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Abstract
In a 2012 paper, Richard Statman exhibited an inference system, based on second order monadic
logic and non-terminating rewrite rules, that exactly types all strongly normalizable lambda-
terms. In this paper, we show that this system can be simplified to first-order minimal logic with
rewrite rules, along the Deduction modulo lines. We show that our rewrite system is terminating
and that the conversion rule respects weak versions of invertibility of the arrow and of quantifiers.
This requires additional care, in particular in the treatment of the latter. Then we study proof
reduction, and show that every typable proof term is strongly normalizable and vice-versa.
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1 Introduction

Intersection types [3, 5] have been used to show that every strongly normalizing λ-term is
typable [13, 11]. In a 2013 paper [14], Rick Statman introduces a type system, which is an
extension of second-order monadic logic, that is also capable to do so.The goal of this paper
is to bring down a similar result to first-order (minimal) logic.

The central ingredient of [14] is a ternary second-order predicate D, that is a discriminator
symbol [4]. D behaves like an if instruction on its first argument in the following sense:

D 0 F G ≡ F D 1 F G ≡ G

It is notable, that the properties of the D predicate, such as the behavior of D with
respect to 0 and 1, or a form of commutativity with respect to the implication connective
and the universal quantifier, are defined via a rewriting relation. This rewriting system is not
terminating in the naive sense, but enjoys termination and confluence modulo the equivalence
relation defined by the quantifier permutation rewrite rule.

This last feature made us realized, that defining such a system in Deduction modulo
theory [9], a framework that combines first-order logic and rewriting rules on formulas, could
be the right way to achieve our goal.

The will to stick to first order is very constraining: first of all, we must find a way to
reflect the second-order predicate D. This is of moderate difficulty, since we mainly follow
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the lines of the encoding of higher-order logic in Deduction modulo theory [10]. However,
we also need to reflect through additional rewrite rules the properties on D, that are in [14].
In consequence, many questions, linked to rewriting in the first place but that have also an
impact on the rest of the work, arise, whose answer is a lot more involved.

This document is organized as follows: we first recall the Deduction modulo theory
version of many-sorted minimal logic (with simple types). In Sec. 3 right after, we introduce
the rewrite system we will work on, and motivate our design choices. Those design choices,
and in particular the non-confluence of the rewrite system, will then force us, in Sec. 4, to
precisely state and prove the properties of the rewrite system that will be needed for the rest
of the paper. In the next section, we define and prove correct a (∀E)/(∀I) cut reduction in
typing derivations, which allows us in Sec. 6 and Sec. 7 to derive the same results as [14],
that is to say all strongly normalizable terms are typable, and vice versa.

2 Deduction Modulo

Deduction modulo has two ingredients: a logic and a rewrite system. We elude the (standard)
definition of rewrite system, termination, confluence, and we refer to textbooks [15], if the
reader is unfamiliar with these notions. The only peculiarity that has to be noticed is that
we allow rewriting of atomic formulas into (potentially) non-atomic ones. For instance,
P −→ ∀x.(P ∧ P ) would be an acceptable rewrite rule. Rewriting non-atomic formulas
is forbidden (this would allow to immediately break the Brouwer-Heyting-Kolmogorov
interpretation).

We describe in more detail the many-sorted language, and the inference rules.

2.1 Simple Types, Terms and Formulas
I Definition 1 (Simple Types). We let ι and o be two base types. A (restricted) simple type
is:

either a base type, or a compound type (ι→ o)→ o or o→ o→ o;
or a compound type ι→ τ where τ is a simple type.

The language is composed of typed variables and constants, an adjustable parameter
that is defined in Sec. 3 below. For each simple types τ1 and τ2, we define the application
symbol ατ1,τ2 of arity 〈τ1 → τ2, τ1, τ2〉. Given two terms t, u of respective types τ1 → τ2 and
τ1, ατ1,τ2(t, u) (written t u) is a term of type τ2.

At the propositional level, besides predicate symbols, defined as well in Sec. 3, we enjoy
the sole binary connective → and the quantifier ∀, that binds only variables of type ι.

Anticipating a little bit, the “propositional” type o will serve to reflect formulas at the
term level. In order not to encode the full higher-order logic, as in [10, 8], we need to restrict
the available simple types. On the same vein, we allow only quantification over variables of
type ι (denoted u, v), thus reflecting only a fragment of second-order logic. The full power of
second-order logic, and in particular quantification over predicates, was neither necessary in
[14]. In fact, only D accounts for the choice of second-order logic.

2.2 Proof Terms and Inference Rules
We assume familiarity with untyped and typed lambda-calculi, and discuss only the inference
rules of Fig. 1. Variables are denoted x, y, z, while λ-terms are denoted X,Y, Z. The set of
free variables of a term X is noted FV (X). When X is strongly normalizing, we write |X|
the depth of its reduction tree.
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(x : F ) ∈ Γ
(Axiom)Γ ` x : F

Γ ` X : F F ≡ G (Conv)Γ ` X : G

Γ ` X : F → G Γ ` Y : F (→E)Γ ` XY : G
Γ, x : F ` X : G (→I)Γ ` λx.X : F → G

Γ ` X : F v : ι v does not occur in Γ (∀I)Γ ` X : ∀v.F
Γ ` X : ∀v.F t : ι t free for v in F (∀E)

Γ ` X : F [v/t]

Figure 1 Typing Rules of Minimal Natural Deduction Modulo Theory

Contexts are unordered sets of typed variables, which is possible since we do not have
dependent types. As said above, we quantify only on variables of type ι, hence we allow
to instantiate universally quantified formulas only by terms of type ι. Extensions to other
types would require the variable and the term to have the same type. To indicate many
applications of the same rule, we use a double inference bar.

The main rule to discuss is the (Conv) rule. This rule allows to change the type of a
λ-term X along the congruence (Conv) generated by the rewrite rules, granting to Deduction
modulo theory all its (typing, in our case) power. It obviously primarily depends on the
rewrite system under consideration, which is the topic of the next section.

3 The Rewrite System

We are now about to define an embedding of second-order logic. The original idea is to
embed formulas inside terms, via the type o, and to decode them at the propositional level via
the predicate symbol ε. This idea has already been used to embed logics [8, 10] in Deduction
modulo theory as well as in the λΠ-calculus modulo [1, 6].

However, another critical choice has to be made: to reflect quantification at the term
level, the notion of binder should be available, which is not customary. We face a choice:
either natively express an encoding of this notion for terms, via explicit substitution similarly
to what was done in [8], or use a combinatorial calculus [2] instead. We choose the latter as
a preliminary analysis of [8] showed that the many and complex rewrite rules could interfere
badly with the ones we add on D, and that the technical overload of this system should
better be avoided, if possible.

The price to pay is to have a non extensional version of the simply typed lambda-calculus,
that will soon lead us into its own complications.

3.1 The Language
We consider a language composed of the following function symbols:
∀̇ of type (ι→ o)→ o.
⇒̇ of type o→ o→ o.
ṗ of type o.
D of type ι→ o→ o→ o.
0 and 1 of type ι.
I of type ι→ ι.
Kτ of type τ → ι→ τ , for each simple type τ .
Sτ1,τ2 of type (ι→ τ1 → τ2)→ (ι→ τ1)→ ι→ τ2, for each simple types τ1 and τ2.
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The language has a unique predicate symbol ε, of rank 〈o〉. We use infix notation for ⇒̇. The
“predicate” symbol D, now lives at the term level, thus allowing for it to have a complex,
morally second-order, type. Technically speaking, it is now a propositional term (whose type
ends by o).

Notice that we have only one atomic propositional term of type o, ṗ. There is no need for
other symbols, or for predicate with arguments, although it should be possible to add them.

