Combining Data and Computation Distribution
Directives for Hybrid Parallel Programming

A Transformation System

Rachid Habel

TELECOM SudParis
habel.rachid@telecom-sudparis.eu

Frecérique Silber-Chaussumier

TELECOM SudParis
frederique.silber-chaussumier@telecom-

Francois Irigoin
MINES ParisTech
francois.irigoin@mines-paristech.fr

sudparis.eu

Elisabeth

Brunet

TELECOM SudParis
elisabeth.brunet@telecom-sudparis.eu

Abstract

This paper describefSTER a directive-based programming model
for hybrid shared and -distributed memory machines. The original-
ity of our work is the definition and an implementation of a unified

high-level programming model addressing both data and computa-

tion distributions, providing a particularly fine control of the com-
putation. The goal is to improve the programmer productivity while
providing good performances in terms of execution time and mem-

ory usage. We define a generic compilation scheme for computation

mapping and communication generation. We implement the solu-
tion in a source-to-source compiler together with a runtime library.
We provide a series of optimizations to improve the performance of

the generated code, with a special focus on reducing the commu-

nications time. We evaluate our solution on several scientific ker-
nels as well as on the more challenging NAS BT benchmark, and
compare our results with the hand written Fortran MPI and UPC
implementations.

The results show first that our solution allows to make explicit

Keywords Distributed-memory, shared-memory, source-to-source
transformation, OpenMP, MPI, Optimization

1. Introduction

Clusters of multi-core CPUs and hardware accelerators are cur-
rently the most powerful machines, as stated in the Top 500 classi-
fication [1]. These architectures offer very high theoretical perfor-
mance peaks, but leveraging a sustained performance at a reason-
able programming effort is the major challenge for end users. We
propose dSTEP, a high-level directive based programming model
with three goals:

1. offering good performances on hybrid parallel machines, com-
pared to hand-written codes,

2. processing very large data sets,
3. simplifying programming by offering high-level directives.

The originality of our work is the definition and an implemen-

the non trivial parallel execution of the NAS BT benchmark using tation of a unified high-level programming model addressing both
the dSTEP directives. Second, the results show that our generatedyata and computation distribution with a fine control of the sched-
MPI + OpenMP BT program runs with a 83.35 speedup over the e constraints of the computation.

original NAS OpenMP C benchmark on a hybrid cluster composed | this paper, we first study the related work on programming
of 64 quadricores (256 cores). Overall, our solution dramatically nypyrig parallel machines in section 2. In section 3, we present the
reduces the programming effort while providing good time execu- programming model of dSTEP. We detail our generic compilation
tion and memory usage performances. This programming model is scheme for dSTEP programs in section 4. In section 5, we present
suitable for a large variety of machines as multi-core and accelera- some optimizations focusing particularly on communications cost

tor clusters.

Categories and Subject Descriptors CR-number $ubcategory
third-level

Permission to make digital or hard copies of all or part of this work for persmnal
classroom use is granted without fee provided that copies are not made outbstrib
for profit or commercial advantage and that copies bear this notice and the fubiritati
on the first page. Copyrights for components of this work owned by othamrsAEM
must be honored. Abstracting with credit is permitted. To copy otherwise, obligh,

to post on servers or to redistribute to lists, requires prior specific peoniasid/or a
fee. Request permissions from permissions@acm.org.

CONFyy, Month d—d, 20yy, City, ST, Country.

Copyright© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

reduction. In section 6, we expose some experiments that validate
our solution. We conclude and present our future work in section 7.

2. Related work
2.1 Libraries

MPI [2] is the standard API for programming distributed memory
systems. It offers a rich support for process management, topgolog
collective and point-to-point communications as well as for one-
sided communications since MPI-2. MPI is at a very low level of
abstraction and requires an important programming and debugging
effort. Global arrays [3] allow for the allocation of objects in the
global space. Each processor can asynchronously read angk upda
the global elements, and the necessary synchronizations for main-
taining data coherency must be handled by the programmer. The

GASNEet [4] library is used essentially as a runtime support for the processing very large data sets. OmpSs [21] is a task parallel pro-
PGAS languages. It focuses particularly on the efficient implemen- gramming model targeting several architectures. The implemen-
tation of one-sided communications. StarPU [5] is a task-oriented tation of OmpSs on clusters [22] is based on a centralized man-
library for hybrid programming. It schedules the computation ef- agement of tasks and communications, resulting in a bottleneck.
ficiently on the different available computation resources. It offers XcalableMP [23] offers separate directives for data and compu-
functions on top of MPI for distributed memory programming and tation distributions, but requires from the programmer the use of
offers a support for data distribution in an element-wise fashion. explicit directives for communications. HMPP [24] is a program-
ming model aimed at programming hardware acelerators which in-
2.2 Programming languages fluenced the OpenACC programming model [25, 26]. These mod-

High Performance Fortrari6] (HPF) is the first standardization ef- els target accelerators programming and do not handle distributed
fort for programming distributed memory machines, constructed Memory clusters.

on top of the Fortran _Ianguage._ It offers a conveni_ent set of direc- 2.4 Automatic solutions

tives for data distribution over virtual templates which are mapped

to physical processors. The HPF compilers use the so-aalieer The goal here is to hide the distribution to the programrSeit-
computesule to assign computation to processors. HPF compil- Ware Distributed Shared Memor(BDSM) solutions, like Tread-

ers then automatically generate the necessary communications. Théarks [27], emulate a logical shared memory over a physically
dHPF [7] compiler developed at Rice University brings many op- distributed memory. It handles memory updtaes at the page level.
timizations over former HPF compilers. It extends the owner com- These solutions suffer from important overheads due to page syn-
putes rule to unions 0N HOME sets of arbitrary read or write ~ chronization and updates. The PARADIGM [28] compiler tries to
references. dHPF also implements the multi-partitioning distribu- extract automatically the distribution of data of a program stati-
tion together with optimizations like partial replication of local cally. However, automatically computing an optimum alignment
computation to avoid some communications. The HPF language and distribution of data has been proved NP-complete by Li and
did not meet the success intended by its designers for some of theChen [29]. Yukiet al. [30] use the polyhedral model to automat-
reasons described by Kennedyal. [8]. The Partitioned Global ically distribute data by extending parametric loop tiling to dis-
Space Languagg®GAS) aim at a better explicit programming of tributed memory [31]. This solution is limited to static-control pro-
distributed memory systems at the language level. Co-Array For- grams [32] and do not give hints on how to manage data distribution
tran [9] (CAF) is a PGAS based on Fortran 95 with the central no- Over several successive loop nests.

tion of co-dimension. A co-dimension is the replication of the ele- .

ments of the corresponding dimension on all the processors, calledz'5 Our dSTEP solution

images. The replication results globally in a co-array which is ac- The existing solutions and programming models do not meet the
cessible from any image. The elements on any specific image cangoals mentioned in the introduction. Libraries are too low level and
be accessed by sub-scripting the co-array with the image identi- address generally only the distributed memory aspect. Program-
fier. A newer version of CAF, called CAF 2.0 [10] is developed at ming languages put the burden of expressing and synchronizing
Rice University. It notably adds support for low level features in- distributed data accesses on the programmer. Compiler directives of
spired from MPI like sub-sets of images and topology. Unified Par- current solutions address either shared-memory or accelerator tar-
allel C (UPC) [11] is another PGAS on top of the C programming gets. The extension solutions to distributed memory replicate the
language. Data objects are made globally addressable by declaringlata. Transparent solutions like SDSM come with unpredictable
them asshared Both CAF and UPC require the use of low-level performance, and automatic transformations based on the polyhe-
synchronization constructs to ensure the coherency of the elementsiral model are restricted to static control programs and it is not clear
allocated in the global space. Chapel [12] and X10 [13] are two how they handle the problem of data and computation distribution
more recent PGAS. The Chapel language, developed by CRAY, for an entire program.

uses the concept dbcale to abstract the logical units of the par- In the next section, we introducdSTER a new programming
allel machine. Data can be defined on index domains of integers solution for better programming of hybrid parallel architectures.
which are distributed over the locales. Chapel uses the concept of

halo to declare replicated elements on distributed arrays. Computa-3, Qur programming model

tion distribution is expressed using tf@all construct and can be
controlled on each locale using tla clause. X10 offers support
for both classic and user-defined data distributions plares The
distributed data is accessed by asynchronous activities launched o
remote locales. While the PGAS languages offer an explicit con-
trol over data distribution, they put on the programmer the burden
of synchronizing all the accesses to globally allocated data.

