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Abstract
This paper describesdSTEP, a directive-based programming model
for hybrid shared and -distributed memory machines. The original-
ity of our work is the definition and an implementation of a unified
high-level programming model addressing both data and computa-
tion distributions, providing a particularly fine control of the com-
putation. The goal is to improve the programmer productivity while
providing good performances in terms of execution time and mem-
ory usage. We define a generic compilation scheme for computation
mapping and communication generation. We implement the solu-
tion in a source-to-source compiler together with a runtime library.
We provide a series of optimizations to improve the performance of
the generated code, with a special focus on reducing the commu-
nications time. We evaluate our solution on several scientific ker-
nels as well as on the more challenging NAS BT benchmark, and
compare our results with the hand written Fortran MPI and UPC
implementations.

The results show first that our solution allows to make explicit
the non trivial parallel execution of the NAS BT benchmark using
the dSTEP directives. Second, the results show that our generated
MPI + OpenMP BT program runs with a 83.35 speedup over the
original NAS OpenMP C benchmark on a hybrid cluster composed
of 64 quadricores (256 cores). Overall, our solution dramatically
reduces the programming effort while providing good time execu-
tion and memory usage performances. This programming model is
suitable for a large variety of machines as multi-core and accelera-
tor clusters.

Categories and Subject Descriptors CR-number [subcategory]:
third-level
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1. Introduction
Clusters of multi-core CPUs and hardware accelerators are cur-
rently the most powerful machines, as stated in the Top 500 classi-
fication [1]. These architectures offer very high theoretical perfor-
mance peaks, but leveraging a sustained performance at a reason-
able programming effort is the major challenge for end users. We
propose dSTEP, a high-level directive based programming model
with three goals:

1. offering good performances on hybrid parallel machines, com-
pared to hand-written codes,

2. processing very large data sets,

3. simplifying programming by offering high-level directives.

The originality of our work is the definition and an implemen-
tation of a unified high-level programming model addressing both
data and computation distribution with a fine control of the sched-
ule constraints of the computation.

In this paper, we first study the related work on programming
hybrid parallel machines in section 2. In section 3, we present the
programming model of dSTEP. We detail our generic compilation
scheme for dSTEP programs in section 4. In section 5, we present
some optimizations focusing particularly on communications cost
reduction. In section 6, we expose some experiments that validate
our solution. We conclude and present our future work in section 7.

2. Related work
2.1 Libraries

MPI [2] is the standard API for programming distributed memory
systems. It offers a rich support for process management, topology,
collective and point-to-point communications as well as for one-
sided communications since MPI-2. MPI is at a very low level of
abstraction and requires an important programming and debugging
effort. Global arrays [3] allow for the allocation of objects in the
global space. Each processor can asynchronously read and update
the global elements, and the necessary synchronizations for main-
taining data coherency must be handled by the programmer. The



GASNet [4] library is used essentially as a runtime support for the
PGAS languages. It focuses particularly on the efficient implemen-
tation of one-sided communications. StarPU [5] is a task-oriented
library for hybrid programming. It schedules the computation ef-
ficiently on the different available computation resources. It offers
functions on top of MPI for distributed memory programming and
offers a support for data distribution in an element-wise fashion.

2.2 Programming languages

High Performance Fortran[6] (HPF) is the first standardization ef-
fort for programming distributed memory machines, constructed
on top of the Fortran language. It offers a convenient set of direc-
tives for data distribution over virtual templates which are mapped
to physical processors. The HPF compilers use the so-calledowner
computesrule to assign computation to processors. HPF compil-
ers then automatically generate the necessary communications. The
dHPF [7] compiler developed at Rice University brings many op-
timizations over former HPF compilers. It extends the owner com-
putes rule to unions ofON HOMEsets of arbitrary read or write
references. dHPF also implements the multi-partitioning distribu-
tion together with optimizations like partial replication of local
computation to avoid some communications. The HPF language
did not meet the success intended by its designers for some of the
reasons described by Kennedyet al. [8]. The Partitioned Global
Space Languages(PGAS) aim at a better explicit programming of
distributed memory systems at the language level. Co-Array For-
tran [9] (CAF) is a PGAS based on Fortran 95 with the central no-
tion of co-dimension. A co-dimension is the replication of the ele-
ments of the corresponding dimension on all the processors, called
images. The replication results globally in a co-array which is ac-
cessible from any image. The elements on any specific image can
be accessed by sub-scripting the co-array with the image identi-
fier. A newer version of CAF, called CAF 2.0 [10] is developed at
Rice University. It notably adds support for low level features in-
spired from MPI like sub-sets of images and topology. Unified Par-
allel C (UPC) [11] is another PGAS on top of the C programming
language. Data objects are made globally addressable by declaring
them asshared. Both CAF and UPC require the use of low-level
synchronization constructs to ensure the coherency of the elements
allocated in the global space. Chapel [12] and X10 [13] are two
more recent PGAS. The Chapel language, developed by CRAY,
uses the concept oflocale to abstract the logical units of the par-
allel machine. Data can be defined on index domains of integers
which are distributed over the locales. Chapel uses the concept of
halo to declare replicated elements on distributed arrays. Computa-
tion distribution is expressed using theforall construct and can be
controlled on each locale using theon clause. X10 offers support
for both classic and user-defined data distributions overplaces. The
distributed data is accessed by asynchronous activities launched on
remote locales. While the PGAS languages offer an explicit con-
trol over data distribution, they put on the programmer the burden
of synchronizing all the accesses to globally allocated data.