According to the S,K, I combinatorial calculus, we define the abstraction on x in an
expression as:

I Definition 2. λxτ is the following function, which associates to a term of type τ with
variable x of type ι, a term of type ι→ τ where x does not appear:

λxι (x) := I

λxτ (t) := Kτ t if x /∈ t
λxτ (α(t, u)) := Sρ,τ (λxρ→τ (t)) (λxρ(u)) if x ∈ t or x ∈ u

3.2 Rewrite Rules
We consider the following rewrite rules, where τ, τ1, τ2 are any simple type.

ε(A⇒̇B) −→ ε(A)→ ε(B) (1)

ε(∀̇A) −→ ∀x.ε(A x) (2)

I x −→ x (3)
Kτ x y −→ x (4)

Sτ1,τ2 x y z −→ x z (y z) (5)

Rules (1)-(2) are here to decode propositional terms into formulas [8, 10], while rules (3)-(5)
are the usual rules for the S,K, I-calculus. All those rules are quite standard. Next come
rules on the propositional term D, where in the last two rules x is chosen fresh:

D0FG −→ F (6)
D1FG −→ G (7)

Dv(F⇒̇H)(G⇒̇K) −→ (DvFG)⇒̇(DvHK) (8)
Dv(∀̇F )G −→ ∀̇λx(Dv(F x)G) (9)
DvF (∀̇G) −→ ∀̇λx(DvF (G x)) (10)

I Remark.
λx(DvF (G x)) is in fact ∀̇(S(K(DvF ))(S(KG)I)), and λx(Dv(F x)G) has a similar
shape. So, (9)-(10) are not schemata (while (4)-(5) are), and the structure and redexes of
v, F,G are preserved by λx. This would not be the case for a more aggressive abstraction.
(λxτ (t))x −→∗ t, but even if t −→ t′, λxτ (t) −→∗ λxτ (t′) does not hold in general. No
combinatorial calculus is known to be extensional.
The correspondence with the rules of [14] is straightforward: (6) corresponds to (0), (7)
to (1), (8) to (→), (9) and (10) to the two rewrite rules (∧). We have no equivalent of

($) ∀x.F −→ F (x not free in F ) and ($$) ∀x.∀y.F −→ ∀y.∀x.F

for a number of reasons, among which:
on terms, we are not in position to inspect the argument of ∀̇, due to the lack of
extensionality: we must apply the argument to some x and reduce it to see its shape.
This is exactly what (2) does, and this bit of extensionality is crucial in Lem. 18;
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one can think, as a result of the previous remark, of defining ($) and ($$) at the
formula level, but we are forbidden to define rewrite rules on non atomic formulas.

Rules (9) (and (10)) is expressed at the term level, instead of being defined more directly
as the coarser ε(Dv(∀̇F )G) −→ ∀x.ε(Dv(F x)G). This is once again crucial for Lem. 18
to hold, and complicates the matter of Sec. 4.

I Remark. This calculus is trivially not confluent since some critical peaks [15] are not
joinable. To recover weak versions of confluence, we need to examine them later. They are:

(1) F⇒̇H ←− D0(F⇒̇H)(G⇒̇K) −→ (D0FG)⇒̇(D0HK).
(2) G⇒̇K ←− D1(F⇒̇H)(G⇒̇K) −→ (D1FG)⇒̇(D1HK).
(3) ∀̇(λxo(D0(F x)G)) ←− D0(∀̇F )G −→ ∀̇F .
(4) ∀̇(λxo(D1F (G x))) ←− D1F (∀̇G) −→ ∀̇G.
(5) ∀̇(λxo(Dv(Fx)(∀̇G))) ←− Dv(∀̇F )(∀̇G) −→ ∀̇(λy(Dv(∀̇F )(Gy)))
(6) ∀̇(λxo(D0F (Gx))) ←− D0F (∀̇G) −→ F .
(7) ∀̇(λxo(D1(F x)G)) ←− D1(∀̇F )G −→ G.

4 Properties

We establish two very important properties of any rewrite system: termination, and a limited
form of confluence. We also examine the consequences of those results.

4.1 Termination
I Lemma 3. A term of type ι cannot contain a propositional symbol (∀̇, ⇒̇).

Proof. By induction on the term, given the limited functions and types we allow. J

I Lemma 4. The rewrite system restricted to rules (4) to (7) terminates.

Proof. The proof of termination for the simple typed combinators S,K, I can easily cope
with the addition of rules (6) and (7). See for instance [12]. J

I Lemma 5 (Strong Normalization). −→ is strongly normalizing.

Proof. The following pair, ordered lexicographically, strictly decreases at each rewriting step:
(number of ⇒̇ and ∀̇, height of the SKI01-reduction tree). Indeed only rules (5) and (8)
duplicate some argument but as it is of type ι it cannot contain a ⇒̇ or ∀̇. J

I Lemma 6. A term of type o without head redex is either ṗ, or begins with D, ∀̇ or ⇒̇.

Proof. By typing. The head cannot be S or K, it would reduce. J

4.2 Confluence: For a Handful of Dollars
It is possible to define the equations ($) and ($$) of [14] on formulas, but not on terms, so
confluence of rewriting fails. Instead to strive to this, we shall focus on the desired “weak
confluence”, or consistency, properties. To this end we introduce a relation u which goal is
to relate the propositional structure of normal forms of convertible formulas.

I Definition 7. We write A u B if A and B are normal and
either A = ∀~x.ε(tA), B = ∀~y.ε(tB) and ε(tA) ≡ ε(tB)
or A = ∀~x.(A1 → A2), B = ∀~y.(B1 → B2) and A1 ≡ B1 and A2 ≡ B2.
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I Remark. u is a reflexive, symmetric and transitive relation.

I Lemma 8. If A∗←− B −→∗ B0 with B0 normal then there exists A0 normal such that
A −→∗ A0 and A0 u B0.

Proof. Induction on |B|, the height of the reduction tree of B. The cases B normal or equal
to A are immediate. Otherwise, we have: A∗←− A′ ←− B −→ B′ −→∗ B0.

The strategy it to look for a C0 such that A′ −→∗ C0 and C0 u B0. Since |A′| < |B|, we
conclude by induction hypothesis, that there exists A0 such that A −→ A0 and A0 u C0 u B0.

If the reductions B −→ A′ and B −→ B′ are non overlapping then there exists C such
that A′ −→∗ C∗←− B′ and since |C| < |B|, C0 is obtained by induction hypothesis.

Thus, it only remains to exhibit C0 in the overlapping case. We look at each critical pair
separately, each time using a customized auxiliary induction hypothesis. We only detail one
case here, see appendix for a complete proof.

Critical pair (3) right/left

A′ = K[∀̇F ]←− B = K[D0(∀̇F )G] −→ B′ = K[∀̇(λxo(D0(F x)G))] −→∗ B0

We let t1 ∼ t2 if there exist a context K and two terms θ1, θ2 such that:
A′ −→∗ t1 = K[∀̇θ1],
B′ −→∗ t2 = K[∀̇θ2] −→∗ B0,
θ2x −→∗ ∗←−SKI θ1x, meaning confluence with the only rules (4)-(6),
if θ2 −→∗ θ′2 then there exists θ′1 such that θ1 −→∗ θ′1 and θ′2x −→∗ ∗←−SKI θ′1x.

