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Embedded Systems

An embedded system is a computer system with a dedicated
function, within a larger mechanical or electrical system.

Constraints:

= Power consumption;
= Performance (RT);
= Safety;

= Cost.

Uses a low-power processor or a microcontroller.

Commonly found in consumer, cooking, industrial, automotive,
medical, commercial and military applications.



Example

Quadricopter, DRONE Project, MINES ParisTech & ECP
= Parrot AR.Drone.
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Control-Command System

Command

Plant

Yd

Controller

while (1) {
receive(y, yd);
u = f(y, yd;
send (u) ;
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Levels of Description

Formalization: Realization: very low-level C
= System conception; program
= Constraint specification; = Thousands of LOC;
= Physical model of the = Computations
environment; decomposed into
= Mathematical proof that elementary operations;
the system behave = Management of sensors
properly. and actuators.
MATLAB, Simulink GCC, Clang

. . . .

Gradual transformations

5/26



Levels of Description

Formalization:
= System conception;

= Constraint specification;

= Physical model of the
environment;

= Mathematical proof that
the system behave

properly.
MATLAB, Simulink

Realization: very low-level C
program

= Thousands of LOC;

= Computations
decomposed into
elementary operations;

= Management of sensors
and actuators.

GCC, Clang

. . . .

Gradual transformations

How to ensure that the executed program is correct?
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Levels of Description

Formalization: | |Rea|ization: very low-level C

How to ensure that the executed program is correct?
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Stability Proof

Show that the system parameters are bounded during its execution.

Essential for system safety.

Up

Plant (state xj,)

.

Ye

Controller (state x.)

Yp

-

e O

= Open loop stability: u. bounded = x. bounded

(hence y. bounded)

= Closed loop stability: yg bounded = xc, x, bounded

hence y., y, bounded
P
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Stability Invariant

Lyapunov theory provides a framework to compute inductive
invariants.

Linear invariants not well suited.
Quadratic invariants (ellipsoids) are a good fit for linear systems.

/
A

\
/ %

Static analysis to show that the invariant holds from source code.
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Stability Invariant

Lyapunov theory provides a framework to compute inductive
invariants.

Linear invariants not well suited.
Quadratic invariants (ellipsoids) are a good fit for linear systems.

Xey

L.

Static analysis to show that the invariant holds from source code.
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Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by
binary, limited-precision values.
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Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by
binary, limited-precision values.

= Floating point (IEEE 754):

31 23 0

(—1)° x 257127 x ' m

= Fixed point:
(1) xe+2%xm

= Rationals using pairs of integers.
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Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by
binary, limited-precision values.

@ Constant values are altered;

® Rounding errors during computations.

= Stability proof does not apply, invariant does not fit.

How to adapt the stability proof?

8/26



Example System

[Feron ICSM'10]:

mass-spring system.

Ac = [0.4990, -0.0500;
0.0100, 1.0000];

Bc = [1; 0];

Cc = [564.48, 0];

Dc = -1280;

xc = zeros(2, 1);

receive(y, 2); receive(yd, 3);
while (1)

yc = max(min(y - yd, 1), -1);

u = Cc*xc + Dcxyc;

xc = Ac*xc + Bcxyc;

send(u, 1);

receive(y, 2); receive(yd, 3)
end

>
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Example System

Ac = [0.4990, -0.0500;
[Feron ICSM'10]: 0.0100, 1.0000];
mass-spring system. Bc = [1; 0];
Cc = [564.48, 0];
u . Dc = -1280;
- : xc = zeros(2, 1);
| receive(y, 2); receive(yd, 3);
. | while (1)
: : . yc = max(min(y - yd, 1), -1);
y Yd u = Ccxxc + Dcxyc;

xc = Ac*xc + Bcxyc;

send(u, 1);

receive(y, 2); receive(yd, 3);
end

Open-loop stability:
X bounded.
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Example System: Stability Ellipse

Xey

Lyapunov theory = x. = ( ) belongs to the ellipse:

Xc

fp={xcR|xT-P.x<1} P=10"3 (0.6742 0.0428)