2.3 Compilation directives

OpenMP [14] is thede factostandard for programming shared
memory parallel computers. It is a set of directives and run-
time functions to exploit data parallelism essentially at the loop
level. OpenMP 3.0 adds support for task parallelism. Even though
OpenMP 4.0 adds support for accelerators programming in a dis-
tributed host/device environment, it does not allow to program
distributed memory systems in general. Some research projects
worked on the adaptation of OpenMP to clusters of CPUs like dis-
tributed OpenMP [15], Cetus [16] and STEP [17, 18] and even for
clusters of GPUs like [19] and [20]. In these solutions, data are
replicated on the compute nodes, limiting therefore the ability of

processing very large data sets. OmpSs [21] is a task parallel pro-
gramming model targeting several architectures. The implemen-
tation of OmpSs on clusters [22] is based on a centralized man-
agement of tasks and communications, resulting in a bottleneck.
XcalableMP [23] offers separate directives for data and compu-
tation distributions, but requires from the programmer the use of
explicit directives for communications. HMPP [24] is a program-
ming model aimed at programming hardware acelerators which in-
fluenced the OpenACC programming model [25, 26]. These mod-
els target accelerators programming and do not handle distributed
memory clusters.

2.4 Automatic solutions

The goal here is to hide the distribution to the programmer.Soft-
ware Distributed Shared Memory(SDSM) solutions, like Tread-
Marks [27], emulate a logical shared memory over a physically
distributed memory. It handles memory updtaes at the page level.
These solutions suffer from important overheads due to page syn-
chronization and updates. The PARADIGM [28] compiler tries to
extract automatically the distribution of data of a program stati-
cally. However, automatically computing an optimum alignment
and distribution of data has been proved NP-complete by Li and
Chen [29]. Yukiet al. [30] use the polyhedral model to automat-
ically distribute data by extending parametric loop tiling to dis-
tributed memory [31]. This solution is limited to static-control pro-
grams [32] and do not give hints on how to manage data distribution
over several successive loop nests.

2.5 Our dSTEP solution

The existing solutions and programming models do not meet the
goals mentioned in the introduction. Libraries are too low level and
address generally only the distributed memory aspect. Program-
ming languages put the burden of expressing and synchronizing
distributed data accesses on the programmer. Compiler directives of
current solutions address either shared-memory or accelerator tar-
gets. The extension solutions to distributed memory replicate the
data. Transparent solutions like SDSM come with unpredictable
performance, and automatic transformations based on the polyhe-
dral model are restricted to static control programs and it is not clear
how they handle the problem of data and computation distribution
for an entire program.
In the next section, we introducedSTEP, a new programming
solution for better programming of hybrid parallel architectures.

3. Our programming model
In this section we presentdSTEP, a directive-based programming
model for dense scientific applications. We aim at distributing ar-
ray data structures and loop nest computations. For this purpose, we
propose thedistributedirective, inspired by HPF, to distribute ar-
rays and thegridify directive, inspired by HMPP, to distribute loop
nest computations. The distribution of each array and each loop
nest is made on a virtual grid of processors based on the available
processors given at execution time.

3.1 Array distribution

The dSTEP distribute directive. It expresses a distribution type
for each array dimension. In addition to the classicalblock, cyclic,
replicateddistribution types, we also propose the multi-partitioned
distribution which allows blocks to be distributed along an array
diagonal. A multi-partitioned distribution is indicated by thediag
qualifier. An example of such a distribution is given in examplee

of Figure 1.

The halo. In addition, we propose the definition of ahalo. When
defining a halo, the programmer defines some replicated data. A



Figure 1. 2-D array distribution examples on 4 processors

halo is composed of extra elements contiguous to a distributed di-
mension on each processor. The purpose of the halo is to satisfy
the locality of all the data accesses of the program. Based on this
halo our tool automatically generates the necessary communica-
tions when updates are necessary.
Listing 1 presents the syntax of the distribute directive. The op-
tional quantityhlow (resp.hup) is the lower (resp. upper) halo of
an array dimension.

We defineH as a specific halo value that indicates atotal halo:
remaining elements of the dimension are spanned in the lower and
upper directions (see examplef of Figure 1).

1 #pragma dstep distribute A([hlow:] dist_type [:hup],
...)

Listing 1. dSTEPdistributedirective syntax

3.2 Loop nest distribution

The dSTEP gridify directive. It offers the programmer a conve-
nient way to express both the distribution type and the schedule
type of any loop nest dimension. Thediag qualifier indicates that
the corresponding distribution is multi-partitioned.

1 #pragma dstep gridify(i1(dist=dist_type[,diag]; sched
=sched_type),

2 i2 (...), ...) [private(var_list)] [firstprivate(
var_list)] [reduction(op:var_list)]

Listing 2. dSTEPgridify directive syntax

Table 1 defines the different possible values for thedist andsched
attributes, as well as their semantics. The default values fordist
andsched are block and parallel, respectively.

Differences with HPF. Unlike HPF, dSTEP does not use the no-
tion of data owner. Array elements are distributed over processors
and the halo introduces a certain level of replication. The com-
putation distribution and scheduling are entirely expressed in the
gridify directive and each processor can read and update any el-
ement allocated locally. The dSTEPowner schedule is different
from the owner-computes rule too. In dSTEP, it means that for a
given iteration slice only the processors on which the accessed el-
ements are allocated do the computation and the others just skip

Distribution type Semantics
block The loop iterations are divided into blocks of

equal size, each block is assigned to a single pro-
cessor for that dimension

cyclic(block size) The loop iterations are divided into blocks of
equal size defined by the programmer and as-
signed in a round-robin fashion to processors

* (replicated) All the iterations of the dimension are assigned to
each processor in a single block

all(block size) The loop iterations are divided into blocks of
equal size defined by the programmer. All the
blocks are assigned to each processor.

Schedule type Semantics
parallel The iterations can be executed in parallel.
ordered The iterations must be executed in the initial or-

der.
owner Only the processors on which the accessed ele-

ments are allocated execute the corresponding it-
erations.

Table 1. Semantics of loop distribution and schedule types

it. For example, if a column of a matrix happens to be in the halo
space on a processor, then this column is also allocated on another
processor. Anowner update of this column results in the computa-
tion on both processors: there is no owner of the column, and there
is no communication triggered along this dimension.