A′ ∼ B′ (with the obvious θ1 = F and θ2 = λxo(D0(F x)G)). We prove, by induction
on the length of t2 −→∗ B0, that if t1 ∼ t2 then C0 exists. If t2 = B0 then C0 can be any
normal form of t1, for rewriting can occur only in θ1. Otherwise, t2 −→ t′2 −→∗ B0, and:

either t′2 = K[∀̇θ′2] with θ2 −→ θ′2. Then K[∀̇θ′1] ∼ t′2 for the θ′1 obtained by the last
assumption of t1 ∼ t2 and we apply the induction hypothesis;
or t′2 = K′[∀̇θ2] with K −→ K′. Then K′[∀̇θ1] ∼ t′2 and the induction hypothesis applies.
Notice that this can erase, but never duplicate, θ2 since its type is o (cf. Lem. 3).
or t2 = L[ε(∀̇θ2)] and t′2 = L[∀x.ε(θ2x)]. Then we have t1 −→ L[∀x.ε(θ1x)] −→∗ C∗←−
t′2 −→∗ ∀~x.B0. But |t′2| < |B|, and the main induction hypothesis gives us C −→∗ C0;
or t2 = L[Dv(∀̇θ2)Z] and t′2 = L[∀̇λx(Dv(θ2x)Z)]. Then L[∀̇λx(Dv(θ1x)Z)] ∼ t′2 and the
induction hypothesis applies. Similarly if t2 = L[DvZ(∀̇θ2)].

J

I Corollary 9. If A ≡ B −→∗ B0 with B0 normal, then there exists a normal form A0 of A,
such that A0 u B0.

I Corollary 10 (→-Compatibility). If F → G ≡ H → K then F ≡ H and G ≡ K.

I Corollary 11 (∀-Compatibility). If A ≡ B −→∗ ∀~yB0 with B0 normal and not quantified,
then there exists A0 normal and not quantified such that A −→∗ ∀~x.A0 and A0 ≡ B0.

4.3 Reification of Formulas: Digging Terms
To merge two derivations of the same λ-term [14, 13], we must be able to combine two
formulas with the D operator. In our case, this imposes to reify formulas, since D combines
propositional term, and to show the suitable coherence results.
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I Definition 12. Let F be a formula. We define the term, of type o, γ(F ) (noted Ḟ ) as:

γ(ε(t)) := t

γ(F → G) := γ(F )⇒̇γ(G)
γ(∀x.F ) := ∀̇(λxo(γ(F )))

I Remark. ε(Ḟ ) −→∗ F , and γ(F [x/t]) = γ(F )[x/t].

Merging two derivations heavily relies on the following result. If F ≡ F ′ then

DvḞ Ġ ≡ DvḞ ′Ġ (11)

For this, we need to dig out from Ḟ the propositional structure of F . Rewrite rules
(8)-(10) can be used for this.

I Definition 13 (Compound Terms). A term t of type o is compound if it reduces either to
A⇒̇B or to ∀̇A. It is implicational if it reduces to A⇒̇B or to ∀̇A, with Ax implicational.

I Remark. If t is implicational, then ε(t) −→∗ ∀~x.A→ B.

The rewriting relation is too weak to ensure (11) on the nose. Due to the lack extensionality,
we can not always rewrite further into a term: in particular the topmost D-redex of Ḟ is
frozen. To dig deeper, we introduce a bit of extensionality by applying ε, that releases frozen
redexes after application of rules (2)-(5).

Unfortunately, lifting (11) at the formula level by ε is not sufficient, since when Ḟ is an
implication, we also need for Ġ to be an implication, or at least to reduce to it. When G
is, for instance ṗ, this is virtually impossible. The key insight is that, without jeopardizing
typing judgements or the rewriting relation, we can replace ṗ, an inert atomic propositional
term, by anything of the same type including, of course, an implicational term. This allows
to dig further into G, up to the point, where ⇒̇ pops up.

I Definition 14 (Refinment).
We define the term ṗn by induction. ṗ0 := ṗ, and ṗn+1 := ṗn⇒̇ṗn.
F{n} (resp. t{n}) is the replacement in F (resp. t) of all the atomic terms ṗ by ṗn.

I Remark. F{n}{m} = F{n+m}

I Lemma 15. If F ≡ F ′ then F{n} ≡ F ′{n}.

I Lemma 16. If Γ ` X : F then Γ{n} ` X : F{n}.

I Remark. The derivation structure is preserved.

I Lemma 17. For any term t of type o, for any n ≥ 1, t{n} is implicational.

Proof. Induction on any normal form of t{n}. J

Modulo those definitions, we are able to unpack a term, using rules (1)-(2), apply the
corresponding propositional structure rule (8)-(10), and pack it back to regain the lost
conversion relation.

I Lemma 18. If F1 ≡ F2 and G1 ≡ G2 then, for some n, ε(DvḞ1{n}Ġ1{n}) ≡ ε(DvḞ2{n}Ġ2{n}).

Proof. It suffices to show that if F1 −→ F2 then, for some n, ε(DvḞ1H{n}) ≡ ε(DvḞ2H{n}).
The same holds for G1 −→ G2, and Lem. 15 concludes. We proceed by induction on F1.
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If F1 = ε(t1) we take n = 0. Either F2 = ε(t2) and t1 −→ t2, or t1 = A⇒̇B and
F2 = ε(A) → ε(B) (trivial cases), otherwise t1 = ∀̇A and F2 = ∀x.ε(A x). We join to
∀x.ε(Dv(Ȧx)H).
If F1 = A1 → B and F2 = A2 → B with A1 −→ A2. By Lem. 17 ε(H{1}) −→∗ ~̇∀ε(C⇒̇D).
By induction hypothesis, ε(DvȦ1C{m}) ≡ ε(DvȦ2C{m}) for some m. It follows
ε(Dv(Ȧ1⇒̇Ḃ))H{m+1}) −→∗ ∀~x.ε(Dv(Ȧ1⇒̇Ḃ)(C{m}⇒̇D{m})) −→ ∀~x.(ε(DvȦ1C{m})→
ε(DvḂD{m})) ≡ ∀~x.(ε(DvȦ2C{m})→ ε(DvḂD{m})) ≡ ε(Dv(Ȧ2⇒̇Ḃ))H{m+ 1}).
The case F1 = A→ B1 and F2 = A→ B2 with B1 −→ B2 is similar.
If F1 = ∀x.A1 and F2 = ∀x.A2 withA1 −→ A2. By induction hypothesis, ε(Dv(Ȧ1x)H{n}) ≡
ε(DvȦ2H{n}) for some n. It follows ε(Dv(∀̇λx(Ȧ1))H{n}) −→∗ ∀x.ε(DvȦ1H{n}) ≡
∀x.ε(DvȦ2H{n})∗←− ε(Dv(∀̇λx(Ȧ2))H{n}).

J

5 Reduction of Derivations

We now follow the path pioneered by Statman [14], taking into account the modifications
imposed by our framework.

5.1 Elementary Reduction
I Lemma 19. We can turn a derivation (∀I), (Conv), (∀E) into a derivation (∀E)n, (Conv), (∀I)m.

Proof. Assume the derivation:

Γ ` X : A (∀I)Γ ` X : ∀x0.A (Conv)Γ ` X : ∀y0.B (∀E)
Γ ` X : B[y0/t]

Let ∀~x.A0 be a non quantified normal form of ∀x0.A. From Lem. 11, there is B0 such
that ∀y0.B0 −→∗ ∀~y.B0 and A0 ≡ B0. We build the following derivation:

Γ ` X : A (Conv)Γ ` X : ∀x1 · · ·xn.A0 (∀E), n− 1 times
Γ ` X : A0[y0/t] (Conv)
Γ ` X : B0[y0/t] (∀I), m− 1 times

Γ ` X : ∀y1 · · · ym.B0[y0/t] (Conv)
Γ ` X : B[y0/t]

J

5.2 Segments, Merge and Reduction
I Definition 20 (Segment). A segment in a typing derivation is a sequence of (Conv), (∀I)
and (∀E) inference rules.