0.0428 2.4651
Xc € Ep <= 0.6742x2 + 0.0856x¢, xc, + 2.4651xZ, < 1000

Xep
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Example System

Ac = [0.4990, -0.0500;
0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280; Xe»
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (13)[ ! Ep Er
% xc € Ep

yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dcxyc;
xc = Ac*xc + Bcxyc;
send(u, 1);
receive(y, 2); receive(yd, 3);
% xc. € Er C Ep

end
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Example System: Invariants

xc = zeros(2, 1);
% Xc € gP
receive(y, 2); receive(yd, 3);
% xc € Ep
while (1)
% xc €Ep
yc = max(min(y - yd, 1), -1);
%h x.€Ep, y:<l1
% (Xf) €€ Qu=1("91",), n=00991
= Cc*xc + Dcx*xyc;
( ) € €a,
xc = Ac*xc + Bcxyc;
% xc €Er, R= [(AC Bc)le(Ac BC)T]
send(u, 1);
% Xxc € ER
receive(y, 2); receive(yd, 3);
% xc € Er
% xc € Ep
end

-1
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Example System: Invariants

% xc € Ep, yc2 <1
% (3E) €au Qu=("12,), n=09991

Ye,

yA (;ﬁ) € 5QM

xc = Ac*xc + Bcxyc;

% x € Ery  R=[(Ac B)Q (A BT
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Example System

Using limited-precision

Ac = [0.4990, -0.0500; : .
0.0100, 1.0000]; arithmetic:
Bc = [1; 0];
Cc = [664.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
% xc €Ep

yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bcxyc;
send(u, 1);
receive(y, 2); receive(yd, 3);
h xc€Ep

end
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Example System

ng};kb'iééi':b'ééii: Using limited-precision

: 0.0100, 1.0000] ;! arithmetic:

1 1

 Be = [1; 01; | ® Constant values are
'Cc = [564.48, 01; !

'De = -1280 ! altered

xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
% XCESP
yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bcxyc;
send(u, 1);
receive(y, 2); receive(yd, 3);
h xc€Ep
end
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Example System

Ac = [0.4990, -0.0500;"
0.0100, 1.0000] ;!

Bc = [1; 0];
Cc = [564.48, 0]; !
Dc = -1280; !

,_
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
% Xe=€p
yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bcxyc;
send(u, 1);
receive(y, 2); receive(yd, 3);

% XeE€p

end

Using limited-precision
arithmetic:
@ Constant values are
altered

= &p no longer
valid;
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Example System

[Aélitbfiééi'ibjééiﬁi Uynglnﬁmedﬂxeamon
' 0.0100, 1.00007 ;! arithmetic:
1 1
|Bc = [1; 0]; | ® Constant values are
'Cc = [564.48, 01; ! altered
'Dc = -1280; ;
xc = zeros(2, 1); = &p no longer
receive(y, 2); receive(yd, 3); valid;
while (1) ® Rounding errors
h Xe€€p during computations.

yc = max(min(y - yd, 1), -1);

send(u, 1);
receive(y, 2); receive(yd, 3);

% XeE€p

end
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Example System

"Ac = [0.4990, -0.0500; Using limited-precision
; 0.0100, 1.0000] ;' arithmetic:
|Bc = [1; 0]; | @ Constant values are
'Cc = [564.48, 0]; ! Altered
De = -1280; ________ !
%c = Zeros(2, 1); = Ep no longer
receive(y, 2); receive(yd, 3); valid;
while (1) ® Rounding errors
h xe=€p during computations.
ye = max(min(y - yd, 1), -1);
'u = Cckxc + Dc*yc;i Adapt invariants.
(¥¢ = Ac*xc + Bexycy
send(u, 1);
receive(y, 2); receive(yd, 3);
% Xe=€p
end
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Theoretical Framework

Transpose code + invariants in two steps:

Real

% d
i
% d =6(d, i)
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Theoretical Framework

Transpose code + invariants in two steps:

Real

Intermediate

hd
i

% d = 0(d, i)

% d
.Zv ~ ~
v d' = 0(d,7)