4. Compilation
4.1 PIPS

PIPS [33, 34] is an open source compilation workbench that imple-
ments powerful interprocedural, data-based program analyses and
transformations. PIPS is used, among other applications, to paral-
lelize scientific programs. One important building blocks of PIPS
are the array regions [35]. An array region is a set of array elements
described by a system of linear constraints defining a convex poly-
hedron. Array regions are used to represent program statements ef-
fects on array elements. Depending on the action upon the array el-
ements, array regions can be of typeREADor WRITE. To represent
the flow of array elements through the program, two other types of
array regions,IN andOUT, are defined in PIPS. For a given portion
of code, anIN region is theREADregion for this portion of code
that is used before possibly being redefined. AnOUT region is a
WRITEregion the elements of which are used at some future point
of the program. In this work, we useREADandWRITEregions to
compute the sets of accessed elements, necessary for the compila-
tion of iterations slices and theOUT regions used to generate the
communications.
Let us notice that these array regions analyses are limited to affine
expressions in array subscripts.

4.2 Virtual grids of processors

Array elements and loop nests iterations are distributed over virtual
grids of processors constructed with the functions defined below.

Simple grid of processors. Functionid in grid maps a flat pro-
cessor identifier in the setP = [0, nb procs[ to a vector identifier
in a virtual grid of processors defined by the setP ′

grid = {~0 ≤

~p < P ′~1} whereP ′ is a diagonal matrix containing the number
of processors along each dimension of the grid.P ′ andid in grid
are defined using MPI topology functions.

Extended virtual grid of processors. Functionextend id (eq. 1)
maps an identifier in a virtual grid and a virtual processor number
to an identifier in anextendedvirtual grid of processors defined



by the setPgrid = {~̃p|~0 ≤ ~̃p < P~1}. The diagonal matrixP
is constructed from the matrixP ′ by adding an extra dimension
corresponding to the diagonalized dimension. The number of vir-
tual processors along the diagonalized dimension if any,vprocs, is
equal to the minimum of processors along the other dimensions of
the grid, excluding units (corresponding to replicated dimensions).
We define the setV asV = [0, vprocs[. modv is the component-
wise modulo operator for vectors.

If no dimension is diagonalized then the distribution is not
multi-partitioned and we getvprocs = 1 andextend id be the
identity function. We handle at most one diagonalized dimension.

extend id : P ′

grid × V → Pgrid

(~p′, v) → (~p′ + v~1)modvP~1
(1)

We illustrate the construction of the virtual grid of processors
using theid in grid andextend id functions in Figure 2. Th ex-
ample shows a multi-partitioned distribution of a three-dimensional
array. Thedistributedirective indicates that the third dimension of
arrayA is diagonalized. If the program is executed on four pro-
cessors, a 3-dimensional extended virtual grid of processors is con-
structed from the flat four processors as illustrated on the left of
Figure 2. In this example, we havevprocs = min(2, 2) = 2. On
the right part of the figure, we show how the elements of array A
are distributed on each processor.

Figure 2. Example of array distribution over an extended virtual
grid of processors using a multi-partitioned distribution

4.3 Distribution of array elements

We use a linear algebra model inspired by the work of Coehloet.
al [36]. Compared to their model, we do not use templates but we
introduce the halo and the multi-partitioning support. For an ar-
ray x, the diagonal matricesBx, Px andHlowx contain respec-
tively the block sizes, the processors of the virtual grid and the
lower halos. Equation 2 maps an element in the distributed domain,
(p̃x, cx, lx), to an elementa in the sequential domain. It defines the
array element function. The first term of the equation defines the
cycles offset, the second term defines the blocks offset, the third
one is the lower halo correction and finally the~lx vector is the local
offset within the local memory.

~a = BxPx~cx +Bx
~̃px −Hlowx

~1 +~lx (2)

4.4 Distribution of loop iterations

The distribution of loop iterations is defined with a similar model,
where the diagonal matricesBln andPln define the blocks and the

processors in a virtual grid for the loop nestln. The diagonal matrix
Lln (resp.Uln) contains the lower (resp. upper) bounds of the
iteration space ofln. Equation 3 defines theloop nest iteration
function.

~i = Lln
~1 +BlnPln~cln +Bln

~̃pln +~lln (3)

4.5 Other definitions

The following definitions will be used in the compilation scheme.
Function iteration slice computes the set of iterations for an
extended processor identifier and a cycle of a loop nest. The loop
nest ln is represented by the setln = {~i|Lln

~1 ≤ ~i < Uln
~1}.

Cln = {~c|~0 ≤ ~c < ⌈(Uln − Lln)B
−1

ln P−1

ln
~1⌉} is the set of cycles

of the loop nest.

iterations slice : Pln × Cln → ℘(ln)

(~̃pln, ~cln) 7→ {~i|

loop nest iteration(~̃pln, ~cln,~0) ≤~i ∧
~i < loop nest iteration(~̃pln, ~cln, Bln

~1) ∧

Lln
~1 ≤~i ∧~i < Uln

~1}

(4)

Functionbelongs to finds the cycle and the virtual processor to
which a rectangular region of array elements belong. Function
extend replicated extends the iteration slice along the replicated
dimensions to the original extent inln. Functionowner dimensions
constructs the set of array dimensions accessed by loop nest indexes
with an owner schedule. Functionproject eliminates from a vec-
tor the dimensions contained in a set of dimensions. Functionpos
computes the position of a vector in a lexicographically ordered set
of vectors.

4.6 Representation of a loop nest

Algorithm 1 represents of a loop nest with abodystatement con-
taining references to distributed arraysx represented by syntactic
objectsX. Themth reference to arrayx is represented by a func-
tion refm

x of the iteration vector~i.