If Γ1 and Γ2 are two contexts and v is a fresh variable, we write DvΓ1Γ2 the context
such that:

(DvΓ1Γ2)(x) =


Γ1(x) if x ∈ Γ1 and x /∈ Γ2
Γ2(x) if x /∈ Γ1 and x ∈ Γ2
ε(Dv(γ(Γ1(x)))(γ(Γ2(x)))) if x ∈ Γ1 and x ∈ Γ2
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I Lemma 21 (Segment Merge). If we have two segments
Γ1 ` X : F
Γ1 ` X : F ′

and
Γ2 ` X : G
Γ2 ` X : G′

then, for any fresh v, and some n, we can build the following segment:

(DvΓ1Γ2){n} ` X : ε(DvḞ{n}Ġ{n})

(DvΓ1Γ2){n} ` X : ε(DvḞ ′{n}Ġ′{n})

Proof. Induction on the size of the segments, that can be made equal by addition of trivial
conversion steps. We examine the six possible combinations of last two rules. Lem. 18 is
used in the first three cases, and for the sake of readability we make explicit the dependency
on {n} only in the first case.

...
Γ1 ` X : F (Conv)
Γ1 ` X : F ′

...
Γ2 ` X : G (Conv)
Γ2 ` X : G′

↪→

...
(DvΓ1Γ2){n} ` X : ε(DvḞ{n}Ġ{n})

(Conv)
(DvΓ1Γ2){n+m} ` X : ε(DvḞ ′{n+m}Ġ′{n+m})

...
Γ1 ` X : F (Conv)
Γ1 ` X : F ′

...
Γ2 ` X : G (∀I)Γ2 ` X : ∀x.G

↪→

...
DvΓ1Γ2 ` X : ε(DvḞ Ġ)

(∀I)
DvΓ1Γ2 ` X : ∀x.ε(DvḞ Ġ)

(Conv)
DvΓ1Γ2 ` X : ε(DvḞ ′(∀̇λxĠ))

...
Γ1 ` X : F (Conv)
Γ1 ` X : F ′

...
Γ2 ` X : ∀x.G (∀E)

Γ2 ` X : G[x/t]

↪→

...
DvΓ1Γ2 ` X : ε(DvḞ (∀̇λxĠ))

(Conv)
DvΓ1Γ2 ` X : ∀x.ε(DvḞ ′Ġ)

(∀E)
DvΓ1Γ2 ` X : ε(DvḞ ′ ˙G[x/t])

...
Γ1 ` X : F (∀I)Γ1 ` X : ∀x.F

...
Γ2 ` X : G (∀I)Γ2 ` X : ∀y.G

↪→

...
DvΓ1Γ2 ` X : ε(DvḞ Ġ)

(∀I)
DvΓ1Γ2 ` X : ∀x.ε(DvḞ Ġ)

(∀I)
DvΓ1Γ2 ` X : ∀y.∀x.ε(DvḞ Ġ)

(Conv)
DvΓ1Γ2 ` X : ε(Dv(∀̇λxḞ )(∀̇λyĠ))

...
Γ1 ` X : F (∀I)Γ1 ` X : ∀x.F

...
Γ2 ` X : ∀y.G (∀E)

Γ2 ` X : G[y/t]

↪→

...
DvΓ1Γ2 ` X : ε(DvḞ (∀̇λyĠ))

(∀I)
DvΓ1Γ2 ` X : ∀x.ε(DvḞ (∀̇λyĠ))

(Conv)
DvΓ1Γ2 ` X : ∀y.ε(Dv(∀̇λxḞ )Ġ)

(∀E)
DvΓ1Γ2 ` X : ε(Dv(∀̇λxḞ ) ˙G[y/t])

...
Γ1 ` X : ∀x.F (∀E)

Γ1 ` X : F [x/t]

...
Γ2 ` X : ∀y.G (∀E)

Γ2 ` X : G[y/u]

↪→

...
DvΓ1Γ2 ` X : ε(Dv(∀̇λxḞ )(∀̇λyĠ))

(Conv)
DvΓ1Γ2 ` X : ∀x.∀y.ε(DvḞ Ġ)

(∀E)
DvΓ1Γ2 ` X : ∀y.ε(Dv ˙F [x/t]Ġ)

(∀E)
DvΓ1Γ2 ` X : ε(Dv ˙F [x/t] ˙G[y/u])

J

I Lemma 22. In a segment we can assume that no (∀I) precedes an (∀E).

Proof. For a formula F , we let w(F ) be max {|~x|, F −→∗ ∀~x.A0}, that is to say the maximum
number of head quantifiers of any reduct of F .

Given a segment of length n:
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Γ ` X : F1 (segment)
Γ ` X : Fn

we let m be max{w(F1), · · · , w(Fn)} We define w(s) to be the m-uple of integers
〈nm, · · · , n1〉, where ni is the sum of:

the number of rules Γ ` X : Fj (∀E)Γ ` X : Fj+1
such that w(Fj) = i and there is at least one

(∀I) rule above in the segment;
and the number of rules Γ ` X : Fj (∀E)Γ ` X : Fj+1

such that w(Fj) = i and there is at least

one (∀E) rule below in the segment.

Lem. 19 makes w(s), lexicographically ordered, decrease. Indeed it replaces the formulæ
∀x0.A and ∀y0.B by (many) lighter formulas: nmax(w(∀x0.A),w(∀y0.B)) decreases strictly, and
only values at index strictly lower than max(w(∀x0.A), w(∀y0.B)) can increase. Therefore
the process terminates. J

I Lemma 23. If there is a segment between Γ ` X : F → G and Γ ` X : H → K then
F ≡ H and G ≡ K.

Proof. By Lem. 22, we can shrink the segment into a single (Conv) rule. We conclude by
Arrow Compatibility (Lem. 10). J

6 Strongly Normalizing Terms are Typable

I Lemma 24 (Inversion). Let Γ ` X : F be a derivation. X has three possible shapes. It is
either x, or λy.Y , or Y Z. Accordingly, the last rules of the derivation are:

(x : G) ∈ Γ
(Axiom)Γ ` x : G (segment)

Γ ` x : F

Γ(y : K) ` Y : L
(→I)Γ ` λy.Y : K → L
(segment)

Γ ` λy.Y : F

Γ ` Y : K → L Γ ` Z : K (→E)Γ ` Y Z : L (segment)
Γ ` Y Z : F

Proof. By induction on the typing derivation. J

I Lemma 25 (Lemma 1 of [14]). If Γ1 ` X : F and Γ2 ` X : G then, for some n,
DvΓ1Γ2{n} ` X : ε(DvḞ{n}Ġ{n}).