In this section we presetSTER a directive-based programming
model for dense scientific applications. We aim at distributing ar-
fay data structures and loop nest computations. For this purpose, we
propose thaistribute directive, inspired by HPF, to distribute ar-
rays and th@ridify directive, inspired by HMPP, to distribute loop
nest computations. The distribution of each array and each loop
nest is made on a virtual grid of processors based on the available
2.3 Compilation directives processors given at execution time.

OpenMP [14] is thede factostandard for programming shared 3.1 Array distribution
memory parallel computers. It is a set of directives and run-
time functions to exploit data parallelism essentially at the loop
level. OpenMP 3.0 adds support for task parallelism. Even though
OpenMP 4.0 adds support for accelerators programming in dIS_distribution which allows blocks to be distributed along an array

tr_ibuf[ed host/device environm_ent, it does not allow to program diagonal. A multi-partitioned distribution is indicated by tii&ig
distributed memory systems in general. Some research projects '

worked on the adaptation of OpenMP to clusters of CPUs like dis- g?é:g'jrré?n example of such a distribution is given in example
tributed OpenMP [15], Cetus [16] and STEP [17, 18] and even for '

clusters of GPUs like [19] and [20]. In these solutions, data are Thehalo. In addition, we propose the definition ohalo. When
replicated on the compute nodes, limiting therefore the ability of defining a halo, the programmer defines some replicated data. A

The dSTEP distribute directive. It expresses a distribution type
for each array dimension. In addition to the classhdatk cyclic,
replicateddistribution types, we also propose the multi-partitioned

Distribution type | Semantics

c) distribute A(1:cyclic(10):1, 1:block:1)

a) distribute A(1:block:1, *)

block

=

The loop iterations are divided into blocks ¢
equal size, each block is assigned to a single g
cessor for that dimension

ro-

=

cyclic(blocksize) | The loop iterations are divided into blocks d
equal size defined by the programmer and

signed in a round-robin fashion to processors

as-

double A40(40] — b distribute A(*, L:block)
.
——
p2
e) distribute A(1:block:1, 1:diag:1) f) distribute A(block, _H_:block :_H_)
d) d\slr\bblocck) E @
-
. msa=
nmEs
1 [

Figure 1. 2-D array distribution examples on 4 processors

halo is composed of extra elements contiguous to a distributed di-

mension on each processor. The purpose of the halo is to satisfy

the locality of all the data accesses of the program. Based on this
halo our tool automatically generates the necessary communica-
tions when updates are necessary.
Listing 1 presents the syntax of the distribute directive. The op-
tional quantityhlow (resp.hup) is the lower (resp. upper) halo of
an array dimension.

We define_H _as a specific halo value that indicatastal halo:
remaining elements of the dimension are spanned in the lower and
upper directions (see exampef Figure 1).

#pragma dstep distribute A([hlow:]dist_typel[:hupl,
o)

Listing 1. dSTEPdistributedirective syntax

3.2 Loop nest distribution

The dSTEP gridify directive. It offers the programmer a conve-
nient way to express both the distribution type and the schedule
type of any loop nest dimension. Thiéag qualifier indicates that
the corresponding distribution is multi-partitioned.

#pragma dstep gridify(il(dist=dist_typel[,diagl; sched
=sched_type),
i2(¢...), ...) [private(var_list)] [firstprivate(

var_list)] [reduction(op:var_list)]

Listing 2. dSTEPgridify directive syntax

Table 1 defines the different possible values fordhe andsched
attributes, as well as their semantics. The default valued#far
andsched are block and parallel, respectively.

Differenceswith HPF. Unlike HPF, dSTEP does not use the no-

tion of data owner. Array elements are distributed over processors
and the halo introduces a certain level of replication. The com-
putation distribution and scheduling are entirely expressed in the

gridi fy directive and each processor can read and update any el-

ement allocated locally. The dSTERvner schedule is different
from the owner-computes rule too. In dSTEP, it means that for a
given iteration slice only the processors on which the accessed el-

* (replicated) All the iterations of the dimension are assigned|to
each processor in a single block

The loop iterations are divided into blocks ¢

=Y

all(block size)

equal size defined by the programmer. All the
blocks are assigned to each processor.
Schedule type | Semantics
parallel The iterations can be executed in parallel.
ordered The iterations must be executed in the initial gr-
der.
owner Only the processors on which the accessed ¢le-

ments are allocated execute the corresponding
erations.

j it-

Table 1. Semantics of loop distribution and schedule types

it. For example, if a column of a matrix happens to be in the halo
space on a processor, then this column is also allocated on another
processor. Amwner update of this column results in the computa-
tion on both processors: there is no owner of the column, and there
is no communication triggered along this dimension.

4. Compilation
41 PIPS

PIPS [33, 34] is an open source compilation workbench that imple-
ments powerful interprocedural, data-based program analyses and
transformations. PIPS is used, among other applications, to paral-
lelize scientific programs. One important building blocks of PIPS
are the array regions [35]. An array region is a set of array elements
described by a system of linear constraints defining a convex poly-
hedron. Array regions are used to represent program statements ef
fects on array elements. Depending on the action upon the array el-
ements, array regions can be of tyfpEADor WRITE To represent

the flow of array elements through the program, two other types of
array regionslN andOUT, are defined in PIPS. For a given portion

of code, aniN region is theREADregion for this portion of code
that is used before possibly being redefined. @IT region is a
WRITEregion the elements of which are used at some future point
of the program. In this work, we usREADandWRITEregions to
compute the sets of accessed elements, necessary for the compila-
tion of iterations slices and th@UT regions used to generate the
communications.

Let us notice that these array regions analyses are limited to affine
expressions in array subscripts.

4.2 Virtual grids of processors

Array elements and loop nests iterations are distributed over virtual
grids of processors constructed with the functions defined below.

Simple grid of processors. Functionid_in_grid maps a flat pro-
cessor identifier in the s@ = [0, nb_procs] to a vector identifier
in a virtual grid of processors defined by the #&t.,, = {6 <

P < P’T} where P’ is a diagonal matrix containing the number
of processors along each dimension of the giilandid_in_grid
are defined using MPI topology functions.