Algorithm 1 Syntactical representation of a loop nest annotated
with thegridify directive

#pragma dstep gridify(...) [private(varlist)] [firstprivate(var list)] [re-
duction(op:varlist)]
for ~i ∈ {~i|Lln

~1 ≤~i < Uln
~1} with increment ~inc do

body(..., X[refm
x (~i)], ...)

end for

4.7 Data allocation

From an original arrayx of dimensiond and of sizes expressed in a
diagonal matrixD, we generate the distributed array allocation as
defined by Algorithm 2. The generated declaration of a distributed
array is augmented by two extra dimensions corresponding to the
cycles and the virtual processors to handle multi-partitioning.

Algorithm 2 Data allocation for a distributed array
Input: D,B,Hlow,Hup, C,V
Output: The replacement of the original declaration by a distributedone
1: generate allocation(X[D0,0]...[Dd−1,d−1]) ≡
2: for each dimensionk of arrayx do
3: if dimensionk has a total halothenLk,k = Dk,k

4: else
5: Lk,k = Hlowk,k +Bk,k +Hupk,k
6: end if
7: end for
8: X[|C|][ |V|][L0,0]...[Ld−1,d−1]



4.8 Computation mapping

We distinguish the compilation of a parallel loop nest, which has
no ordered dimension and the compilation of an ordered loop nest,
which has at least one ordered dimension.

Parallel loop nest. The compilation of a parallel loop nest is de-
scribed in Algorithm 3. We first enumerate and compile the itera-
tion slices by scanning the virtual processor and the cycle dimen-
sions. We generate the code corresponding to thesend communi-
cations (see Section 4.9.1) of the iteration slice just after its com-
pilation. After that, we generate the code for distributed reductions
on scalar variables if any. Finally, we generate thereceivecommu-
nications (see Section 4.9.2) and the completion of the send and
receive communications.

Algorithm 3 compile parallel

Input: ln stmt, body,Vln, Cln
Output: ln stmt compiled for a hybrid target
1: p = rank(); ~pln = id in gridln(p)
2: for vln ∈ Vln do ⊲ No order constraint
3: ~̃pln = extend id(~pln, vln)
4: for ~cln ∈ Cln do ⊲ No order constraint
5: compile iteration slice(ln stmt, body, p, ~̃pln, ~cln)

6: generate sends(ln stmt, p, ~̃pln, ~cln)
7: end for
8: end for
9: if reductionthen

10: generate parallel reductions(op, var list)
11: end if
12: generate recvs(ln stmt, p, ∅)
13: generate completes(ln stmt)

Ordered loop nest. The compilation of an ordered loop nest pre-
sented in Algorithm 4 is more complicated because it has to ensure
the conservation of the sequential order of the ordered dimensions.
First, we generaterecv communications for iteration slices which
have some other precedent iteration slices, defined by theBefore
set (line 10). Here, we generate a blocking receive to ensure that
the computation does not proceed until the complete reception of
the dependency data. We then save the precedent iteration slice to
not be reconsidered in the remainingrecv communications. The
compilation of each iteration slice and the generation of the corre-
spondingsendcommunications is identical to the parallel case. Af-
ter the loop nest, we generate the code for distributed reductions if
any and the code forrecvcommunications for the iteration slices of
remote processes which were not considered in the blocking phase
of therecvs (lines 21-23). Finally, the communications completes
are generated.

Compilation of an iteration slice. The compilation of an iteration
slice (see Algorithm 5) consists of first finding the locally accessed
memory for each array. This is done by calling thebelongs to
function. If the accessed elements are not allocated locally, than we
raise a bad distribution exception. In presence of a loop nest owner
dimension, we check that all the accessed elements for each array
are either allocated locally or not allocated at all. We then perform
a domain change, by translating the sequential references into the
distributed domain (line 28). We note that each processor executes
its assigned iterations (line 27).

Exploiting the different cores on a shared memory node. The it-
eration vector~i combines all the distributed dimensions of the loop
nest. We insert anomp parallel fordirective at the first parallel di-
mension of vector~i. If there is an enclosing ordered dimension, we
insert afirstprivateclause containing the appropriate variables, par-
ticularly the enclosing loop indexes. Aprivateclause is automati-
cally created for all the indexes specified in thegridify directives

Algorithm 4 compile ordered

Input: ln stmt, body,Vln, Cln
Output: ln stmt compiled for a hybrid target
1: p = rank()
2: ~pln = id in gridln(p)
3: for vln scanv Vln do ⊲ Enumeration constrained by the ordered

dimensions
4: ~̃pln = extend id(~pln, vln)
5: for ~cln scanc Cln do ⊲ Enumeration constrained by the ordered

dimensions
6: iteration set = iteration slice(~̃pln, ~cln)
7: for each arrayX written in ln stmt do
8: ~px = id in gridx(p)

9: for (~̃p′
ln
, ~c′ln) ∈ Before(~pln, ~cln) do

10: accessedx = read region(x, body, iteration set)∪
write region(x, body, iteration set)

11: (~cx, vx) = belongs to(~px, accessedx)

12: generate sync recv(stmt ln, ~̃px, ~cx, ~̃p
′

ln
, ~c′ln)

13: add(Received, x, (~̃px, ~cx), (~̃p′ln,
~c′ln))

14: end for
15: end for
16: compile iteration slice(body, p, ~̃pln, ~cln)

17: generate sends(ln stmt, p, ~̃pln, ~cln)
18: end for
19: end for
20: if reductionthen
21: generate parallel reductions(op, var list)
22: end if
23: generate recvs(ln stmt, p,Received)
24: generate completes(ln stmt)

Algorithm 5 compile iteration slice

Input: body, p, ~̃pln, ~cln
Output: the code of an iteration slice for a hybrid target
1: iteration set = iteration slice(~̃pln, ~cln)
2: for each owner dimensionk in loop nestln do
3: extend(iteration set, k)
4: end for
5: computes = true
6: skips = true
7: for each arrayx referenced inln stmt do
8: ~px = id in gridx(p)
9: accessedx = read region(x, body, iteration set) ∪

write region(x, body, iteration set)
10: (~cx, vx) = belongs to(~px, accessedx)
11: if element undefined((~cx, vx)) then
12: if there is no owner dimensionthen
13: Abort(”Bad distribution”)
14: else
15: computes = false
16: end if
17: else
18: ~̃px = extend id(~px, vx)

19: ~shiftx = array element(~̃px, ~cx,~0)
20: skips = false
21: end if
22: end for
23: if !(computes⊕ skips) then ⊲ Xor
24: Abort(”Bad distribution”)
25: end if
26: if computes then
27: for ~i ∈ iteration set with increment ~inc do
28: body(..., X[pos( ~cx, Cx)][vx][refm

x (~i)− ~shiftx], ...)
29: end for
30: end if



and for any innermost indexes which are not specified. In the pres-
ence of areductionclause, the same clause is generated with the
corresponding OpenMP directive.

