((m,S), ∅)] (6)

finished(π, {n}) ∧ π(n) = ((m′,nop), c′)

π[i→ ((m,barrier wait(n)), c)]⇒ π[i→ ((m′,nop), c)]
(7)

n = ξ(I)m ∧ n > 0

π[i→ ((m,wait(I)), c)]⇒ π[i→ ((m[I→ n− 1],nop), c)]
(8)

n = ξ(I)m

π[i→ ((m,signal(I)), c)])⇒ π[i→ ((m[I→ n+ 1],nop), c)]
(9)

p′ = ξ(P’)m ∧ p = ξ(P)m′ ∧ p 6= p′

π[p→ ((m,send(P’,I)), c)][p′ → ((m′,recv(P,I’)), c′)]⇒ π[p→ ((m,nop), c)][p′ → ((m′[I’→ m(I)],nop), c′)]
(10)

Figure 6: SPIRE(Stmt) transition rules

two possible ways to perform such an assessment on SPIRE: (1)
we illustrate how it can be easily applied on other IRs, namely
those of LLVM and Open64-based OpenUH, by extending their
respective sequential IRs with minimal changes, thus providing
support regarding the generality of our methodology, and (2) we
provide information regarding its impact on run-time performance
data for parallelization and optimizations.

5.1 SPIRE Application to LLVM IR

LLVM [27] (Low-Level Virtual Machine) is an open-source compi-
lation framework that uses an intermediate representation in Static
Single Assignment (SSA) [12] form. Polly [18] is a high-level loop
and data-locality optimizer for LLVM. We chose the IR of LLVM to
illustrate a second time our approach since LLVM has been widely
used in both academia and industry. Another interesting feature of
LLVM IR, compared to PIPS, is that it sports a graph approach,
while PIPS is abstract syntax tree-based; each function is structured
in LLVM as a control-flow graph (CFG). Figure 7 provides the def-
inition of a significant subset of the sequential LLVM IR described
in [29], written in Newgen to keep notations simple in this paper:

• a function is a list of basic blocks, which are portions of code
with one entry and one exit points;
• a basic block has an entry label, a list of φ nodes and a list of

instructions, and ends with a terminator instruction;
• φ nodes, which are the key elements of SSA, are used to merge

the values coming from multiple basic blocks. A φ node is an
assignment (represented here as a call expression) that takes as
arguments an identifier and a list of pairs (value, label); it
assigns to the identifier the value corresponding to the label of
the block preceding the current one at run time;

• every basic block ends with a terminator which is a control
flow-altering instruction that specifies which block to execute
after termination of the current one.

function = blocks:block*;
block = label:identifier x phi_nodes:phi* x

instructions:instruction* x end;
phi = call;
instruction = load + store + call;
load = identifier;
store = name:identifier + value:expression;
end = jump;
jump = label:identifier;

Figure 7: Simplified Newgen definitions of the LLVM IR

Applying SPIRE to LLVM IR is, as illustrated above with PIPS,
achieved in three steps, yielding the SPIREd parallel extension of
the LLVM sequential IR provided in Figure 8.

• An execution attribute is added to function and block:
a parallel basic block sees all its instructions launched in par-
allel (in a fork/join manner), while all the blocks of a parallel
function are seen as parallel tasks to be executed concurrently.
• A synchronization attribute is added to instruction;

hence, an instruction can be annotated with spawn, barrier
or atomic synchronization attributes. When one wants to deal
with a sequence of instructions, this sequence is first englobed
in a block to whomsynchronization is added.
• send and recv functions for handling data distribution are

also seen as intrinsic. Moreover, pgas variables are introduced
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in LLVM IR by enriching the format of identifiers with
location information. One-sided communications are repre-
sented by adding expression to load instruction.

function′ = function x execution;
block′ = block x execution x synchronization;
instruction′ = instruction x synchronization;
load′ = load x expression;
store′ = store x expression;
identifier′ = identifier x location;

Figure 8: SPIRE (LLVM IR)

The use of SPIRE on the LLVM IR is not able to express parallel
loops as easily as was the case on PIPS IR. Indeed, the notion of a
loop does not always exist in the definition of IRs based on control-
flow graphs, including LLVM; it is an attribute of some of its nodes,
which has to be added later on by a loop-detection program analysis
phase. Of course, such analysis could also be applied on the SPIRE-
derived IR, to recover this information.

