
Dedukti in a Nutshell

Ronan Saillard

MINES ParisTech

ronan.saillard@cri.ensmp.fr

Dedukti [1] is a proof checker based on rewriting and dependent types. It implements the λΠ-
calculus modulo, a very expressive logical framework introduced by Cousineau and Dowek in [3].
The combination of rewriting and dependent types makes it a convenient tool for writing proof and
programs.

For instance let us consider a Dedukti transcription of how the addition of Peano naturals is usually
defined in Coq [2] or Agda [4]:

Nat : Type.

O : Nat.

S : Nat -> Nat.

plus : Nat -> Nat -> Nat.

[n : Nat] plus O n --> n

[n1 : Nat, n2 : Nat] plus (S n1) n2 --> S (plus n1 n2).

The definition of plus is asymmetric in its arguments. In particular, O is computationally left-
neutral but only propositionally right-neutral (for all term n of type Nat, plus O n is syntactically
convertible to n but plus n O is not).

This difference becomes crucial in presence of dependent types. Let us consider the definition of
vectors defined as lists depending on their length:

A : Type.

Vector : Nat -> Type.

Nil : Vector O.

Cons : n : Nat -> A -> Vector n -> Vector (S n).

append : n1 : Nat -> n2 : Nat ->

l1 : Vector n1 -> l2 : Vector n2 -> Vector (plus n1 n2).

[n : Nat, l : Vector n] append Nil l --> l

[n1 : Nat, n2 : Nat, l1 : Vector n1, l2 : Vector n2, a : A]

append (S n1) n2 (Cons n1 a l1) l2 --> Cons (plus n1 n2) a (append n1 n2 l1 l2).

For all terms n and l of types Nat and Vector n, append l Nil is not convertible to l and these
two terms don’t even have the same type; append l Nil has type Vector (plus n O) which is not
convertible to Vector n so append l Nil is not even propositionally equal to l.

In Dedukti, we can add rewrite-rules to get a symmetric version of plus.

To our definition of plus, we can add these rules:

[n : Nat] plus n O --> n

[n1 : Nat, n2 : Nat] plus n1 (S n2) --> S (plus n1 n2).

1



This way, append l Nil becomes propositionally equal to l and we can even add the rewrite-rule:

[n : Nat, l : Vector n] append l Nil --> l.

This technique is handy but comes at a price: whenever a rewrite rule is added, we have to make
sure that the system remains confluent and strongly normalizing. This property needs to be verified
either by the system or by the user. In our example, we introduced critical pairs. However we can
show that they are joinable and, combined with the strong normalization, this implies the confluence
of the system.

This talk will introduce Dedukti through a series of examples showing how rewrite rules can be
conveniently used to write programs in a dependently typed framework. We will also present efficient
encodings of different logics into the λΠ-calculus modulo and show how to check theorems in these
logics with Dedukti.

Bibliographie

[1] Mathieu Boespflug, Quentin Carbonneaux, Olivier Hermant, and Ronan Saillard. Dedukti :
http://dedukti.gforge.inria.fr.

[2] The Coq Development Team. The Coq Reference Manual, version 8.4, August 2012. Available
electronically at http://coq.inria.fr/doc.

[3] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus
modulo. In Simona Ronchi Della Rocca, editor, TLCA, volume 4583 of LNCS, pages 102–117.
Springer, 2007.

[4] Ulf Norell. Dependently typed programming in agda. In Advanced Functional Programming, pages
230–266, 2008.

2

http://dedukti.gforge.inria.fr
http://coq.inria.fr/doc