Proof. Induction on X.
Case X = x. By Lem. 24,

(x : F ′) ∈ Γ1 (Axiom)
Γ1 ` x : F ′

(segment)
Γ1 ` x : F

and
(x : G′) ∈ Γ2 (Axiom)
Γ2 ` x : G′

(segment)
Γ2 ` x : G

Lem. 21 gives, for some n, the derivation
(x : ε(DvḞ ′Ġ′){n}) ∈ DvΓ1Γ2{n}
DvΓ1Γ2{n} ` x : ε(DvḞ ′Ġ′){n}

(segment)
DvΓ1Γ2{n} ` x : ε(DvḞ Ġ){n}

Case X = Y Z. By Lem. 24,

Γ1 ` Y : K → L Γ1 ` Z : K (→E)Γ1 ` Y Z : L
(segment)

Γ1 ` Y Z : F
and

Γ2 ` Y : K′ → L′ Γ2 ` Z : K′
(→E)

Γ2 ` Y Z : L′

(segment)
Γ2 ` Y Z : G

By induction hypothesis, Lem. 16 and Lem. 21 we get the derivation, for some n
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DvΓ1Γ2{n} ` Y : ε(Dv(K̇⇒̇L̇)(K̇ ′⇒̇L̇′){n})
(Conv)

DvΓ1Γ2{n} ` Y : ε(DvK̇K̇ ′){n} → ε(DvL̇L̇′){n} DvΓ1Γ2{n} ` Z : ε(DvK̇K̇ ′){n}
(→E)

DvΓ1Γ2{n} ` Y Z : ε(DvL̇L̇′){n}
(segment)

DvΓ1Γ2{n} ` Y Z : ε(DvḞ Ḟ ′){n}
Case X = λy.Y . By Lem. 24,

Γ1, y : K ` Y : L (→I)Γ1 ` λy.Y : K → L
(segment)

Γ1 ` λy.Y : F
and

Γ2, y : K′ ` Y : L′
(→I)Γ2 ` λy.Y : K′ → L′

(segment)
Γ2 ` λy.Y : G

By induction hypothesis, Lem. 16 and Lem. 21 we get the derivation, for some n
DvΓ1Γ2, y : DvK̇K̇ ′{n} ` Y : ε(DvL̇L̇′){n}

(→I)
DvΓ1Γ2{n} ` λy.Y : ε(DvK̇K̇ ′){n} → ε(DvL̇L̇′){n}

(Conv)
DvΓ1Γ2{n} ` λy.Y : ε(Dv(K̇⇒̇L̇)(K̇ ′⇒̇L̇′)){n}

(segment)
DvΓ1Γ2{n} ` λy.Y : ε(DvḞ Ġ){n}

J

I Lemma 26. If Γ, x : F ` X : G then, for any H of type o, Γ, x : ∀v.ε(DvḞH) ` X : G
and Γ, x : ∀v.ε(DvHḞ ) ` X : G.

Proof. Induction on the derivation. The only interesting case is (Axiom) with X = x. We
apply (Axiom), (∀E) to substitute 0 (resp. 1) to v, and (Conv). J

I Remark. The structure of the derivation is preserved.

I Lemma 27. If Γi ` Xi : Fi for i ∈ {1 · · ·n} then there exists Γ such that Γ ` Xi : Fi.

Proof. Induction on n.
The case n = 1 is trivial.
For n ≥ 2, consider Γn ` Xn : Fn and Γ′ obtained by induction hypothesis. If (x : F ) ∈ Γn
and (x : G) ∈ Γ′ we take Γ(x) = ∀v.ε(DvḞ Ġ) (see Lem. 26). Otherwise, we take
Γ(x) = (x : F ), or (x : G).

J

I Lemma 28 (Lemma 2 of [14]). If X is normal then Γ ` X : F for some context Γ and
formula F .

Proof. Induction on X, whose general form is λx1 · · ·λxr.xiX1 · · ·Xs. By induction hy-
pothesis, Γi ` Xi : Fi. Let F0 = F1 → · · · → Fs → F for some formula F . By
Lem. 27, let Γ such that Γ ` Xi : Fi and Γ ` xi : F0. Types of variables in Γ may
change, including xi. If some xj /∈ Γ, complete it arbitrarily with (xj : Gj). We deduce
Γ ` X : Γ(x1)→ · · · → Γ(xr)→ F . J

If Γ1 and Γ2 are two contexts, we note ∀u.DuΓ1Γ2 the context such that:

(∀u.DuΓ1Γ2)(x) =


Γ1(x) if x ∈ Γ1 and x /∈ Γ2
Γ2(x) if x /∈ Γ1 and x ∈ Γ2
∀u.ε(Du(γ(Γ1(x)))(γ(Γ2(x)))) if x ∈ Γ1 and x ∈ Γ2

I Lemma 29. If DvΓ1Γ2 ` X : F then ∀u.DuΓ1Γ2 ` X : F .
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Proof. Induction on the typing derivation. J

I Lemma 30 (Lemma 3 of [14]). If Γ,Γ1 ` X[x/Y ] : F , x ∈ X and dom(Γ1) = FV (Y ),
then, for some n and Γ2 such that dom(Γ2) = FV (Y ), we have Γ{n},Γ2 ` (λx.X)Y : F{n}.

Proof. We show by induction on the typing derivation that: if Γ,Γ1 ` X[x/Y ] : F , x ∈ X
and dom(Γ1) = FV (Y ), then Γ2 ` Y : G and Γ{n},Γ2, x : G ` X : F{n}, for some integer
n, context Γ2 such that dom(Γ2) = FV (Y ) and formula G.

(Trivial) If X = x then Γ1 ` Y : F and Γ,Γ1, x : F ` X : F . We omit those cases below.
(Axiom) If y = X[x/Y ] and x ∈ X then we are in the (Trivial) case.
(Congruence), (∀I), (∀E). By induction hypothesis.
(→I)X = λy.A and lettingX0 = A[x/Y ], Γ, y : H,Γ1 ` X0 : K and Γ, y : H,Γ1 ` λy.X0 :
H → K. By induction hypothesis, Γ2 ` Y : G and Γ{n}, y : H{n},Γ2, x : G ` A : K{n}.
It follows that Γ{n},Γ2, x : G ` X : (H → K){n}.
(→E) X = AB. Letting X1 = A[x/Y ] and X2 = B[x/Y ], we have Γ,Γ1 ` X1 : H → F ,
Γ,Γ1 ` X2 : H, Γ,Γ1 ` X1X2 : F .

If x ∈ A and x ∈ B then, by induction hypothesis, ΓA ` Y : GA, Γ{nA},ΓA, x : GA `
A : (H → F ){nA}, ΓB ` Y : G2 and Γ{nB},ΓB , x : GB ` B : H{nB}.
By Lem. 25, (DvΓAΓB){m} ` Y : (DvGAGB){m} and by Lem. 29 and (∀I), (∀v.DvΓAΓB){m} `
Y : (∀v.DvGAGB){m}.
Let n = max{nA, nB}+m, Γ2 = (∀v.DvΓAΓB){n} and G = (∀v.DvGAGB){n}. By
Lem. 26 and Lem. 16, Γ{n},Γ2, x : G ` A : (H → F ){n} and Γ{n},Γ2, x : G ` B :
H{n}. Thus, by (→I), Γ{n},Γ2, x : G ` X : F{n}.
If x ∈ A and x /∈ B (ie B = X2) then, by induction hypothesis, ΓA ` Y : G and
Γ{n},ΓA, x : G ` A : (H → F ){n}. Thus, for Γ2 = ∀v.DvΓAΓ1, by Lem. 26 and (→I),
Γ{n},Γ2, x : G ` X : F{n}.
If x ∈ B and x /∈ A (ie A = X1) then, by induction hypothesis, Γ2 ` Y : G and
Γ{n},ΓB , x : G ` B : H{n}. Thus, for Γ2 = ∀v.DvΓ1ΓB, by Lem. 26 and (→I),
Γ{n},Γ2, x : G ` X : F{n}.

J

I Theorem 31 (Proposition 1 of [14]). If X is strongly normalizable then Γ ` X : F , for
some context Γ and formula F .

Proof. Double induction on |X| and X, whose general form is λx1 · · ·λxr.Y X1 · · ·Xs, with
Y = xi or Y = λx.X0.

if r > 0, then we apply induction hypothesis on X.
if X = xiX1 · · ·Xs then it is essentially Lem. 28.
if X = (λx.X0)X1 · · ·Xs then, by induction on |X|, we have Γ ` X0[x/X1]X2 · · ·Xs : F .
At some point of the derivation (by Lem. 24), we have Γ ` X0[x/X1] : G. To derive
Γ ` X : F , it suffices to derive Γ ` (λx.X0)X1 : G and to plug the corresponding
sub-derivation. If x /∈ X0 then Γ, x : H ` X0 : G holds.
Otherwise, Lem. 30 applies, and Γ′ ` (λx.X0)X1 : G{n}, with dom(Γ′) = dom(Γ).
Lem. 26 and Lem. 16 give ∀u.Du(Γ{n})Γ′ ` (λx.X0)X1 : G{n} and ∀u.Du(Γ{n})Γ′ `
X0[x/X1]X2 · · ·Xs : F{n}. The structure is preserved, so we can still plug the corres-
ponding sub-derivation.