5.2 SPIRE Application to WHIRL
WHIRL (Winning Hierarchical Intermediate Representation Lan-
guage) is the IR used in multiple compilers derived from SGI MIPS
Pro compiler, such as the Open64 and PathScale compilers. Open64
has multiple branches, developed by Tensilica, Tsinghua Univer-
sity or Berkeley; the University of Houston offers its own open-
source compiler, OpenUH. Currently, SPIRE(WHIRL) is being im-
plemented in OpenUH, but hopefully all these branches will even-
tually use this extension in order to build clean and powerful par-
allel optimizations and transformations. Like PIPS IR, WHIRL is
a hierarchical AST with 5 main levels: very high, high, mid, low,
and very low WHIRL. Each level is adapted to some kinds of op-
timization and represents an intermediate interface among all the
front-end and back-end components. In our work, we extend the
front-end component and thus the very high WHIRL (VHWHIRL).

Figure 9 provides the definition of a significant subset of the
sequential WHIRL described in [2], using Newgen. There, for
instance, every tree is represented by a function entry node that
contains a block node that contains the body of the function. A
basic block is a list of subtrees or statements that can be loops,
calls... The rest of the specification is rather straightforward.

function = body:block;
block = statements:statement*;
statement = doloop + call + dload + dstore ;
doloop = index:symbol x initialize:dstore x

cond:expression x step:dstore x block;
call = fname:symbol x params:parameter*;
parameter = dload + iload;
symbol = name:string x type x initial:value;
dload = name:symbol;
dstore = name:symbol x value:expression;

Figure 9: Simplified Newgen definitions of WHIRL

Applying the 3-step SPIRE process to WHIRL yields its
SPIREd parallel extension provided in Figure 10.

• An execution attribute is added to block and doloop: a
parallel basic block sees all its statements launched in parallel,
while all the iterations of a parallel doloop are to be executed
concurrently;
• A synchronization attribute is added to every type of

statement such as call that can be annotated with spawn,

barrier or atomic synchronization attributes. We could
proceed by creating a new instruction node in WHIRL, as
the union of all types of statements and the child of statement,
and adding then synchronization only once to statement,
as done for SPIRE(PIPS IR). However, for pragmatic reasons,
we prefer to add synchronization on each type of state-
ment rather than adding it once to a new node instruction
in order to not change the compiler everywhere to adapt se-
quential passes to the introduction of this new node. Since
WHIRL provides intrinsic call nodes, we handle SPIRE
events API for handling point-to-point synchronization with
such nodes.
• send and recv functions are also intrinsic. Coarrays or pgas

variables, in WHIRL, extend the symbol set while one-sided
communications are represented by adding expression to
load instruction.

block′ = block x execution x synchronization;
doloop′ = doloop x execution x synchronization;
call′ = call x synchronization;
dload′ = dload x synchronization x expression;
dstore′ = dstore x synchronization x expression;
symbol′ = symbol x location;

Figure 10: SPIRE(WHIRL)

5.3 SPIRE Performance Assessment
Parallelization. To assess the ability of the SPIRE methodology
to design parallel IRs with enough expressivity for parallelism, we
used it in PIPS, by upgrading its implementation so that it can han-
dle the constructs described in Section 3. We have used ***”bad
english this parallelism-enabled of PIPS” for the implementation
of a new task parallelization algorithm [26]. It automatically gen-
erates both OpenMP and MPI code from the same parallel IR.
We gathered performance data related to SPIRE-based paralleliza-
tion on four well-known C scientific benchmarks, targeting both
shared and distributed memory architectures: the image and signal
processing benchmarks Harris [34] and ABF [17], the SPEC2001
benchmark equake [8] and the NAS parallel benchmark IS [32].
Our performance results exhibit significant speedups (see [26])
against the sequential versions of these programs. This experimen-
tal work of automatic parallelization suggests thus that the SPIRE
methodology is able to provide parallel IRs that encode inherent
parallelism, and is thus well adapted to the design of parallel target
formats for the efficient parallelization of scientific applications on
both shared and distributed memory systems.
One-Sided Communication Optimization. After the previous ex-
periment, which provided promising global performance data for
SPIRE, we decided to look in detail at a particular optimization,
namely OpenSHMEM one-sided communication optimization, via
the middle-end optimization layer of LLVM. SPIRE suggests to
represent the one-sided communication primitives of OpenSH-
MEM in LLVM IR by memory load/store operations. We imple-
mented the location domain as an annotation on the IR nodes,
using LLVM metadata. A metadata in LLVM is a string used as an
annotation on the LLVM IR nodes. After activating the middle-end
optimizations of LLVM and Polly, we programmed the backend of
LLVM to generate back the one-sided put/get function calls to be
executed by the OpenSHMEM runtime. This two-step transforma-
tion process allows LLVM to identify and optimize communica-
tions in OpenSHMEM, seen as ”simple” load/store operations.