Extended virtual grid of processors. Functionextend_id (eq. 1)
maps an identifier in a virtual grid and a virtual processor number

ements are allocated do the computation and the others just skipto an identifier in arextendedvirtual grid of processors defined

by the setP,,..c = {p|0 < p < P1}. The diagonal matrixP

is constructed from the matri®’ by adding an extra dimension
corresponding to the diagonalized dimension. The number of vir-
tual processors along the diagonalized dimension if apwgcs, is

equal to the minimum of processors along the other dimensions of

the grid, excluding units (corresponding to replicated dimensions).
We define the se¥ asV = [0, vprocs[. mod, is the component-
wise modulo operator for vectors.

If no dimension is diagonalized then the distribution is not
multi-partitioned and we getprocs = 1 andextend_id be the
identity function. We handle at most one diagonalized dimension.

Pgria X V = Pgria

(p',v) = (¢’ + vI)mod, PT (@)

We illustrate the construction of the virtual grid of processors
using theid_in_grid andextend_id functions in Figure 2. Th ex-
ample shows a multi-partitioned distribution of a three-dimensional
array. Thedistributedirective indicates that the third dimension of
array A is diagonalized. If the program is executed on four pro-
cessors, a 3-dimensional extended virtual grid of processors-s con
structed from the flat four processors as illustrated on the left of
Figure 2. In this example, we hawgrocs = min(2,2) = 2. On
the right part of the figure, we show how the elements of array A
are distributed on each processor.

extend_id :

#pragma dstep distribute A(block, block, diag)
double A[6][4][4] ;

Processors
0 1 2 3

=)
ht

11
=)

- . 0
l id_in_grid p=0,v=0,p=|0|,p
0

0
0,0 0.1)

Simple
virtual grid 0 0
p=Lv=0,p=|1|,

2 3
(1,00 1)

l extend_id

1
p=2,v=0,p=|0|,

Extended
virtual grid 1 1
p=3,v=0,p=|1|,

1
p=3,v=1,p=1
® Element of Aallocated locally ©© ee 0 1
e Element of A not allocated locally

Figure 2. Example of array distribution over an extended virtual
grid of processors using a multi-partitioned distribution

4.3 Distribution of array elements

We use a linear algebra model inspired by the work of Coehlo
al [36]. Compared to their model, we do not use templates but we
introduce the halo and the multi-partitioning support. For an ar-
ray x, the diagonal matrice®,, P, and Hlow, contain respec-
tively the block sizes, the processors of the virtual grid and the

lower halos. Equation 2 maps an element in the distributed domain,

(Pz, s, L), to an element in the sequential domain. It defines the
array_element function. The first term of the equation defines the

processors in a virtual grid for the loop nést The diagonal matrix
Ly, (resp.U;,) contains the lower (resp. upper) bounds of the
iteration space ofn. Equation 3 defines thiwop_nest_iteration
function.

Z: LlnT+ BlnPlnEln + Blnigln + l_l‘n (3)

4.5 Other definitions

The following definitions will be used in the compilation scheme.
Function iteration_slice computes the set of iterations for an
extended processor identifier and a cycle of a loop nest. The loop
nestin is represented by the sbt = {i|L;,1 < i < Up,1}.

Cin = {d0 < &< [(Uin — Lin)B;,! P, ' 11} is the set of cycles

of the loop nest.

iterations_slice : Py, X Cry — p(In)

(ﬁlnv gln) = {;l N N N
loop_nest_iteration(pip, Cin,0) < i A
i< loop_nest_iteration(pyn, Cin, Bin T) A

Llnf < iA Z< Ulnf}

4

Functionbelongs_to finds the cycle and the virtual processor to
which a rectangular region of array elements belong. Function
extend_replicated extends the iteration slice along the replicated
dimensions to the original extentin. Functionowner_dimensions
constructs the set of array dimensions accessed by loop nest indexes
with an owner schedule. Functigmoject eliminates from a vec-

tor the dimensions contained in a set of dimensions. Fungtien
computes the position of a vector in a lexicographically ordered set
of vectors.

4.6 Representation of a loop nest

Algorithm 1 represents of a loop nest wittbady statement con-
taining references to distributed arraysepresented by syntactic
objectsX. Them!" reference to array is represented by a func-
tion re £ of the iteration vecto.

Algorithm 1 Syntactical representation of a loop nest annotated
with thegridify directive
#pragma dstep gridify(...) [private(vdist)] [firstprivate(var_list)] [re-
duction(op:varlist)]
for 7 € {i|Ly, 1 < 7 < Uy, T} with incrementinc do
body(..., X[refa*(i)],...)
end for

4.7 Data allocation

From an original array: of dimensiond and of sizes expressed in a
diagonal matrixD, we generate the distributed array allocation as
defined by Algorithm 2. The generated declaration of a distributed
array is augmented by two extra dimensions corresponding to the
cycles and the virtual processors to handle multi-partitioning.

Algorithm 2 Data allocation for a distributed array

Input: D, B, Hlow, Hup,C,V
Output: The replacement of the original declaration by a distributed

cycles offset, the second term defines the blocks offset, the third 1 generate_allocation(X[Do,ol...[Da—1,a-1]) =

one is the lower halo correction and finally thevector is the local
offset within the local memory.
4.4 Distribution of loop iterations

The distribution of loop iterations is defined with a similar model,
where the diagonal matricés;,, and P,,, define the blocks and the

2: for each dimensio# of arrayx do

3: if dimensionk has a total halthen Ly, ;, = Dy, i,
4 else

5: Lk,k :HZO’LUkyk +Bk,k +Hupk,k

6 end if

7: end for

8: X[|CII[IVII[Lo,o]--[La—1,a—1]

4.8 Computation mapping

We distinguish the compilation of a parallel loop nest, which has Algorithm 4 compile_ordered

no ordered dimension and the compilation of an ordered loop nest, Input: In_stmt, body, Vin, Ci»

which has at least one ordered dimension.

Parallel loop nest. The compilation of a parallel loop nest is de-
scribed in Algorithm 3. We first enumerate and compile the itera-
tion slices by scanning the virtual processor and the cycle dimen-
sions. We generate the code corresponding ta¢hel communi-
cations (see Section 4.9.1) of the iteration slice just after its com-
pilation. After that, we generate the code for distributed reductions
on scalar variables if any. Finally, we generate igeivecommu-

receive communications.

6

L . . 7
nications (see Section 4.9.2) and the completion of the send and .
9

Algorithm 3 compile_parallel 10:
Input: In_stmt, body, Vi,,Cin 11:
Output: In_stmt compiled for a hybrid target 12:
1: p = rank(); pin, = td-in_grid;, (p) '
2: for vy, €V, do > No order constraint 13:
3: Pin = extend_id(Pin, Vin) 14:
4: for &, € C, do > No order constraint 19
5: compile_iteration._slice(In_stmt, body, p, Pins Cin) 16:
6: generate_sends(In_stmt, p, Pins Cin) 17
7: end for 18
8: end for 19
9: if reductionthen 20.
10: generate_parallel_reductions(op, var_list) 21
11: end if 22
12: generate_recvs(In_stmt, p, () 23
13: generate_completes(In_stmt) 24

wne

an

Output: In_stmt compiled for a hybrid target
:p=rank()
! Pin = id-in_gridi, (p)

for vy, scan, V;, do
dimensions

Din = extend_id(Dip, vin) _ _

for ¢, scan. C;,, do > Enumeration constrained by the ordered

> Enumeration constrained by the ordered

dimensions

iteration_set = iteration,slice(ﬁln, Cin)
for each arrayX written inin_stmt do
P = td_in_grid; (p)
for (ﬁn,c’ln) € Before(pin, Cin) do
accessedy = read-region(z, body, iteration_set)J
write_region(z, body, iteration_set)
(Cu» va) = belongs_to(pz, accessedy)
generate_sync-recv(stmt_ln, Py Cos ﬁ;n, C_;ln)
add(Received, x, Py, &), (ﬁin, in))
end for
end for .
compile_iteration_slice(body, p, Din, Cin)
generate_sends(In_stmt, p, Pin, Cin)
end for