J
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7 Well-Typed Terms are Strongly Normalizing

The results of this section do not differ significantly from [14]. We mainly include it for
self-containment and we will be sketchy.

I Definition 32 (F∞). Given a term M , we define F∞(M) as follow:
If M = C[(λx.P )Q] where (λx.P )Q is the left-most redex in M then

if x ∈ P then F∞(M) = C[P [x/Q]]
if x /∈ P and Q normal then F∞(M) = C[P ]
if x /∈ P and Q not normal then F∞(M) = C[(λx.P )(F∞(Q))]

Otherwise M is normal and F∞(M) = M .

I Theorem 33 (Barendregt’s perpetual reduction strategy [2]). If F∞(M) is strongly normal-
izing, so is M .

I Definition 34. The →-height of a formula F is the maximum number of nested → in a
normal form of F . We write h(F ).

I Lemma 35. If F ≡ G, then h(F ) = h(G).

Proof. Corollary of Lem. 8. J

I Lemma 36 (Lemma 4 of [14]). If Γ ` Y : F , Γ, y : F ` X : G and X,Y are strongly
normalizing then Γ ` X[y/Y ] : G and X[y/Y ] is strongly normalizing.

Proof. Induction on the tuple (h(F ),|Y |,|X|,X) ordered lexicographically. X has the general
shape λx1 . . . λxr.ZX1 . . . Xs, with Z = z or Z = λx.X0.

We prove that, for some n, Fn∞(X[y/Y ]) is strongly normalizing. By Thm. 33, this entails
that X[y/Y ] is strongly normalizing.

If r > 0 or r = 0 and Z = z 6= y then the induction hypothesis on X applies.
If X = (λx.X0)X1 . . . Xs then we have the following derivation:

Γ, y : F, x : H ` X0 : J
Γ, y : F ` λx.X0 : H → J

(segment)
Γ, y : F ` λx.X0 : K → L Γ, y : F ` X1 : K

Γ, y : F ` (λx.X0)X1 : L

By the property on segments between arrows (Lem. 23), we have H ≡ K and J ≡ L.
If x ∈ X0 then F∞(X[y/Y ]) = (X0[x/X1]X2 . . . Xs)[y/Y ]. If x /∈ X0 then, because
X1[y/Y ] is strongly normalizable by induction hypothesis onX1, for some n, Fn∞(X[y/Y ]) =
(X0X2 . . . Xs)[y/Y ]. Since Γ, y : F ` X0[x/X1]X2 · · ·Xs : G, in both cases the induction
hypothesis on |X| applies.
If X = yX1 . . . Xs then, by induction hypothesis on X, the Xi[y/Y ] are strongly normal-
izing. We distinguish three sub-cases depending on the shape of Y .

If Y = zY1 . . . Yq then X[x/Y ] = zY1 . . . YqX1[y/Y ] . . . Xs[y/Y ]. Thus it is strongly
normalizing by induction hypothesis on X.
If Y = (λz.Z)Y1 . . . Yq, let A = x(X1[y/Y ]) . . . (Xs[y/Y ]) and Y ′ = Z[z/Y1]Y2 . . . Yq.
A is strongly normalizing because its components are. Y ′ is strongly normalizing
because it is a reduct of Y . By induction on |Y |, A[x/Y ′] is strongly normaliz-
ing. Now, since Y1 is strongly normalizing, we have, for some n, Fn∞(X[y/Y ]) =
Z[z/Y1]Y2 . . . YqX1[x/Y ] . . . Xs[x/Y ] = A[x/Y ′].



14 A Rewrite System for Strongly Normalizable Terms

if Y = λz.Z then X[y/Y ] = (λz.Z)X1[y/Y ] · · ·Xs[y/Y ] and we have the following
derivations:

Γ(y : F ) ` y : F
(segment)

Γ(y : F ) ` y : H → K Γ(y : F ) ` X1 : H
Γ(y : F ) ` yX1 : K

Γ(z : L) ` Z : M
Γ ` λz.Z : L→M (segment)

Γ ` λz.Z : F

Thus we have H → K ≡ F ≡ L→M and by Lem. 10, H ≡ L and K ≡M .
∗ If z ∈ Z then F∞(X[y/Y ]) = (Z[z/X1[y/Y ]])(X2[y/Y ]) . . . (Xs[y/Y ]). Since
h(H) < h(H → K) = h(F ), by induction hypothesis, Z[z/X1[y/Y ]] is strongly nor-
malizing. Since h(M) < h(L→M) = h(F ), by the same argument, F∞(X[y/Y ]) =
(x(X2[y/Y ]) . . . (Xs[y/Y ]))[x/Z[z/X1[y/Y ]]] is strongly normalizing.

∗ If z /∈ Z then for some n, Fn∞(X[x/Y ]) = Z(X2[y/Y ]) . . . (Xs[y/Y ]). Again, since
h(M) < h(F ), by induction hypothesis, Fn∞(X[y/Y ]) = (x(X2[y/Y ]) . . . (Xs[y/Y ]))[x/Z]
is strongly normalizing.

J

I Corollary 37 (Subject reduction). If Γ ` X : F , X strongly normalizing and X →β X
′

then Γ ` X ′ : F .

I Theorem 38 (Proposition 2 of [14]). If Γ ` X : T then X is strongly normalizing.

Proof. We proceed by induction on X.

X = λx1 . . . λxrY X1 . . . Xs with Y = xi or Y = λx.X0

If r > 0 or r = 0 and Y = xi then X is strongly normalizing induction hypothesis.
Otherwise X = (λx.X0)X1 . . . Xs.
We prove by induction on (s, |Y |+

∑
|Xi|) that if X = Y X1 . . . Xs is typable and the

Y,Xi are strongly normalizing then X is strongly normalizing. We show that every reduct
X ′ of X is strongly normalizing.

If the reduction is in Y or Xi then, since we have subject reduction (Lem. 37), we can
apply the induction hypothesis on |Y |+

∑
|Xi|.

If Y = λx.X0 and the X ′ = (X0[x/X1])X2 · · ·Xs then, by Lem. 36, (X0[x/X1]) is
strongly normalizing and we can apply the induction hypothesis on s.

J

8 Conclusion

We have defined a typing system in minimal logic with first-order rewriting rules that is able
to type exactly the strongly normalizable terms. Moreover, we have done so without the
equivalence relation on formulas induced by the quantifiers rules ($) (omission) and ($$)
(permutation), which was conjectured in [14].

To achieve this goal, we used a combinatorial calculus and propositional rewrite rules.
We also needed results on the rewrite system, among which termination and a weak form of
confluence, made difficult due to lack of extensionality.

We probably can simplify the proofs herein by using higher-level results, as confluence
modulo a well-chosen equivalence relation, and by being more accurate in refining types,
for instance. We leave this as further work. We also need to explicit the relation with
intersection types, by defining a sound and complete translation between both systems. To
many extents, ∀v.ε(DvFG) behaves like F ∩G.
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Lastly, we designed this rewrite system to investigate its super-consistency [7]. It has
been conjectured that all rewrite systems in Deduction modulo theory , for which the typable
λ-terms are strongly normalizable, are super-consistent. It would be very interesting to
answer this question for our system, that we have kept simple on that purpose. If it appears
not to be super-consistent, then it answers (negatively) to the conjecture and, otherwise, we
would get, as a byproduct, a reducibility-candidate model for strongly normalizable λ-terms.
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A Detailed proof of Lemma 8

I Lemma 39. If A∗←− B −→∗ B0 with B0 normal then there exists A0 normal such that
A −→∗ A0 and A0 u B0.