As a specific case study, we show the impact of two optimiza-
tions: (1) applying loop tiling, a classical sequential optimization
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already available in Polly, on a SPIRE-encoded OpenSHMEM pro-
gram – the idea is to break down communications into successive
chunk transfers using loop tiling in order to eliminate some of the
runtime overhead of dynamic buffer management, –, and (2) per-
forming the reverse transformation, i.e., communication vectoriza-
tion, which transforms loops of load/store operations automatically
into bulk put/get communications. For this later, we adapted the ex-
isting LoopIdiomRecognize LLVM pass that transforms sim-
ple loops into a non-loop form to work on load/store operations that
have the same RMA metadata (remote PE): put/get operations are
generated in lieu of memcpy intrinsics.

In our experiment, we used as microbenchmark [1] a shmem put
operation between a pair of processes, while varying the size of
the transmitted array. We ran it on the Stampede supercomputing
system at Texas Advanced Computing Center (TACC), under the
OpenSHMEM implementation in MVAPICH2-X [21] version 2.0b.
We compiled with LLVM-3.5.0, sporting the same version of Polly.
Figure 11 (a) shows the impact of communication vectorization,
which reduces both message startup time and latency, thanks to our
modified LoopIdiomRecognize transformation. Figure 11 (b)
shows that the unmodified LLVM middle-end optimizer was able
to improve communication operations via tiling. This is particu-
larly visible for large messages (≥ 2048), since we used a tile size
of 2048 and the fact that MVAPICH2-X implementation already
provides optimizations for small and medium message sizes. Had
we not used our SPIRE encoding, LLVM (and any other compiler)
would not have been able to apply these two optimizations, since it
would have considered blindly the put operation as a function call
with no particular semantic.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

E
x
e

c
u

ti
o

n
 t

im
e

 (
u

s
)

Array size (# of integers)

(a) 1-way Put for 1-pair: Fine vs. Bulk

Fine
Bulk

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2
10

2
12

2
14

2
16

2
18

2
20

E
x
e

c
u

ti
o

n
 t

im
e

 (
u

s
)

Array size (# of integers)

(b) 1-way Put for 1-pair: Bulk vs. Tiled

Bulk
Tiled (2^11)

Figure 11: Performance comparison for communication vectoriza-
tion and loop tiling in OpenSHMEM on Stampede using 2 nodes

6. Related Work
Syntactic approaches to parallelism expression use abstract syn-
tax tree nodes, while adding specific parallel built-in functions.
For instance, the IR of the implementation of OpenMP in GCC
(GOMP) [31] extends its three-address representation, GIMPLE [30].
The OpenMP parallel directives are replaced by specific built-ins
in low- and high-level GIMPLE, and additional nodes in high-level
GIMPLE, such as the sync fetch and add built-in function
for an atomic memory access addition. Similarly, Sarkar and Zhao
introduce the high-level parallel IR HPIR [38] that decomposes
Habanero-Java programs into region syntax trees, while main-
taining additional data structures on the side: region control-flow
graphs and region dictionaries. New syntax tree nodes are intro-
duced: AsyncRegionEntry and AsyncRegionExit delimit
tasks, while FinishRegionEntry and FinishRegionExit
can be used in parallel sections. SPIRE borrows some of the ideas
used in GOMP or HPIR, but frames them in more structured set-
tings while trying to be more language-neutral. In particular, we
try to minimize the number of additional built-in functions, which
have the drawback of hiding the abstract high-level structure of

parallelism and affecting compiler optimization passes. Moreover,
we focus on extending existing AST nodes rather than adding new
ones (such as in HPIR) in order not to fatten the IR and avoid re-
dundant analyses and transformations on the same basic constructs.