: end for
. if reductionthen

generate_parallel_reductions(op, var_list)

endif
. generate_recvs(In_stmt, p, Received)
. generate_completes(In_stmt)

Ordered loop nest. The compilation of an ordered loop nest pre-

sented in Algorithm 4 is more complicated because it has to ensureAlgorithm 5 compile_iteration_slice

the conservation of the sequential order of the ordered dimensions.
First, we generateecv communications for iteration slices which
have some other precedent iteration slices, defined byBéiiere

set (line 10). Here, we generate a blocking receive to ensure that .
the computation does not proceed until the complete reception of 3.
the dependency data. We then save the precedent iteration slice toa:
not be reconsidered in the remainirgcv communications. The 5:
compilation of each iteration slice and the generation of the corre- 6:
spondingsendcommunications is identical to the parallel case. Af- 7
ter the loop nest, we generate the code for distributed reductions if 8f
any and the code faecvcommunications for the iteration slices of

remote processes which were not considered in the blocking phase, .
of therecvs (lines 21-23). Finally, the communications completes 74:
12:
13:

slice (see Algorithm 5) consists of first finding the locally accessed 15f

are generated.
Compilation of aniteration slice. The compilation of an iteration

memory for each array. This is done by calling thdongs_to

function. If the accessed elements are not allocated locally, than wej7-
raise a bad distribution exception. In presence of a loop nest owner1g:
dimension, we check that all the accessed elements for each arrayg.
are either allocated locally or not allocated at all. We then perform 20:
a domain change, by translating the sequential references into the21:
distributed domain (line 28). We note that each processor executes22:

its assigned iterations (line 27). 54315
Exploiting the different cores on a shared memory node. The it- 25

26:
27:
28:
29:
30:

eration vectoi combines all the distributed dimensions of the loop
nest. We insert anmp parallel fordirective at the first parallel di-
mension of vectof. If there is an enclosing ordered dimension, we
insert afirstprivateclause containing the appropriate variables, par-
ticularly the enclosing loop indexes. private clause is automati-

Input: body, p, pin, Gin
Output: the code of an iteration slice for a hybrid target

1: iteration_set = iteration,slice(ﬁlm Cin)

for each owner dimensiokin loop nestn do
extend(iteration_set, k)
end for
computes = true
skips = true
for each arrayr referenced ifn_stmt do
Do = id-in_grids(p)
accessedy read_region(z, body, iteration_set) U
write_region(x, body, iteration_set)
(Cz,vz) = belongs_to(pz, accessedy)
if element_undefined((Cx,vs)) then
if there is no owner dimensidhen
Abort("Bad distribution”)
else
computes = false
end if
else
Do = extend_id(Pu, va)

shfftx = array,element(ﬁz, Cx, 6)
skips = false
end if
end for
if !(computes @ skips) then
Abort("Bad distribution”)
end if
if computes then

> Xor

for 7 € iteration_set with incrementinc do
body(..., X[pos(cz,Ce)|[ve][refT (i) — shifts],...)
end for
end if

cally created for all the indexes specified in tpédify directives

and for any innermost indexes which are not specified. In the pres-

ence of areductionclause, the same clause is generated with the
corresponding OpenMP directive.

4.9 Communication Generation

The generation of the communications uses the halos declared for

each array and the PIP&RITE and OUT regions. Asendis a

point-to-point communication message which allows a processor

4.9.2 Generating receive communications.

The generation of receive communications is symmetric to the gen-
eration of send communications. There are two main differences:

1. We pass as a parameter to gemneraterecvsfunction theRe-
ceivedset, which contains the remote iteration slices the contri-
bution of which have already been considered (see the compi-
lation of an ordered loop nest in Algorithm 4),

to propagate the updates of array elements to another processora |n the blocking version of the recv communication generation,

which uses the value of these elements in a future computation.

A receivecommunication is the symmetric operation of a send
communication.

4.9.1 Generating send communications.
The generation of send communications is described in Algo-

we indicate explicitly for which local memory block to consider
the contribution of a specific remote iteration slice.

5. Optimizations
5.1 Extension of the loop iteration domain

rithm 6. For each iteration slice, we compute the written elements |ieration space boundaries and subscript expressions may result in
which are forwardly exposed in the program based on the OUT 5ccesses which require a greater halo than expected. This situation
regions (line 12). We then scan the allocated memory on the otherjg jjjystrated in Figure 3 for an execution of the code of Listing 3

processors and compute the intersection between the locally live o three processors. The access functions for atagad B will
region and the remote memory for each array. In fact, we scan only require a halo greater than 1. This leads to additional communi-
the processors with common replicated elements for each array,cations as the modified elements are forwardly exposed. We can

called neighbours known thanks to distribution information. For
non-empty intersections, a non-blocking MPI send communication
is generated.

Algorithm 6 generate_sends

Input: ln,stmt,p,ﬁm, Cin
Output: In_stmt with send communications inserted

1: generate_sends =

2! Pip = id-in_grid;, (p) N

3: iteration_set = loop_nest_iterations(Pip, Cin)

4: for each owner dimensiohin loop nestin do

5: iteration_set = extend(iteration_set, k)

6: end for

7: for each array written inln_stmt do 1
8: ownery = owner_dimensions(In_stmt,) 2
9. Py =id_in_gridy(p) 3
10: write; = write_region(z, body, iteration_set) 4
11: outy, = out_region(z, body) 2
12: live, = writegy Nouty 7
13: if live, # empty_region then 8
14: (Cz,vz) = belongs_to(pz, lives) 9
15: if element_defined(cz,vs) then 10
16: ﬁz = extend_id(Px, vz) 1
17: for p’ € P do > scanning other processors
18: P, = id.in_grids (p)
19: for v, € V, do
20: 7. = extendid(pl,,v))
21: if project(p,, ownerz) #

project(px, ownery) then

22 for ¢/, € C, do

23: to_send = live,N
{(i|array,element(ﬁl, cz, 6) <ad<
array_element(§,, czﬂ/, L.1)}

24: if to_send # 0 then

25: sh?ftac = ar‘ray,element(;5'957 Cr, 6)

26: async-send(X [pos(Cz, Cx)][Va],
p’, to_send, shfftw)

27: end if

28: end for

29: end if

30: end for

31: end for

32: end if

33: end if

34: end for

avoid these communications by applying an extension of the iter-
ation space of dimension We introduce the optionaxt clause

to indicate, for each dimension of a loop nest, an extension to the
lower and upper bound of the dimension. The goal of this optimiza-
tion is to adjust the iteration space for a better fit with the distributed
elements of the accessed arrays. This optimization does not imply
any redundant computation; it yields to a smaller halo and mini-
mizes the induced communication. In our example, the use of the
extclause (line 9) reduces the needed halo for aBdline 2), and
totally eliminates the needed halo and thus the communication on
array A (line 5).

12| ...