Proof. We proceed by induction on |B|, the height of the reduction tree of B.
If |B| = 0 or A = B then the conclusion is immediate.
Otherwise we have the following diagram: If A∗←− A′ ←− B −→ B′ −→∗ B0.
If we are able to find a C0 such that A′ −→ C0 and C0 u B0 then we can conclude

since, |A′| < |B| and by induction hypothesis, there exists A0 such that A −→ A0 and
A0 u C0 u B0.

If the reduction B −→ A′ and B −→ B′ are non overlapping then there exists C such that
such that A′ −→∗ C∗←− B′ and since |C| < |B|, such C0 exists by induction hypothesis.

Thus, it remains to show that such C0 exists in the overlapping case. We look at each
critical pair separately, each time using an auxiliary induction hypothesis.

Critical pair (1) left/right

A′ = K[F⇒̇H]←− B = K[D0(F⇒̇H)(G⇒̇K)] −→ B′ = K[(D0FG)⇒̇(D0HK)] −→∗ B0

We write t1 ∼ t2 if there exist a context K and terms θi, Zi such that
A′ −→∗ t1,
B′ −→∗ t2 −→∗ B0,
t1 = K[θ1, · · · , θk] and
t2 = K[D0θ1Z1, · · · , D0θkZk].

We have A′ ∼ B′. We prove, by induction on the length of t2 −→∗ B0, that if t1 ∼ t2 then
CO exists.

If t2 = B0 then, since B0 is normal, k = 0, t1 = t2 and we can take C0 = B0.
If t2 −→ t′2 −→∗ B0 then
either t′2 = K′[D0θ1Z1, · · · , D0θkZk] with K −→ K′ then we have K′[θ1, · · · , θk] ∼ t′2
and the induction hypothesis applies. Remark that this can erase a θi but never duplicate
it since its type is o (cf Lemma 3).
or t′2 = K[D0θ1Z1, · · · , θj , · · · , D0θkZk] or t′2 = K[D0θ1Z1, · · · , D0θjX, · · · , D0θkZk]
with Zj −→ X then t1 ∼ t′2 and the induction hypothesis applies.
or t′2 = K[D0θ1Z1, · · · , D0XZj , , · · · , D0θkZk] with θj −→ X thenK[θ1, · · · , X, · · · , θk] ∼
t′2 and the induction hypothesis applies.
or θj = A⇒̇B, Zj = C⇒̇D and t′2 = K[D0θ1Z1, · · · , (D0AC)⇒̇(D0BD), · · · , D0θkZk] =
L[D0θ1Z1, · · · , D0AC,D0BD, · · · , D0θkZk] then L[θ1, · · · , A,B, · · · , θk] ∼ t′2 and the
induction hypothesis applies.

Critical pair (1) right/left

A′ = K[(D0FG)⇒̇(D0HK)]←− B = K[D0(F⇒̇H)(G⇒̇K)] −→ B′ = K[F⇒̇H] −→∗ B0

Since A′ −→∗ B′ we can take C0 = B0.

Critical pair (2) left/right

A′ = K[G⇒̇K])←− B = K[D1(F⇒̇H)(G⇒̇K)] −→ B′ = K[(D1FG)⇒̇(D1HK)] −→∗ B0

Same as Critical pair (1) left/right.
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Critical pair (2) right/left

A′ = K[(D1FG)⇒̇(D1HK)]←− B = K[D1(F⇒̇H)(G⇒̇K)] −→ B′ = K[G⇒̇K] −→∗ B0

Since A′ −→∗ B′ we can take C0 = B0.

Critical pair (3) left/right

A′ = K[∀̇(λxo(D0(F x)G))])←− B = K[D0(∀̇F )G] −→ B′ = K[∀̇F ] −→∗ B0

We write t1 ∼ t2 if there exist a context K and two terms θ1, θ2 such that
A′ −→∗ t1,
B′ −→∗ t2 −→∗ B0,
t1 = K[∀̇θ1]
t2 = K[∀̇θ2]
θ1x −→∗ ∗←−SKI θ2x

We have A′ ∼ B′. We prove, by induction on the length of t2 −→∗ B0, that if t1 ∼ t2 then
CO exists.

If t2 = B0 then we take C0 to be a normal form of t1.
If t2 −→ t′2 −→∗ B0 then
either t′2 = K[∀̇θ′2] with θ2 −→ θ′2 then, since −→SKI commutes with −→, we have t1 ∼ t′2
and the induction hypothesis applies
or t′2 = K′[∀̇θ2] with K −→ K′ then K′[∀̇θ1] ∼ t′2 and the induction hypothesis applies
or t2 = L[ε(∀̇θ2)] and t′2 = L[∀x.ε(θ2x)] then t1 = L[ε(∀̇θ1)] −→ L[∀x.ε(θ1x)] −→∗
∗←−SKI t′2 −→∗ ∀~x.B0 and, since −→SKI commutes with −→ and B0 is normal,
t1 −→∗ B0. Thus we can take C0 = B0.
or t2 = L[DvZ(∀̇θ2)] and t′2 = L[∀̇λx(DvZ(θ2x))] then we have L[∀̇λx(Dv(θ1x)Z)] ∼ t′2
and we can apply the induction hypothesis.
or t2 = L[Dv(∀̇θ2)Z] and t′2 = L[∀̇λx(Dv(θ2x)Z)] then we proceed as in the previous
case.

Critical pair (3) right/left

A′ = K[∀̇F ]←− B = K[D0(∀̇F )G] −→ B′ = K[∀̇(λxo(D0(F x)G))] −→∗ B0

We write t1 ∼ t2 if there exist a context K and two terms θ1, θ2 such that
A′ −→∗ t1,
B′ −→∗ t2 −→∗ B0,
t1 = K[∀̇θ1]
t2 = K[∀̇θ2]
θ2x −→∗ ∗←−SKI θ1x

if θ2 −→∗ θ′2 then there exists θ′1 such that θ1 −→∗ θ′1 and θ′2x −→∗ ∗←−SKI θ′1x.
We have A′ ∼ B′. We prove, by induction on the length of t2 −→∗ B0, that if t1 ∼ t2 then
CO exists.

If t2 = B0 then we take C0 to be a normal form of t1.
If t2 −→ t′2 −→∗ B0 then
either t′2 = K[∀̇θ′2] with θ2 −→ θ′2 then K[∀̇θ′1] ∼ t′2 for the θ′1 obtained by the last
assumption of t1 ∼ t2 and we can apply the induction hypothesis;
or t′2 = K′[∀̇θ2] with K −→ K′ then K′[∀̇θ1] ∼ t′2 and the induction hypothesis applies;
or t2 = L[ε(∀̇θ2)] and t′2 = L[∀x.ε(θ2x)] then we have t1 −→ L[∀x.ε(θ1x)] −→∗ ∗←−
t′2 −→∗ ∀~x.B0. Thus, since |t′2| < |B|, we can conclude by the main induction hypothesis;
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or t2 = L[Dv(∀̇θ2)Z] and t′2 = L[∀̇λx(Dv(θ2x)Z)] then L[∀̇λx(Dv(θ1x)Z)] ∼ t′2 and the
induction hypothesis applies.
or t2 = L[DvZ(∀̇θ2)] and we proceed as in the previous case.