4.9 Communication Generation

The generation of the communications uses the halos declared for
each array and the PIPSWRITE and OUT regions. Asend is a
point-to-point communication message which allows a processor
to propagate the updates of array elements to another processor
which uses the value of these elements in a future computation.
A receivecommunication is the symmetric operation of a send
communication.

4.9.1 Generating send communications.

The generation of send communications is described in Algo-
rithm 6. For each iteration slice, we compute the written elements
which are forwardly exposed in the program based on the OUT
regions (line 12). We then scan the allocated memory on the other
processors and compute the intersection between the locally live
region and the remote memory for each array. In fact, we scan only
the processors with common replicated elements for each array,
calledneighbours, known thanks to distribution information. For
non-empty intersections, a non-blocking MPI send communication
is generated.

Algorithm 6 generate sends

Input: ln stmt, p, ~̃pln, ~cln
Output: ln stmt with send communications inserted
1: generate sends ≡
2: ~pln = id in gridln(p)

3: iteration set = loop nest iterations(~̃pln, ~cln)
4: for each owner dimensionk in loop nestln do
5: iteration set = extend(iteration set, k)
6: end for
7: for each arrayx written in ln stmt do
8: ownerx = owner dimensions(ln stmt, x)
9: ~px = id in gridx(p)

10: writex = write region(x, body, iteration set)
11: outx = out region(x, body)
12: livex = writex ∩ outx
13: if livex 6= empty region then
14: (~cx, vx) = belongs to(~px, livex)
15: if element defined(~cx, vx) then
16: ~̃px = extend id(~px, vx)
17: for p′ ∈ P do ⊲ scanning other processors
18: ~p′x = id in gridx(p′)
19: for v′x ∈ Vx do
20: ~̃p′x = extend id( ~p′x, v

′

x)

21: if project(~̃p′x, ownerx) 6=

project(~̃px, ownerx) then
22: for ~c′x ∈ Cx do
23: to send = livex∩

{~a|array element(~̃p′x,
~c′x,~0) ≤ ~a <

array element(~̃p′x,
~c′x, Lx

~1)}
24: if to send 6= ∅ then
25: ~shiftx = array element(~̃px, ~cx,~0)
26: async send(X[pos(~cx, Cx)][vx],

p′, to send, ~shiftx)
27: end if
28: end for
29: end if
30: end for
31: end for
32: end if
33: end if
34: end for

4.9.2 Generating receive communications.

The generation of receive communications is symmetric to the gen-
eration of send communications. There are two main differences:

1. We pass as a parameter to thegeneraterecvsfunction theRe-
ceivedset, which contains the remote iteration slices the contri-
bution of which have already been considered (see the compi-
lation of an ordered loop nest in Algorithm 4),

2. In the blocking version of the recv communication generation,
we indicate explicitly for which local memory block to consider
the contribution of a specific remote iteration slice.

5. Optimizations
5.1 Extension of the loop iteration domain

Iteration space boundaries and subscript expressions may result in
accesses which require a greater halo than expected. This situation
is illustrated in Figure 3 for an execution of the code of Listing 3
on three processors. The access functions for arraysA andB will
require a halo greater than 1. This leads to additional communi-
cations as the modified elements are forwardly exposed. We can
avoid these communications by applying an extension of the iter-
ation space of dimensioni. We introduce the optionalext clause
to indicate, for each dimension of a loop nest, an extension to the
lower and upper bound of the dimension. The goal of this optimiza-
tion is to adjust the iteration space for a better fit with the distributed
elements of the accessed arrays. This optimization does not imply
any redundant computation; it yields to a smaller halo and mini-
mizes the induced communication. In our example, the use of the
extclause (line 9) reduces the needed halo for arrayB (line 2), and
totally eliminates the needed halo and thus the communication on
arrayA (line 5).

1 #pragma dstep distribute A(2: block :2)
2 //#pragma dstep distribute A(block)
3 double A[15];
4 #pragma dstep distribute B(3: block :3)
5 //#pragma dstep distribute B(1: block :1)
6 double B[15];
7
8 #pragma dstep gridify (i)
9 //#pragma dstep gridify (i(ext=3,1))

10 for(i=3; i<14; i++)
11 A[i] = B[i-1] + B[i+1];
12 ...

Listing 3. Using theextclause to adapt the iteration space extent

5.2 Static adaptation of the halo

The purpose of this optimization is to reduce the visible halo of an
array at some points of the program to reduce the induced com-
munication on that array. At the declaration of the array, the pro-
grammer declares, for each dimension, a halo which is supposed to
satisfy the locality of all the accesses to that array in the program.
The replicated elements must be updated each time they are modi-
fied and are forwardly exposed. The aim of this optimization is to
control the amount of halo which is really necessary at some points
of the program byhiding the unnecessary halo. We apply a def-use
analysis on the halos. If in a path on the call graph, an halo is de-
fined and killed several times, its value is set to zero until the next
point before a possible use. For the time being, this optimization is
applicable for array dimensions: 1) which are accessed by loop in-
dexes spanning an iteration space identical to the array dimension
extent, either directly or by applying the iteration space extension
optimization, and 2) which are accessed by array subscripts of the



Figure 3. Iteration space extension optimization

form a ∗ i + b wherea = 1. In addition, the possible computed
values for the halo are either the original value or the zero value.
We are working on extending this optimization to find finer results
in the range[0, original halo val].