InsPIRe is the parallel IR at the core of the source-to-source In-
sieme compiler [20] for C, C++, OpenMP, MPI and OpenCL. Par-
allel constructs are encoded using built-ins. SPIRE intends to also
cover source-to-source optimization. It could have been applied to
Insieme sequential components, parallel constructs being defined
as extensions of the sequential abstract syntax tree nodes of In-
sPIRe instead of using built-ins such as spawn and mergeAll.

Turning now to mid-level intermediate representations, many
systems rely on graph structures for representing sequential code,
and extend them for parallelism. The Hierarchical Task Graph [16]
represents the program control flow. The hierarchy exposes the loop
nesting structure; at each loop nesting level, the loop body is hi-
erarchically represented as a single node that embeds a subgraph
that has control and data dependence information associated with it.
SPIRE is able to represent both structured and unstructured control-
flow dependence, thus enabling recursively-defined optimization
techniques to be applied easily. The hierarchical nature of under-
lying sequential IRs can be leveraged, via SPIRE, to their parallel
extensions; this feature is used in the PIPS case addressed below.

A stream graph [10] is a dataflow representation introduced
specifically for streaming languages. Nodes represent data reor-
ganization and processing operations between streams, and edges,
communications between nodes. Each time a node is fired, it con-
sumes a fixed number of elements of its inputs and produces a fixed
number of elements on its outputs. Streaming can be handled in
SPIRE using point-to-point synchronization, while SPIRE also pro-
vides support for both data and control dependence information.

The OSCAR Fortran Compiler [23] partitions programs into
macro-task graphs (MTG), where vertices represent macro-tasks
of three kinds, namely basic, repetition and subroutine blocks;
a macro-flow graph is generated to represent data and control
dependences on these macro-tasks. The parallel program graph
(PPDG) [35] extends the program dependence graph [15], where
vertices represent blocks of statements and edges, essential control
or data dependences; mgoto control edges are added to represent
task creation occurrences, and synchronization edges, to impose
ordering on tasks. Like MTG and PPDG, SPIRE adopts an ex-
tension approach to “parallelize” existing sequential intermediate
representations; our paper shows that this can be defined as a gen-
eral mechanism for parallel IR definitions and provides a formal
specification of this concept.

The LLVM compiler supports OpenMP but lowers all its prag-
mas at the front-end phase (in Clang) to runtime calls. In this work
we added specific support for the one-sided operations of OpenSH-
MEM in LLVM, via load/store constructs of LLVM IR. This makes
it possible to apply seamlessly LLVM transformations such as loop
tiling and communication vectorization to OpenSHMEM programs
(see Section 5).

7. Conclusion
SPIRE is a new 3-step methodology for the design of parallel lan-
guage intermediate representations (IR); it maps any sequential IR
used in compilation platforms to a parallel IR. This extension pro-
cess introduces (1) a parallel execution attribute for each group of
statements, (2) a high-level synchronization attribute on each state-
ment and an API for low-level synchronization events, and (3) data
location on processes together with two built-ins for implement-
ing communications in message-passing memory systems. The for-
mal semantics of SPIRE transformations are specified using a two-
tiered approach: a small-step operational semantics for its base par-
allel concepts and a rewriting mechanism for high-level constructs.
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The SPIRE methodology is presented via a use case, the IR of
PIPS, a source-to-source compilation infrastructure for Fortran and
C. We illustrate the generality of our approach by showing how
SPIRE can be used to represent the constructs of eight parallel
languages and libraries such as OpenMP, MPI and OpenSHMEM,
and to extend LLVM IR and WHIRL. We provide experimental
elements to validate SPIRE via its implementation in PIPS, for
parallel code generation, and LLVM, for OpenSHMEM one-sided
communication optimization.

Future work will address the use of SPIRE formal semantics
to prove the correctness of optimizations performed on parallel
programs. Besides loop tiling and communication vectorization, we
plan to apply and adapt all transformations performed by LLVM to
OpenSHMEM programs.
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