Critical pair (4) left/right

A′ = K[∀̇(λxo(D1F (G x)))]←− B = K[D1F (∀̇G)] −→ B′ = K[∀̇G] −→∗ B0

Same as Critical pair (3) left/right.

Critical pair (4) right/left

A′ = K[∀̇G]←− B = K[D1F (∀̇G)] −→ B′ = K[∀̇(λxo(D1F (G x)))] −→∗ B0

Same as Critical pair (3) right/left.

Critical pair (5) left/right

A′ = K[∀̇(λxo(Dv(Fx)(∀̇G)))]←− B = K[Dv(∀̇F )(∀̇G) −→ B′ = K[∀̇(λy(Dv(∀̇F )(Gy)))]) −→∗ B0

We write t1 ∼ t2 if there exist a context K and terms θ1, θ2, H1, H2, R such that
A′ −→∗ t1,
B′ −→∗ t2 −→∗ B0,
t1 = K[∀̇θ1]
t2 = K[∀̇θ2]
∀̇θ1 ≡ ∀̇θ2

θ1x −→ ∀̇H1

θ2x −→ ∀̇H2

H1y −→∗SKI R∗←−SKI H2x

and if θ2 −→∗ θ′2 then there exist θ′1, H ′1, H ′2, R having the same properties as above.
We have A′ ∼ B′. We prove, by induction on the length of t2 −→∗ B0, that if t1 ∼ t2 then
CO exists.

If t2 = B0 then we take C0 to be a normal form of t1.
If t2 −→ t′2 −→∗ B0 then
either t′2 = K[∀̇θ′2] with θ2 −→ θ′2 then K[∀̇θ′1] ∼ t′2 (for θ′1 obtained by the last assumption
of t1 ∼ t2) and the induction hypothesis applies;
or t′2 = K′[∀̇θ2] with K −→ K′ then K′[∀̇θ1] ∼ t′2 and the induction hypothesis applies;
or t2 = L[ε(∀̇θ2)] and t′2 = L[∀y.ε(θ2y)] then L[∀y.∀x.ε(R)]∗←− t′2 −→∗ B0. Since |t′2| <
|B|, there exists, by the main induction hypothesis, D0 such that L[∀y.∀x.ε(R)] −→∗ D0
and D0 u B0. Moreover we have t1 −→∗ L[∀x.∀y.ε(R)].

if L = ∀~w.� then D0 = ∀~w.∀y.∀x.G with ε(R) −→∗ G then we take C0 to be
∀~w.∀x.∀y.G.
if L = ∀~w.(L1 → L2[�]) (resp. L = ∀~w.(L1[�] → L2)) then D0 = ∀~w.(L1 →
L2[G1]) (resp. ∀~w.(L1[G1]→ L2)) with G1 a normal form of ∀y.∀x.ε(R) then we take
C0 = ∀~w.(L1 → L2[G2]) (resp. C0 = ∀~w.(L1 → L2[G2])) with G2 a normal form of
∀x.∀y.ε(R). We have C0 u D0 since G2

∗←− ε(∀̇(θ1)) ≡ ε(∀̇θ2) −→∗ G1.
or t2 = L[Dv(∀̇θ2)Z] and t′2 = L[∀̇λy(Dv(θ2y)Z)] then t1 = L[Dv(∀̇θ1)Z] and we have
L[∀̇λx(Dv(θ1x)Z)] ∼ t′2 and the induction hypothesis applies.
or t2 = L[DvZ(∀̇θ2)] and we proceed as in the previous case.
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Critical pair (5) right/left

A′ = K[∀̇(λy(Dv(∀̇F )(Gy)))]←− B = K[Dv(∀̇F )(∀̇G)] −→ B′ = K[∀̇(λxo(Dv(Fx)(∀̇G)))] −→∗ B0

Same as Critical pair (5) left/right.

Critical pair (6) right/left

A′ = K[∀̇(λxo(D0F (Gx)))]←− B = K[D0F (∀̇G)] −→ B′ = K[F ] −→∗ B0

We write t1 ∼ t2 if there exist a context K and two terms θ1, θ2 such that
A′ −→∗ t1,
B′ −→∗ t2 −→∗ B0,
t1 = K[∀̇θ1]
t2 = K[θ2]
θ1x −→∗ θ2
∀̇θ1 ≡ θ2

We have A′ ∼ B′. We prove, by induction on the length of t2 −→∗ B0, that if t1 ∼ t2 then
CO exists.

If t2 = B0 then we take C0 to be a normal form of t1.
If t2 −→ t′2 −→∗ B0 then
either t′2 = K[θ′2] with θ2 −→ θ′2 then t1 ∼ t′2 and the induction hypothesis applies;
or t′2 = K′[θ2] with K −→ K′ then K′[∀̇θ1] ∼ t′2 and the induction hypothesis applies;

Critical pair (6) right/left

A′ = K[F ]←− B = K[D0F (∀̇G)] −→ B′ = K[∀̇(λxo(D0F (Gx)))] −→∗ B0

We write t1 ∼ t2 if there exist a context K and two terms θ1, θ2 such that
A′ −→∗ t1,
B′ −→∗ t2 −→∗ B0,
t1 = K[θ1]
t2 = K[∀̇θ2]
θ2x −→∗ θ1
θ1 ≡ ∀̇θ2
if θ2 −→∗ θ′2 then there exists θ′1 such that θ1 −→∗ θ′1 and θ′2x −→∗ θ′1.

We have A′ ∼ B′. We prove, by induction on the length of t2 −→∗ B0, that if t1 ∼ t2 then
CO exists.

If t2 = B0 then we take C0 to be a normal form of t1.
If t2 −→ t′2 −→∗ B0 then
either t′2 = K[∀̇θ′2] with θ2 −→ θ′2 then K[θ′1] ∼ t′2 for θ′1 obtained by the last assumption
of t1 ∼ t2 and the induction hypothesis applies;
or t′2 = K′[∀̇θ2] with K −→ K′ then K′[θ1] ∼ t′2 and the induction hypothesis applies;
or t2 = L[ε(∀̇θ2)], t1 = L[ε(θ1)] and t′2 = L[∀x.ε(θ2x)] then L[∀x.ε(θ1)]∗←− t′2 −→∗ ∀~x.B0.
By the main induction hypothesis there exists D0 such that L[∀x.ε(θ1)] −→∗ D0 and
D0 u C0.

if L = ∀~w.� then D0 = ∀~w.∀x.G with ε(θ1) −→∗ G and we take C0 to be ∀~w.G.
if L = ∀~w.(L1 → L2[�]) (resp. L = ∀~w.(L1[�]→ L2)) then D0 = ∀~w.(L1 → L2[∀x.G])
(resp. ∀~w.(L1[∀x.G] → L2)) with ε(θ1) −→∗ G and we take C0 = ∀~w.(L1 → L2[G])
(resp. C0 = ∀~w.(L1 → L2[G])). We have C0 u D0 since G∗←− ε(θ1) ≡ ε(∀̇θ2) −→∗
∀x.G.
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or t2 = L[Dv(∀̇θ2)Z] and t′2 = L[∀̇λx(Dv(θ2x)Z)] then t1 = L[Dvθ1Z] ∼ t′2 and the
induction hypothesis applies;
or t2 = L[DvZ(∀̇θ2)] and we proceed as in the previous case.

Critical pair (7) left/right

A′ = K[∀̇(λxo(D1(F x)G))]←− B = K[D1(∀̇F )G] −→ B′ = K[G] −→∗ B0

Same as Critical pair (6) left/right.

Critical pair (7) right/left

A′ = K[G]←− B = K[D1(∀̇F )G] −→ B′ = K[∀̇(λxo(D1(F x)G))] −→∗ B0

Same as Critical pair (6) right/left.
J
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