5.3 Loop interchange

In the presence of enclosing ordered dimensions, the first parallel
dimension if any is annotated with anomp parallel fordirective
with the enclosing indexes passed in afirstprivateclause. Teams of
OpenMP threads are created and destructed for each enclosing or-
dered dimension. Based on the direction vector of a loop nest [37],
it is always legal to exchange the first parallel dimension with the
outermost ordered dimension, because the dependence will still be
carried by the ordered dimension on each process. As a result, the
OpenMP team of threads is created only once, saving a great over-
head. As a counterpart, the loop interchange introduces some local-
ity penalty if strided accesses are introduced. The actual benefits of
this optimization depend on the code.

5.4 Overlapping communication and computation

By construction, the generated code of dSTEP overlaps the com-
putation and communication of different iteration slices of a single
loop nest. In addition we provide two communication completion
strategies: explicit and implicit. The explicit strategy is as described
in the compilation scheme above. In the implicit strategy, we do not
generate code for communication completions at the end of a loop
nest; the completions are done by thebelongs to function, which
is called before any computation. Theoretically, the latter strategy
allows for a maximum overlap by delaying any completion to the
very point before the data are used, but communication engines do
not always give the expected gains (see [38] for more details).

5.5 An example of generated code

In Listing 4 we show the use of the dSTEPgridify directive to
distribute the computation of they backsubstitute of the NAS
BT program using a multi-partitioned distribution for dimensionk.
Thei andj dimensions are distributed by blocks. Thej dimension
is ordered,i andk are parallel.

The generated code for they backsubstitute function is
showed in Listing 5. In line 1, the information describing the loop
nest distribution is computed and cached using a generated loop
nest identifier (64 in this case). In line 3, the virtual processors
are scanned. Since the distribution is not cyclic, there is a single
cycle for the loop nest (line 4). In line 6 to 8, the bounds of the

1 #pragma step gridify(i, j(dist=block; sched=ordered), k(dist=block , diag;

sched=parallel))

2 for (i = 1; i < grid_points [0]-1; i++) {

3 for (j = grid_points [1]-2; j >= 0; j--) {

4 for (k = 1; k < grid_points [2]-1; k++) {

5 for (m = 0; m < BLOCK_SIZE; m++) {

6 for (n = 0; n < BLOCK_SIZE; n++) {

7 rhs[i][j][k][m] = rhs[i][j][k][m]

8 - lhs[i][j][k][CC][m][n]*rhs[i][j+1][k][n];

9 }}}}}

Listing 4. Distribution of they backsubsitute function of BT

current iteration slice are computed. Lines 11 to 26 correspond to
the Pre-recvson arrayrhs imposed by the ordered dimensionj.
The membership to theBefore set, which defines the iteration
slices that must be executed before the current one is implemented
using the predicate in line 19. Lines 31 to 41 show the computation
corresponding to the iteration slice in the distributed domain. The
cycles dimensions of arrayslhs andrhs are always accessed with
a zero subscript since the distribution of these arrays is not cyclic.
Lines 42 to 43 correspond to the generated send communications.
The not shownPost-recvsphase is similar to thePre-recvsand is
done for iteration slices which are not in theBefore set. Finally,
the communications on arrayrhs are completed (line 49).

6. Experiments
We present several experiments validating the different aspects of
our dSTEP prototype. Matrix Multiplication and Jacobi illustrate
the halo. Polybench Adi and NAS BT both compare standard block
distribution and a multi-partitioned distribution. On the NAS BT,
we show the benefit of the optimizations described in section 5.
We generate the hybrid distributed and -shared memory programs
and measure the execution times on a cluster of the Grid5000
platform. We use 32 bi-processor quadri-core Intel Xeon E5520
nodes connected with an Infiniband network.

6.1 Matrix multiplication

We consider the naive algorithm of matrix multiplication of the
form C = C + A ∗ B. There is an initialization phase of the ma-
tricesA, B andC and a final phase which computes and displays
the trace of matrixC. We use a two-dimensional distribution for
matricesA, B andC and use a total halo for the second dimen-
sion of matrixA and for the first dimension of matrixB to satisfy
the accesses of the innermost dimension of the multiplication loop
nest,k. For computation distribution we evaluate two strategies:
1) the distribution of the first two parallel dimensionsi andj by
blocks, and 2) in addition to the distribution of thei andj dimen-
sions, we distribute thek dimension using anall(block size) dis-
tribution. We obtain better performance for the second strategy over
the first. With matrices of size2048 × 2048, we obtain a speedup
of 151.2 on 256 cores using a block size of 16. With matrices of
size9196× 8196, the speedup on 256 cores is of 181.83 using the
first strategy and of 1632 using the second one. This spectacular
speedup is due to the temporal locality obtained by blocking the
innermostk dimension.

6.2 Jacobi Kernel

The Jacobi kernel iterates over a 2-D stencil computation pattern
until the convergence of the norm, which is computed using a
parallel reduction. This program contains two 2-D matrices which
are distributed using a 2-D block distribution and using a halo
of 4 for both matrices on each dimension. The computation is
distributed using a 2-D block parallel distribution. Figure 5 shows
the execution times for8196×8196 matrices. We obtain a speedup
of 192.4 on 256 cores.