L

J

Code: constants converted

into machine numbers

Invariants recomputed using
the same propagation theorem

6
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Theoretical Framework

Transpose code + invariants in two steps:

Code: constants converted
into machine numbers

Invariants recomputed using
the same propagation theorem

6

Real

Intermediate

Machine

hd
i

% d = 0(d, i)

% d
’i ~ ~
v d' = 0(d,7)

% d
7

% d D 0(d,7) e

L

S U

J

Code: real functions +, *...

replaced by their machine
counterparts

Invariants enlarged to include
rounding error

Preserve invariant shape for
propagation
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Example System, 32-bit Floating-Point Numbers

Ac = [0.4990, -0.0500;
0.0100, 1.0000];

Bc = [1; 0];

Cc = [564.48, 0];

Dc = -1280;

xc = zeros(2, 1);

® Convert constants:

Acf = [0.49899999999999999911182158029987476766109466552734375,
-0.05000000000000000277555756156289135105907917022705078125;
0.01000000000000000020816681711721685132943093776702880859375,
1.0000]

Bef = [1; 0];

Ccf = [564.48000000000001818989403545856475830078125, 0]

Dcf = -1280

16 /26



Example System, 32-bit Floating-Point Numbers

xc = zeros(2, 1);

% xc € Ep In the rest of the
receive(y, 2); receive(yd, 3); code:
% xc € gp
while (1)
yA Xe € Ep

yc = max(min(y - yd, 1), -1);
h xc € gF’a }/3 <1
0 Xc uwP 0
h ( :) € Equ Qu= (“o 1—ﬂ)
= Cc*xc + Dcxyc;
( ) S gQﬂ
xc = Ac*xc + Bcexyc;
% xc € Er, R=[(Ac B)Q. H(Ac B.)"]
send(u, 1);
% Xc € Er
receive(y, 2); receive(yd, 3);
% X € Er
% x. € &p
end 17 /26
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Example System, 32-bit Floating-Point Numbers

xc = zeros(2,
% xc € Ep
receive(y, 2);
% x. € &p
while (1)

% Xcegp

1);

receive(yd, 3);

yc = max(min(y - yd, 1), -1);

% xc € Ep,
W(35) € Eqp

<1
Qu= (HOP 1Eﬂ)

Cc*xc + Dcxyc;

z )ESQM

xc = Acf*xxc + Bcf*yc;

%XCE((:R., R =

send(u, 1);
%XcegR

receive(y, 2);

% X € Er
% x. € &p
end

[(Ac B)Q:Y(A. B.)T]

receive(yd, 3);

-1

In the rest of the
code:

= A, Bc replaced
by Acf, Bers
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Example System, 32-bit Floating-Point Numbers

xc = zeros(2, 1);

% x. € Ep In the rest of the
receive(y, 2); receive(yd, 3); code:
% x. € &p
while (1) = A, Bc replaced
Y x. € Ep by Acf, Ber;
yc = max(min(y - yd, 1), -1); = R depends on
) 2
A XCXG Ep, yc<1 s A., Be,
h(5) € Equr Qu= (* 17,¢) replaced by S;
u = Cc*xc + Dcxyc;

W (%) €&q,
xc = Acf*xxc + Bcf*yc;
% xc €&, S=[(Acr Ber)Q (Acr Ber)']
send(u, 1);
% Xce € 55
receive(y, 2); receive(yd, 3);
% xc € &g
% x. € &p
end 17 /26
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Example System, 32-bit Floating-Point Numbers

xc = zeros(2, 1);

% x. € Ep In the rest of the

receive(y, 2); receive(yd, 3); code:

% x. € &p

while (1) = A, Bc replaced
h xc€Ep by Acs, Ber;
yc = max(min(y - yd, 1), -1); = R depends on
hxeeép, yi<1 . A, Be,
W ()€ Equ Qu= ("o 17,¢) replaced by S;
:1 =XCCC*XC * Dexyes = Check if
A (yc) € ng, 85 C gP

xc = Acf*xxc + Bcf*yc;

% xc €&, S=[(Acr Ber)Q (Acr Ber)']
send(u, 1);

% Xc € 55

1

________

end 17 /26



Example System, 32-bit Floating-Point Numbers

® Replace functions:

yA (;z) € 5%
xc = Acf*xc + Bcfx*yc;

% x €&, S=[(Acr Ber) @ (Acr Ber)']

= Replace 4+ and x by their FP counterparts;

= Increase s to include arithmetic error.
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Example System, 32-bit Floating-Point Numbers

e1, e is the arithmetic error on x¢, Xc,.