#pragma dstep distribute A(2:block:2)
//#pragma dstep distribute A(block)
double A[15];

#pragma dstep distribute B(3:block:3)
//#pragma dstep distribute B(1:block:1)
double B[15];

#pragma dstep gridify (i)
//#pragma dstep gridify (i(ext=3,1))
for (i=3; i<14; i++)

A[i] = B[i-1] + B[i+1];

Listing 3. Using theextclause to adapt the iteration space extent

5.2 Static adaptation of the halo

The purpose of this optimization is to reduce the visible halo of an
array at some points of the program to reduce the induced com-
munication on that array. At the declaration of the array, the pro-
grammer declares, for each dimension, a halo which is supposed to
satisfy the locality of all the accesses to that array in the program.
The replicated elements must be updated each time they are modi-
fied and are forwardly exposed. The aim of this optimization is to
control the amount of halo which is really necessary at some points
of the program byiding the unnecessary halo. We apply a def-use
analysis on the halos. If in a path on the call graph, an halo is de-
fined and killed several times, its value is set to zero until the next
point before a possible use. For the time being, this optimization is
applicable for array dimensions: 1) which are accessed by loop in-
dexes spanning an iteration space identical to the array dimension
extent, either directly or by applying the iteration space extension
optimization, and 2) which are accessed by array subscripts of the

1| #pragma step gridify(i, j(dist=block; sched=ordered), k(dist=block, diag;
A 3 for (j = grid_poin;s[l]-Z; j >= 05 j--) {
X X X X X 4 for (k = 1; k < grid_points[2]-1; k++) {
p0 OCeeeeeOC 00000000 p0 ®eeeecsssscssese 5 for (m = 0; m < BLOCK_SIZE; m++) {
LL ? 6 for (n = 0; n < BLOCK_SIZE; n++) {
X X X X X X X X X 7 rhs [i1[j]1[k][n] = rhs[il[j][k][m]
pl LI NeNoN N X X X NORON NN) pl ®06sceeseecsnne 8 - lhs[i]J[jI[k][cCl[m] [n]l*rhs[i]l[j+1][k][n];
H ¢ 4 9 3333}
X X X X X XX
p2 CEC R NoNoN X N X N JoNe) p2 ®© 0600000000000 . ; ; ;) -
Listing 4. Distribution of they_backsubsitute function of BT
B B
XX XXX X XX XXX
pO ODO00Ceeeee O O®0OONNS po Ce000O® 0000 0OONONONLS
e e Xxxxx. XXX X X X X current iteration slice are computed. Lines 11 to 26 correspond to
pl LILReReRoN N X X N NeNoReR N) p]_ D RS BN NN ROl NN) . . .
the Pre-recvson arrayrhs imposed by the ordered dimensign
02 ©00000000000060000|p2 0sccssssiessses The membership to th&efore set, which defines the iteration
o Localh allocated o . " | tocoted loca slices that must be executed before the current one is implemented
ocally allocated element, lement of the original array not allocated local H : o H .
< Accessed element o communication using the predicate in line 19. Lines 31 to 41 show the computation
corresponding to the iteration slice in the distributed domain. The
cycles dimensions of arrayas andrhs are always accessed with

Figure 3. lteration space extension optimization a zero subscript since the distribution of these arrays is not cyclic.
Lines 42 to 43 correspond to the generated send communications.
The not showrPost-recvgphase is similar to th€re-recvsand is
form a * i + b wherea = 1. In addition, the possible computed done for iteration slices which are not in tii# fore set. Finally,
values for the halo are either the original value or the zero value. the communications on arrayhs are completed (line 49).
We are working on extending this optimization to find finer results

in the rangd0, original _halo_val]. 6. Experiments

5.3 Loop interchange We present several experiments validating the different aspects of
In the presence of enclosing ordered dimensions, the first paralle|0Ur dSTEP prototype. Matrix Multiplication and Jacobi illustrate
dimension if any is annotated with amp parallel fordirective the halo. Polybench Adi and NAS BT both compare standard block

with the enclosing indexes passed ifiratprivateclause. Teams of ~ distribution and a multi-partitioned distribution. On the NAS BT,
OpenMP threads are created and destructed for each enclosing or?v€ Show the benefit of the optimizations described in section 5.
dered dimension. Based on the direction vector of a loop nest [37], VW& generate the hybrid distributed and -shared memory programs
it is always legal to exchange the first parallel dimension with the @nd measure the execution times on a cluster of the Grid5000
outermost ordered dimension, because the dependence will still pePlatform. We use 32 bi-processor quadri-core Intel Xeon E5520
carried by the ordered dimension on each process. As a result, the"0des connected with an Infiniband network.

OpenMP team of threads is created only once, saving a great OVer~ s Matri ltiolicati
head. As a counterpart, the loop interchange introduces some local-" atrix muftiplication

ity penalty if strided accesses are introduced. The actual benefits ofWe consider the naive algorithm of matrix multiplication of the

this optimization depend on the code. form C = C + A x B. There is an initialization phase of the ma-
) o) trices A, B andC and a final phase which computes and displays
5.4 Overlapping communication and computation the trace of matrixC. We use a two-dimensional distribution for

By construction, the generated code of dSTEP overlaps the com-matricesA, B andC and use a total halo for the second dimen-
putation and communication of different iteration slices of a single sion of matrixA and for the first dimension of matrii to satisfy

loop nest. In addition we provide two communication completion the accesses of the innermost dimension of the multiplication loop
strategies: explicit and implicit. The explicit strategy is as described nest, k. For computation distribution we evaluate two strategies:
in the compilation scheme above. In the implicit strategy, we do not 1) the distribution of the first two parallel dimensionandj by
generate code for communication completions at the end of a loop blocks, and 2) in addition to the distribution of thend; dimen-
nest; the completions are done by fhgongs_to function, which sions, we distribute thg dimension using anll(block_size) dis-

is called before any computation. Theoretically, the latter strategy tribution. We obtain better performance for the second strategy over
allows for a maximum overlap by delaying any completion to the the first. With matrices of siz2048 x 2048, we obtain a speedup
very point before the data are used, but communication engines doof 151.2 on 256 cores using a block size of 16. With matrices of

not always give the expected gains (see [38] for more details). ~ Size9196 x 8196, the speedup on 256 cores is of 181.83 using the

first strategy and of 1632 using the second one. This spectacular
5.5 Anexample of generated code speedup is due to the temporal locality obtained by blocking the
In Listing 4 we show the use of the dSTEidify directive to innermost: dimension.

distribute the computation of thg backsubstitute of the NAS
BT program using a multi-partitioned distribution for dimensian
The: andj dimensions are distributed by blocks. Thdimension The Jacobi kernel iterates over a 2-D stencil computation pattern
is ordered; andk are parallel. until the convergence of the norm, which is computed using a

The generated code for thg backsubstitute function is parallel reduction. This program contains two 2-D matrices which
showed in Listing 5. In line 1, the information describing the loop are distributed using a 2-D block distribution and using a halo
nest distribution is computed and cached using a generated loopof 4 for both matrices on each dimension. The computation is
nest identifier (64 in this case). In line 3, the virtual processors distributed using a 2-D block parallel distribution. Figure 5 shows
are scanned. Since the distribution is not cyclic, there is a single the execution times fa@196 x 8196 matrices. We obtain a speedup
cycle for the loop nest (line 4). In line 6 to 8, the bounds of the of 192.4 on 256 cores.