1 DSTEP_DISTRIBUTE_LOOP (64, _C , 2, 3, DSTEP_INT_DIV(grid_points

[0]-1-1+1-1, _P[0], 1), DSTEP_INT_DIV(grid_points [1]-2+1-0, _P[1], 1)

, DSTEP_INT_DIV(grid_points [2]-1-1+1-1, _P[2], 1));

2 _v = DSTEP_FIRST_VPROC(_P, _p , _vprocs , 1, -1);

3 for (___v = 0;___v <_vprocs;___v ++) {

4 int _c[3] = {0, 0, 0};

5 DSTEP_EXTEND_ID (3, _P, _p , _v, _t_p);

6 DSTEP_LOOP_BOUNDS(3, _LOW , _UP , _v, _P , _c, _t_p , _L , _U, _INCR);

7 int DSTEP_i_LOW = _LOW[0], DSTEP_i_UP = _UP[0], DSTEP_j_LOW =

8 _LOW[1], DSTEP_j_UP = _UP[1], DSTEP_k_LOW = _LOW[2], DSTEP_k_UP = _UP

[2];

9 int _ACCESSED_rhs [4][2] = {{ DSTEP_GENERIC_MAX(2, DSTEP_i_LOW , 1),

DSTEP_i_UP}, {DSTEP_GENERIC_MAX(2, 0, DSTEP_j_LOW), DSTEP_j_UP +1}, {

DSTEP_GENERIC_MAX(2, DSTEP_k_LOW , 1), DSTEP_k_UP}, {0, 4}};

10 DSTEP_BELONGS_TO (rhs , _DIMS_rhs , &_c_rhs , &_v_rhs , _c_VECT_rhs ,

_shift_rhs , _ACCESSED_rhs , 0, &_computes , 1);

11 //Pre recvs

12 DSTEP_NEIGHBOURS (rhs , &_NB_N_rhs , &_N_rhs);

13 for (_n_rhs = 0;_n_rhs <_NB_N_rhs;_n_rhs += 1) {

14 __rank = _N_rhs[_n_rhs ];

15 DSTEP_PROC_ID (64, __rank , 3, __p);

16 for (__v = 0;__v <_vprocs;__v ++) {

17 int __c[3] = {0, 0, 0};

18 DSTEP_EXTEND_ID (3, _P , __p , __v , __t_p);

19 if (_t_p[1]<_P[1] -1&& __t_p [1]== _t_p [1]+1&&( __t_p[0]-_t_p

[0]>=-1&& __t_p[0]-_t_p [0] <=1) &&( __t_p [2]-_t_p [2]>=-1&& __t_p[2]-_t_p

[2] <=1)) {

20 DSTEP_LOOP_BOUNDS(3, _LOW , _UP , _v , _P , __c , __t_p , _L , _U ,

_INCR);

21 int DSTEP_i_LOW = _LOW[0], DSTEP_i_UP = _UP[0],

22 DSTEP_j_LOW = _LOW[1], DSTEP_j_UP = _UP[1], DSTEP_k_LOW =

23 _LOW[2], DSTEP_k_UP = _UP [2];

24 int __recv_rhs [4][2] = {{ DSTEP_GENERIC_MAX(2, DSTEP_i_LOW ,

1), DSTEP_i_UP}, {DSTEP_GENERIC_MAX(2, DSTEP_j_LOW , 0), DSTEP_j_UP},

{DSTEP_GENERIC_MAX(2, DSTEP_k_LOW , 1), DSTEP_k_UP}, {0, 4}};

25 DSTEP_SYNC_RECV(rhs , __rank , __recv_rhs , sizeof(double),

_OWNERS_rhs , _v_rhs , 0);

26 }}}

27 int _ACCESSED_lhs [6][2] = {{ DSTEP_GENERIC_MAX(2, DSTEP_i_LOW , 1),

DSTEP_i_UP}, {DSTEP_GENERIC_MAX(2, DSTEP_j_LOW , 0), DSTEP_j_UP}, {

DSTEP_GENERIC_MAX(2, DSTEP_k_LOW , 1), DSTEP_k_UP}, {2, 2}, {0, 4},

{0, 4}};

28 DSTEP_BELONGS_TO (lhs , _DIMS_lhs , &_c_lhs , &_v_lhs , _c_VECT_lhs ,

_shift_lhs , _ACCESSED_lhs , 0, &_computes , 1);

29
30 if (_computes) {

31 for(i = DSTEP_i_LOW; i <= DSTEP_i_UP; i += 1)

32 #pragma omp parallel for private(j, k, m, n) firstprivate(i)

33 for(j = DSTEP_j_UP; j >= DSTEP_j_LOW; j += -1)

34 for(k = DSTEP_k_LOW; k <= DSTEP_k_UP; k += 1)

35 for(m = 0; m <= 4; m += 1)

36 for(n = 0; n <= 4; n += 1){

37 rhs [0][ _v_rhs ][i-_shift_rhs [0]][j-_shift_rhs [1]][k-_shift_rhs [2]][m] =

38 rhs [0][ _v_rhs ][i-_shift_rhs [0]][j-_shift_rhs [1]][k-_shift_rhs [2]][m] -

39 lhs [0][ _v_lhs ][i-_shift_lhs [0]][j-_shift_lhs [1]][k-_shift_lhs [2]][2][m][n]*

40 rhs [0][ _v_rhs ][i-_shift_rhs [0]][j+1- _shift_rhs [1]][k-_shift_rhs [2]][n];

41 }

42 int __send_rhs [4][2] = {{ DSTEP_GENERIC_MAX(2, DSTEP_i_LOW , 1),

DSTEP_i_UP}, {DSTEP_GENERIC_MAX(2, DSTEP_j_LOW , 0), DSTEP_j_UP}, {

DSTEP_GENERIC_MAX(2, DSTEP_k_LOW , 1), DSTEP_k_UP}, {0, 4}};

43 DSTEP_SEND(rhs , _rank , _NB_NODES , _c_rhs , _v_rhs , _c_VECT_rhs ,

__send_rhs , sizeof(double), _OWNERS_rhs);

44 }

45 _v = (_v -1+ _vprocs)%_vprocs;

46 }

47 //Post recvs

48 ...