E1 D &g is an ellipse s.t.:

Vxc € Es, Vx. € R?,
Ix¢, = Xa| SeN|x,, = x| <o = x{ €& ()

E7 can be the smallest magnification of s s.t. (x) holds.
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Example System, 32-bit Floating-Point Numbers

W (%) €&,
xc = Acf*xc + Bcfxyc;
) Xc € gSa S= [(Acf Bcf)Qﬂ_l(Acf Bcf)T} -
send(u, 1);
% Xe € 55
receive(y, 2); receive(yd, 3);
% x. € 55
% xc € Ep
end

2

In the rest of the code:
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Example System, 32-bit Floating-Point Numbers

W (%) €&,
xc = Acf*xc + Bcfxyc;
% x. € ET
send(u, 1);
%XCEST
receive(y, 2); receive(yd, 3);
%h xc €ET
% xc € Ep
end

In the rest of the code:

= Replace £s by E7;
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Example System, 32-bit Floating-Point Numbers

W (%) €&,
xc = Acf*xc + Bcfxyc;

% x. € ET
send(u, 1);
%XCEET

________

In the rest of the code:

= Replace £s by E7;
= Check if £ C Ep.

It works! = Stable in 32 bits.
If not, can’'t conclude.
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Automation: The LyaFloat Tool
In Python, using SymPy.

from lyafloat import *
setfloatify(constants=True, operators=True, precision=53)

P = Rational("1e-3") * Matrix(rationals(
["0.6742 0.0428", "0.0428 2.4651"]1))
EP = Ellipsoid(P)

xcl, xc2, yc = symbols("xcl xc2 yc")
Ac = Matrix(constants(["0.4990 -0.0500", "0.0100 1.0000"]1))

ES = Ellipsoid(R)
print ("ES included in EP :", ES <= EP)

i = Instruction({xc: Ac * xc + Bc * yc},
pre=[zc in EQmu], post=[xc in ES])
ET = i.post() [xc]
print ("ET =", ET)
print ("ET included in EP :", ET <= EP)
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Closed Loop

Closed-loop system:

= Pseudocode for controller and for environment;
» send & receive;

= Only controller code is changed.

Does not work with 32 bits.
OK with 128 bits.
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Extensions of LyaFloat

Suitable method if bounded error.

@ Arithmetic paradigms:

= OK with floating point: rounding error is bounded for +, -, * if
far enough from extremal values;

= Same for fixed point;

= Not sure what happens with two integers;
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Extensions of LyaFloat

Suitable method if bounded error.

@ Arithmetic paradigms:

= OK with floating point: rounding error is bounded for +, -, * if
far enough from extremal values;

= Same for fixed point;

= Not sure what happens with two integers;

® Other functions (non-linear systems):

= Differentiable, periodic functions (cos)
(can be computed with an abacus/polynomial interpolation);
= Differentiable functions restricted to a finite range
(assuming values in the range).
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Related Work

Compute bounds from source code:

= Astrée;
= PhD P. Roux.

From pseudocode to C:
= Feron ICSM’10.
Floating-point arithmetic:

= PhD P. Roux.

Proof translation, code-level invariants.

Closed loop.
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Conclusion

Theoretical framework to translate proof invariants on code with
real arithmetic, while preserving the overall proof structure.

LyaFloat: implementation for Lyapunov-theoretic proofs on
floating-point arithmetic.

Future work:
= Support for other arithmetic paradigms, more functions,
more invariant propagators;

= Coq rather than Python
—> formalization (or proof?) of propagators;

= ..or generate Coq scripts?

25/
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