6.2 Jacobi Kernel

O ~ND O WN

10

11
12
13
14
15
16

18
19
20
21
22
23
24
25

26
27

43

44
45
46

48
49

DSTEP_DISTRIBUTE_LOOP (64, _C, 2, 3, DSTEP_INT_DIV(grid_points

[01-1-1+1-1, _P[0], 1), DSTEP_INT_DIV(grid_points[1]-2+1-0, _P[1], 1) Matmul 8192 x 8192
, DSTEP_INT_DIV(grid_points[2]-1-1+1-1, _P[2], 1)); 100000 T T T T
_v = DSTEP_FIRST_VPROC(_P, _p, _vprocs, 1, -1); oo 8 D t oy m—
for (___v = 0;___v<_vprocs;___v++) { ds?g‘EPer‘E\Dg‘ckA;L o258 =
int _c[3] = {0, 0, 0};
DSTEP_EXTEND_ID(3, _P, _p, _v, _t_p);
DSTEP_LOOP_BOUNDS (3, _LOW, _UP, _v, _P, _c, _t_p, _L, _U, _INCR); 10000 1
int DSTEP_i_LOW = _LOW[0], DSTEP_i_UP = _UP[0], DSTEP_j_LOW =
_LOW[1], DSTEP_j_UP = _UP[1], DSTEP_k_LOW = _LOW([2], DSTEP_k_UP = _UP
[21;
int _ACCESSED_rhs[4][2] = {{DSTEP_GENERIC_MAX(2, DSTEP_i_LOW, 1),
DSTEP_i_UP}, {DSTEP_GENERIC_MAX(2, 0, DSTEP_j_LOW), DSTEP_j_UP+1}, { 5 oop]
DSTEP_GENERIC_MAX (2, DSTEP_k_LOW, 1), DSTEP_k_UP}, {0, 4}}; g
DSTEP_BELONGS_TO (rhs, _DIMS_rhs, &_c_rhs, &_v_rhs, _c_VECT_rhs, §
_shift_rhs, _ACCESSED_rhs, 0, &_computes, 1); >
//Pre recvs £
DSTEP_NEIGHBOURS (rhs, &_NB_N_rhs, &_N_rhs); 100 1 E
for (_n_rhs = 0;_n_rhs<_NB_N_rhs;_n_rhs += 1) {
__rank = _N_rhs[_n_rhs];
DSTEP_PROC_ID(64, __rank, 3, __p);
for (__v = 0;__v<_vprocs;__v++) {
int __c[3] = {0, 0, 0}; wr]
DSTEP_EXTEND_ID(3, _P, __p, __v, __t_p);
if (_t_pl[11<_P[1]-1&&__t_p[1]l==_t_pl[1]+1&&(__t_p[0l-_t_p
[01>=-1&&__t_p[0]1-_t_pl[0l<=1)&&(__t_pl[2]-_t_pl[2]>=-1&&__t_p[2]-_t_p
[21<=1)) {
DSTEP_LOOP_BOUNDS (3, _LOW, _UP, _v, _P, __c, __t_p, L, _U, 1 8 8 16 a2 64 128 256
_INCR); # CPU cores
int DSTEP_i_LOW = _LOW[0], DSTEP_i_UP = _UP[0],
DSTEP_j_LOW = _LOW[1], DSTEP_j_UP = _UP[1], DSTEP_k_LOW = i i inli i i i
et R R Figure 4. Matrix multiplication execution times
int __recv_rhs[4][2] = {{DSTEP_GENERIC_MAX(2, DSTEP_i_LOW,
1), DSTEP_i_UP}, {DSTEP_GENERIC_MAX(2, DSTEP_j_LOW, 0), DSTEP_j_UP},
{DSTEP_GENERIC_MAX(2, DSTEP_k_LOW, 1), DSTEP_k_UP}, {0, 4}};
DSTEP_SYNC_RECV(rhs, __rank, __recv_rhs, sizeof (double),
_OWNERS_rhs, _v_rhs, 0);
13} Jacobi 8196 x 8196
int _ACCESSED_lhs [6]1[2] = {{DSTEP_GENERIC_MAX(2, DSTEP_i_LOW, 1), 1000

DSTEP_i_UP}, {DSTEP_GENERIC_MAX (2, DSTEP_j_LOW, 0), DSTEP_j_UP}, { Qiginal, 1 QW thread s
DSTEP_GENERIC_MAX (2, DSTEP_k_LOW, 1), DSTEP_k_UP}, {2, 2}, {0, 4},
{0, 4}};

DSTEP_BELONGS_TO(lhs, _DIMS_lhs, &_c_lhs, &_v_lhs, _c_VECT_lhs,
_shift_lhs, _ACCESSED_lhs, 0, &_computes, 1);

Q

inal, 8 OWP threads mess
ASTEP mm—

100 |

if (_computes) {
for(i = DSTEP_i_LOW; i <= DSTEP_i_UP; i += 1)
#pragma omp parallel for private(j, k, m, n) firstprivate(i)
for(j = DSTEP_j_UP; j >= DSTEP_j_LOW; j += -1)
for(k = DSTEP_k_LOW; k <= DSTEP_k_UP; k += 1)
for(m = 0; m <= 4; m += 1)
for(n = 0; n <= 4; n += 1){ E
rhs [0][_v_rhs][i-_shift_rhs[0]][j-_shift_rhs[1]][k-_shift_rhs[2]][m] =
rhs [0][_v_rhs][i-_shift_rhs [0]][j-_shift_rhs[1]][k-_shift_rhs[2]][m] -
1hs [0 [_v_lhs][i-_shift_1hs [0]1[j-_shift_lhs[1]][k-_shift_lhs[2]][2][m][nl*
rhs [0][_v_rhs][i-_shift_rhs[0]]1[j+1-_shift_rhs[1]] [k-_shift_rhs[2]][n];
}
int __send_rhs[4][2] = {{DSTEP_GENERIC_MAX(2, DSTEP_i_LOW, 1), N3 E
DSTEP_i_UP}, {DSTEP_GENERIC_MAX(2, DSTEP_j_LOW, 0), DSTEP_j_UP}, {
| | | |

Time (seconds)
5
T

DSTEP_GENERIC_MAX (2, DSTEP_k_LOW, 1), DSTEP_k_UP}, {0, 4}};
DSTEP_SEND (rhs, _rank, _NB_NODES, _c_rhs, _v_rhs, _c_VECT_rhs,
__send_rhs, sizeof (double), _OWNERS_rhs);

y _v = (_v-1+_vprocs)%_vprocs; 0.1 L
//Post recvs # QP cores
DSTEP_COMPLETE_COMM (rhs) ; Figure 5. Jacobi execution times

Listing 5. dSTEP generated code for thehacksubsitute

6.3 Polybench Adi o oo x o : :
.) P A e
The Polybench Adi [39] presents an alternate line and column oser L mncre o S bt

sweep pattern. We use a 2-D distribution for arrays and loop nests,
with two distribution strategies: 1) the two dimensions are dis-
tributed using block distribution (standard distribution), 2) the first
dimension is distributed by blocks, and the second one is dis-
tributed using a diagonalized distribution, resulting in a multi-
partitioned distribution. Figure 6 shows the execution times for a
large 16000 x 16000 data set. We observe that until 128 cores,
the multi-partitioned distribution outperforms the standard one. On
128 cores, the speedups are 39.4 and 32.26 and on 256 cores the
speedups are 51.6 and 41.08 for the two strategies respectively.