49 DSTEP_COMPLETE_COMM(rhs);

Listing 5. dSTEP generated code for they backsubsitute

6.3 Polybench Adi

The Polybench Adi [39] presents an alternate line and column
sweep pattern. We use a 2-D distribution for arrays and loop nests,
with two distribution strategies: 1) the two dimensions are dis-
tributed using block distribution (standard distribution), 2) the first
dimension is distributed by blocks, and the second one is dis-
tributed using a diagonalized distribution, resulting in a multi-
partitioned distribution. Figure 6 shows the execution times for a
large 16000 × 16000 data set. We observe that until 128 cores,
the multi-partitioned distribution outperforms the standard one. On
128 cores, the speedups are 39.4 and 32.26 and on 256 cores the
speedups are 51.6 and 41.08 for the two strategies respectively.

6.4 NAS BT

The NAS Parallel benchmarks [40] are a set of scientific pro-
grams designed by the NASA to evaluate the performance of su-
percomputers. The NAS BT application solves three-dimensional
Euler/Navier-Stokes equations by sweeping alternatively along the
x, y andz dimension. The BT program contains a succession of
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loop nests where the three first dimensions are not always all par-
allel. Each time the system is solved along one direction, the corre-
sponding dimension is ordered. In addition, some parts of the arrays
are accessed separately by isolated iterations. We distribute the first
three dimensions of the arrays and of the loop nests of the program.
We use, like for the Polybench Adi kernel, a standard and a multi-
partitioned distribution. For the loop nests, we use, as needed, par-
allel, ordered and owner schedules for the distributed dimensions.

Optimizations. Table 2 shows the performance gains on 64 cores
using the loop interchange and the halo adjustment optimizations
for the standard distribution. We obtain a gain of 4.5% with loop
interchange and 16.8% when combining both optimizations. For
all the remaining experiments, we apply theloop interchangeand
thehalo adjustmentoptimizations.

No optimization Loop interchange Loop Interchange +sethalo
102.96 sec. 98.4 sec. 85.7 sec.

Table 2. Loop Interchange andsethalogains on 64 cores

We compare the execution times of four versions of the BT
application: the official MPI Fortran manual implementation, the
UPC manual implementation using MPI and the generated dSTEP
code with the standard and the multi-partitioned distribution. We
notice that the baseline for the Fortran MPI version is better than
the C version used as input to dSTEP. The execution times of the
MPI Fortran are always lower than those of both the UPC and the
generated dSTEP codes. The multi-partitioning implementations in
the Fortran MPI and UPC versions requires a square number of
processors to be executed. With dSTEP however, we can execute
the generated code on any number of processors. The dSTEP code
performs better than the UPC code, for which we don’t have the
results on 1 and 8 cores because of memory errors. The multi-
partitioned version of dSTEP performs better than the standard
one, except for 16 and 64 cores because of the grid shape. For
instance, the 64 cores execution corresponds to the launch of 8
MPI processes with 8 OpenMP threads on 8 nodes of bi-quadricore
processors. In this case, the grid for each array and loop nest has
the shape4 × 2 × 2, which makes only half the processors active
when sweeping thex dimension. This imbalance combined with
the communication overhead of the multi-partitioned distribution
makes it perform worse than the standard distribution on 64 cores.
In Table 3, we compute the speedups for the MPI Fortran code

# cores 8 16 32 64 128 256
MPI Fortran - 7.89 - 26.95 - 128.8

speedup, % / MPI Fortran s s % s s % s s %
dSTEP standard 5.77 9.77 123% 17.14 29.88 110% 46.12 73.62 57%

dSTEP multi-partitioned 5.77 9.5 120% 19.99 27.28 101% 56.76 83.35 65%

Table 3. BT compared performance

and for both versions of generated dSTEP code. The speedups are
computed relatively to the specific baseline of each version of the
code. We than compare the ratio between the dSTEP speedups and
the Fortran MPI speedups. We can see that on 16 and 64 cores, the
dSTEP speedups outperform the MPI Fortran speedups. On 256
cores however, the speedup of the dSTEP multi-partitioned code is
65% of the Fortran MPI code.

Conclusion from the experiments. We obtained very good per-
formance for matrix multiplication by combining the total halo and
theall distribution. We obtained a fairly good performance for the
Jacobi kernel. For the Polybench Adi, the performance did not scale
very well due to a low computation/communication ratio. On the
BT program, we showed good performance using both a standard
block and multi-partitioned distribution. On 16 and 64 cores, we
outperformed the MPI Fortran manual implementation but we no-
ticed a degradation of the performance on 256 cores. OnN nodes,
the memory used on each node isS/N +H for each array of size
S and halo H, allowing to handle very large data sets when the
halo is not very large. Finally, we showed that the performance of
the dSTEP generated programs come with a low investment effort
from the programmer, consisting on insertingdistributeandgridify
directives.

7. Conclusion and future work
In this paper we presented dSTEP, a high-level programming model
for hybrid distributed and -shared memory systems for dense sci-
entific programs. We proposed a generic compilation scheme and
implemented our solution in the PIPS source-to-source compiler to-
gether with a runtime system. Our transformation system maps the
computation to distributed and shared memory architecture and au-
tomatically generates the necessary communications. We unify the
standard distribution types, the multi-partitioning and the use of the
halo in a single model. We offer a series of optimizations aiming
essentially at reducing the amount of communicated elements and
to overlap computation and communication. Our solution handles
the problem of data and computation distribution interprocedurally
for a whole program. We validate our solution on several scientific
kernels and on the more challenging NAS BT application for which
we outperform the Fortran MPI manual implementation on 16 and
64 cores.
Our ongoing work is on the adaptation of the dSTEP programming
model to clusters of GPUs. In our solution, the inter-node commu-
nications are already handled and can be readily reused for GPU
clusters. Beside that, the host/device communication on each node
is obtained by instrumenting the send and recv functions: at each
communication call, we have the description of the array region to
communicate; we insert a synchronous device-to-host transfer of
the corresponding elements before each send communication and
we insert a synchronous host-to-device transfer after each complete
of a recv operation. The missing part is the mapping of the compu-
tation to the specific target language like CUDA.
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