100 - 4

Time (seconds)

6.4 NASBT
The NAS Parallel benchmarks [40] are a set of scientific pro- .
grams designed by the NASA to evaluate the performance of su- : ’ ’ " v cores "

percomputers. The NAS BT application solves three-dimensional
Euler/Navier-Stokes equations by sweeping alternatively along the
x, y and z dimension. The BT program contains a succession of

Figure 6. Adi execution times

. # cores 8 6 32 64 128 256

10000 , , , . . ; ; . MPT Fortran B 7.89 g 26.95 - 128.8
OO R, speedup, % / MPI Fortran s s % s s % s s %

4STEP, standard bl ock dist i but - og e JSTEP standard | 5.77 | 9.77 | 123% | 17.14 | 29.88 | 110% | 46.12 | 73.62 | 57%

OSTEP. It -partiioned distribution dSTEP multi-partitioned| 5.77 | 9.5 | 120% | 19.99 | 27.28 | 101% | 56.76 | 83.35 | 65%

Table 3. BT compared performance

1000 | 4

and for both versions of generated dSTEP code. The speedups are
computed relatively to the specific baseline of each version of the
code. We than compare the ratio between the dSTEP speedups and
the Fortran MPI speedups. We can see that on 16 and 64 cores, the
dSTEP speedups outperform the MPI Fortran speedups. On 256
cores however, the speedup of the dSTEP multi-partitioned code is
65% of the Fortran MPI code.

Conclusion from the experiments. We obtained very good per-
10 n = L ™ = - = P formance for matrix multiplication by combining the total halo and
Lo o theall distribution. We obtained a fairly good performance for the
Jacobi kernel. For the Polybench Adi, the performance did not scale
Figure 7. BT class C computation times, comparison between very well due to a low computation/communication ratio. On the
dSTER MPI Fortran and UPC. BT program, we showed good performance using both a standard
block and multi-partitioned distribution. On 16 and 64 cores, we

])) outperformed the MPI Fortran manual implementation but we no-
loop nests where the three first dimensions are not always all par-ticed a degradation of the performance on 256 coresNOrodes,
allel. Each time the system is solved along one direction, the corre- tpe memory used on each nodeSI&N + H for each array of size
sponding dimension is ordered. In addition, some parts of the arraysg and halo H, allowing to handle very large data sets when the
three dimensions of the arrays and of the loop nests of the program.the dSTEP generated programs come with a low investment effort

We use, like for the Polybench Adi kernel, a standard and a multi- from the programmer, consisting on insertaigtributeandgridify
partitioned distribution. For the loop nests, we use, as needed, par-gjrectives.

allel, ordered and owner schedules for the distributed dimensions.

Optimizations. Table 2 shows the performance gains on 64 cores /- Conclusion and future work

using the loop interchange and the halo adjustment optimizations |n this paper we presented dSTEP, a high-level programming model
for the standard distribution. We obtain a gain of 4.5% with loop for hybrid distributed and -shared memory systems for dense sci-
interchange and 16.8% when combining both optimizations. For entific programs. We proposed a generic compilation scheme and

Tine (seconds)

all the remaining experiments, we apply fep interchangeand implemented our solution in the PIPS source-to-source compiler to-
thehalo adjustmenbptimizations. gether with a runtime system. Our transformation system maps the
computation to distributed and shared memory architecture and au-
No optimization | Loop interchange| Loop Interchange sethalo tomatically generates the necessary communications. We unify the
102.96 sec. 98.4 sec. 85.7 sec. standard distribution types, the multi-partitioning and the use of the

halo in a single model. We offer a series of optimizations aiming
essentially at reducing the amount of communicated elements and
to overlap computation and communication. Our solution handles
the problem of data and computation distribution interprocedurally
for a whole program. We validate our solution on several scientific
kernels and on the more challenging NAS BT application for which
we outperform the Fortran MPI manual implementation on 16 and
64 cores.

Our ongoing work is on the adaptation of the dSTEP programming
model to clusters of GPUSs. In our solution, the inter-node commu-

Table 2. Loop Interchange ansethalo gains on 64 cores

We compare the execution times of four versions of the BT
application: the official MPI Fortran manual implementation, the
UPC manual implementation using MPI and the generated dSTEP
code with the standard and the multi-partitioned distribution. We
notice that the baseline for the Fortran MPI version is better than
the C version used as input to dSTEP. The execution times of the
MPI Fortran are always lower than those of both the UPC and the
generated dSTEP codes. The multi-partitioning implementations in :i-avions are already handled and can be readily reused for GPU
the Fortran MPI and UPC versions requires a square number of o, siers. Beside that, the host/device communication on each node
processors to be executed. With dSTEP however, we can executg ghiained by instrumenting the send and recv functions: at each
the generated code on any number of processors. The dSTEP cod@ i mynjcation call, we have the description of the array region to
performs better than the UPC code, for which we don't have thg communicate; we insert a synchronous device-to-host transfer of
results on 1 and 8 cores because of memory errors. The multi- e ¢4rresponding elements before each send communication and

partitioned V‘?rSiig of gS&EP perftc))rms bette}r :]han _tge hstandaFrd we insert a synchronous host-to-device transfer after each complete

e e o seecaron oaeparie. 1o o b o o1 1o peraion The misingpat s e mapping of he comp
' . . . tation to the specific target language like CUDA.

MPI processes with 8 OpenMP threads on 8 nodes of bi-quadricore P 9 guag

processors. In this case, the grid for each array and loop nest has

the shapel x 2 x 2, which makes only half the processors active Acknowledgments

when sweeping the dimension. This imbalance combined with Experiments presented in this paper were carried out usi@tid’5000

the communication overhead of the multi-partitioned distribution testbed, supported by a scientific interest group hostediy &nd includ-

makes it perform worse than the standard distribution on 64 cores.ing CNRS, RENATER and several Universities as well as othgarmiza-

In Table 3, we compute the speedups for the MPI Fortran code tions (see https://www.grid5000.fr).

References

[1] Top500, “Top 500 supercomputer sites,” http://www.top%rg/,
2014,

[2] Message Passing Interface Forum, “MPI: A Message-Pgdsiter-
face Standard, Version 3.0,” Tech. Rep., September 2012.

[3] “Global Arrays: A Nonuniform Memory Access Programming Msbd
for High-Performance ComputersThe Journal of Supercomputing
vol. 10, no. 2, 1996.

[4] D. Bonachea, “GASNet Specification, v1.1,” Berkeley, CASA,
Tech. Rep., 2002.

[5] Augonnet, Cdric and Thibault, Samuel and Namyst, Raymond
and Wacrenier, Pierre-Andr, “StarPU: a Unified Platform Tarsk
Scheduling on Heterogeneous Multicore Architectur€ahcurrency
and Computation: Practice and Experiene®l. 23, no. 2.

High Performance Fortran Forum (HPFF), “High PerformaRogran
Language Specification,” 1997.

Mellor-Crummey, John M. and Adve, Vikram S. and Broom, Besdl
and Chavarra-Miranda, Daniel G. and Fowler, Robert J. amdGlio-
hua and Kennedy, Ken and Yi, Qing, “Advanced Optimizatiora&tr
gies in the Rice dHPF CompilerConcurrency and Computation:
Practice and Experiengeol. 14, no. 8-9, pp. 741-767, 2002.

K. Kennedy, C. Koelbel, and H. Zima, “The Rise and Fall ofgHi
Performance Fortran: An Historical Object Lesson,”"Hroceedings
of the Third ACM SIGPLAN Conference on History of Prograngnin
Languagesser. HOPL Ill, 2007, pp. 7-1-7-22.

Numrich, Robert W. and Reid, John, “Co-Array Fortran far#llel
Programming,”SIGPLAN Fortran Forumvol. 17, no. 2, pp. 1-31,
Aug. 1998.

J. Mellor-Crummey, L. Adhianto, W. N. Scherer, Ill, and @Gin,
“A New Vision for Co-Array Fortran,” inProceedings of the Third
Conference on Partitioned Global Address Space Prograrkiadels
ser. PGAS '09, 2009, pp. 5:1-5:9.

[11] UPC Consortium, “UPC Language Specifications, v1.2vtence
Berkeley National Lab, Tech Report LBNL-59208, 2005.

[12] Chamberlain, B.L. and Callahan, D. and Zima, H.P., “Rardtro-
grammability and the Chapel Languagint. J. High Perform. Com-
put. Appl, vol. 21, no. 3, pp. 291-312, Aug. 2007.

[13] Charles, Philippe and Grothoff, Christian and Saraswgay and
Donawa, Christopher and Kielstra, Allan and Ebcioglu, Kemuadl
von Praun, Christoph and Sarkar, Vivek, “X10: an Objecte@ied
Approach to Non-Uniform Cluster Computing3IGPLAN Not.
vol. 40, no. 10, pp. 519-538, Oct. 2005.

[14] L. Dagum and R. Menon, “OpenMP: An Industry Standard Ad?l
Shared-Memory ProgrammingComputational Science & Engineer-
ing, IEEE vol. 5, no. 1, pp. 46-55, 1998.

[15] J. Merlin, D. Miles, and V. Schuster, “Distributed OMBxtensions
to OpenMP for SMP Clusters,” iEWOMP 2000, Second European
Workshop on OpenMR2000, pp. 14-15.

[16] A. Basumallik and R. Eigenmann, “Towards Automatic Tratish
of OpenMP to MPI,” inProceedings of the 19th annual international
conference on SupercomputingACM, 2005, pp. 189-198.

[17] Millot, Daniel and Muller, Alain and Parrot, Christiaand Silber-
Chaussumier, fecérique, “STEP: A Distributed OpenMP for Coarse-
Grain Parallelism Tool,” irDpenMP in a New Era of Parallelispser.
Lecture Notes in Computer Science, R. Eigenmann and B. Supinsk
Eds. Springer Berlin Heidelberg, 2008, vol. 5004, pp. 83-99

[18] D. Millot, A. Muller, C. Parrot, and F. Silber-Chaussteni “From
OpenMP to MPI: First Experiments of the STEP Source-to-sourc
Transformation Tool.” iIPARCQ 2009, pp. 669-676.

[19] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: m-Co
piler Framework for Automatic Translation and OptimizatioACM
Sigplan Noticesvol. 44, no. 4, pp. 101-110, 2009.

[20] F. Silber-Chaussumier, A. Muller, and R. Habel, “Gerieg Data

Transfers for Distributed GPU Parallel Progranidgtrnal of Parallel
and Distributed Computingrol. 73, no. 12, pp. 1649-1660, 2013.

6

[7

8

9

(20]

[21] A. Duran, E. Ayguad, R. M. Badia, J. Labarta, L. Martin&. Mar-
torell, and J. Planas, “OmpSs: A Proposal For Programming bigger
neous Multi-Core ArchitecturesParallel Processing Lettersol. 21,
no. 02, pp. 173-193, 2011.

[22] in Euro-Par 2011 Parallel Processinger. Lecture Notes in Computer
Science, E. Jeannot, R. Namyst, and J. Roman, Eds., 2011864. 6

[23] Nakao, Masahiro and Lee, Jinpil and Boku, Taisuke anit,3dit-
suhisa, “Productivity and Performance of Global-View Pesgming
with XcalableMP PGAS Language,” it?th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGraf)12,
pp. 402-409.

[24] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A Hybrid Muitbre
Parallel Programming Environment,” Workshop on General Pur-
pose Processing on Graphics Processing Units (GPGPU 2@007.

[25] “The OpenACC Programming Interface ’http://www.openacc-
standard.org

[26] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Gye@ -
First Experiences with Real-world Applications,” Euro-Par 2012
Parallel Processing Springer, 2012, pp. 859-870.

[27] Amza, C. and Cox, A.L. and Dwarkadas, S. and Keleher, H. an
Honghui Lu and Rajamony, R. and Yu, W. and Zwaenepoel, W.,
“TreadMarks: Shared Memory Computing on Networks of Worksta-
tions,” Computer vol. 29, no. 2, pp. 18-28, 1996.

[28] P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges IV, J. G.
Holm, A. Lain, D. J. Palermo, S. Ramaswamy, and E. Su, “The
PARADIGM Compiler for Distributed-Memory Multicomputers,”
Computervol. 28, no. 10, pp. 37-47, 1995.

[29] J. Li and M. Chen, “Index Domain Alignment: Minimizing Cost
of Cross-Referencing Between Distributed Arrays,”FRrontiers of
Massively Parallel Computation, 1990. Proceedings., 3rthSosium
on the 1990, pp. 424-433.

[30] T. Y. S. R., “Parametrically Tiled Distributed Memory R#elization
of Polyhedral Programs,” Colorado State University TecaliReport
CS13-105, Tech. Rep., June 2013.

[31] D. Kim, “Parameterized and Multi-level Tiled Loop Gentoa,”
Ph.D. dissertation, Fort Collins, CO, USA, 2010, aAI341305

[32] P. Feautrier, “Dataflow analysis of array and scalaenerices.”

[33] M. Amini, C. Ancourt, F. Coelho, F. Irigoin, P. Jouvel®, Keryell,
P. Villalon, B. Creusillet, and S. Guelton, “PIPS is Not ()uRolyhe-
dral Software,” ininternational Workshop on Polyhedral Compilation
Techniques (IMPACT11), Chamonix, Fran2611.

Irigoin, Frangois and Jouvelot, Pierre and TriolegnR, “Semantical
Interprocedural Parallelization: an Overview of the PIRGj&tt,” in
Proceedings of the 5th international conference on Supepeging
ser. ICS'91. New York, NY, USA: ACM, 1991, pp. 244-251.

Creusillet, Beatrice and Irigoin, Francois, “Interprocedural Array-Re
gion Analyses,” inLanguages and Compilers for Parallel Computing
ser. Lecture Notes in Computer Science, C.-H. Huang, P. $agay,
U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds. in§er
Berlin Heidelberg, 1996, vol. 1033, pp. 46—60.

Corinne Ancourt and Fabien Coelho and Frangois Irigamid Ronan
Keryell, “A Linear Algebra Framework for Static High Perfornee
Fortran Code Distribution Scientific Programmingop. 3—-27, 1997.

[37] M. E. Wolf and M. S. Lam, “A data locality optimizing algdhim,”
SIGPLAN Not.vol. 26, no. 6, pp. 30—44, May 1991.

[38] F. Trahay, E. Brunet, A. Denis, and R. Namyst, “A Multigaded
Communication Engine for Multicore Architectures,”Rarallel and
Distributed Processing, 2008. IPDPS 2008. IEEE InternadioSym-
posium onApril 2008, pp. 1-7.

[39] L.-N. Pouchet, “PolyBoench/C, The Polyhedral Benchmsuite,”
http://www.cse.ohio-state.edu/ pouchet/software/pehch, 2014.

[40] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,R.
Schreibeeet al, “The NAS Parallel Benchmarkslpternational Jour-
nal of High Performance Computing Applicationsl. 5, no. 3, pp.
63-73, 1991.

(34]

(35]

(36]

