Translation of Lyapunov Stability Proofs
to Machine Arithmetic

Vivien Maisonneuve

pos

MINES
Tech

Eighth meeting of the French community of compilation

Nice, July 2014

Embedded Systems

An embedded system is a computer system with a dedicated
function, within a larger mechanical or electrical system.

Constraints:

= Power consumption;
= Performance (RT);
= Safety;

= Cost.

Uses a low-power processor or a microcontroller.

Commonly found in consumer, cooking, industrial, automotive,
medical, commercial and military applications.

Example

Quadricopter, DRONE Project, MINES ParisTech & ECP
= Parrot AR.Drone.

3/26

Control-Command System

Command

Plant

Yd

Controller

while (1) {
receive(y, yd);
u = f(y, yd;
send (u) ;

4/26

Levels of Description

Formalization: Realization: very low-level C
= System conception; program
= Constraint specification; = Thousands of LOC;
= Physical model of the = Computations
environment; decomposed into
= Mathematical proof that elementary operations;
the system behave = Management of sensors
properly. and actuators.
MATLAB, Simulink GCC, Clang

. . . .

Gradual transformations

5/26

Levels of Description

Formalization:
= System conception;

= Constraint specification;

= Physical model of the
environment;

= Mathematical proof that
the system behave

properly.
MATLAB, Simulink

Realization: very low-level C
program

= Thousands of LOC;

= Computations
decomposed into
elementary operations;

= Management of sensors
and actuators.

GCC, Clang

. . . .

Gradual transformations

How to ensure that the executed program is correct?

5/26

Levels of Description

Formalization: | |Rea|ization: very low-level C

How to ensure that the executed program is correct?

5/26

Stability Proof

Show that the system parameters are bounded during its execution.

Essential for system safety.

Up

Plant (state xj,)

.

Ye

Controller (state x.)

Yp

-

e O

= Open loop stability: u. bounded = x. bounded

(hence y. bounded)

= Closed loop stability: yg bounded = xc, x, bounded

hence y., y, bounded
P

6/26

Stability Invariant

Lyapunov theory provides a framework to compute inductive
invariants.

Linear invariants not well suited.
Quadratic invariants (ellipsoids) are a good fit for linear systems.

/
A

\
/ %

Static analysis to show that the invariant holds from source code.

7/26

Stability Invariant

Lyapunov theory provides a framework to compute inductive
invariants.

Linear invariants not well suited.
Quadratic invariants (ellipsoids) are a good fit for linear systems.

Xey

L.

Static analysis to show that the invariant holds from source code.

7/26

Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by
binary, limited-precision values.

8/26

Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by
binary, limited-precision values.

= Floating point (IEEE 754):

31 23 0

(—1)° x 257127 x ' m

= Fixed point:
(1) xe+2%xm

= Rationals using pairs of integers.

8/26

Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by
binary, limited-precision values.

@ Constant values are altered;

® Rounding errors during computations.

= Stability proof does not apply, invariant does not fit.

How to adapt the stability proof?

8/26

Example System

[Feron ICSM'10]:

mass-spring system.

Ac = [0.4990, -0.0500;
0.0100, 1.0000];

Bc = [1; 0];

Cc = [564.48, 0];

Dc = -1280;

xc = zeros(2, 1);

receive(y, 2); receive(yd, 3);
while (1)

yc = max(min(y - yd, 1), -1);

u = Cc*xc + Dcxyc;

xc = Ac*xc + Bcxyc;

send(u, 1);

receive(y, 2); receive(yd, 3)
end

>

9/26

Example System

Ac = [0.4990, -0.0500;
[Feron ICSM'10]: 0.0100, 1.0000];
mass-spring system. Bc = [1; 0];
Cc = [564.48, 0];
u . Dc = -1280;
- : xc = zeros(2, 1);
| receive(y, 2); receive(yd, 3);
. | while (1)
: : . yc = max(min(y - yd, 1), -1);
y Yd u = Ccxxc + Dcxyc;

xc = Ac*xc + Bcxyc;

send(u, 1);

receive(y, 2); receive(yd, 3);
end

Open-loop stability:
X bounded.

9/26

Example System: Stability Ellipse

Xey

Lyapunov theory = x. = () belongs to the ellipse:

Xc

fp={xcR|xT-P.x<1} P=10"3 (0.6742 0.0428)

0.0428 2.4651
Xc € Ep <= 0.6742x2 + 0.0856x¢, xc, + 2.4651xZ, < 1000

Xep

10/26

Example System

Ac = [0.4990, -0.0500;
0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280; Xe»
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (13)[! Ep Er
% xc € Ep

yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dcxyc;
xc = Ac*xc + Bcxyc;
send(u, 1);
receive(y, 2); receive(yd, 3);
% xc. € Er C Ep

end

11/26

Example System: Invariants

xc = zeros(2, 1);
% Xc € gP
receive(y, 2); receive(yd, 3);
% xc € Ep
while (1)
% xc €Ep
yc = max(min(y - yd, 1), -1);
%h x.€Ep, y:<l1
% (Xf) €€ Qu=1("91",), n=00991
= Cc*xc + Dcx*xyc;
() € €a,
xc = Ac*xc + Bcxyc;
% xc €Er, R= [(AC Bc)le(Ac BC)T]
send(u, 1);
% Xxc € ER
receive(y, 2); receive(yd, 3);
% xc € Er
% xc € Ep
end

-1

12/26

Example System: Invariants

% xc € Ep, yc2 <1
% (3E) €au Qu=("12,), n=09991

Ye,

yA (;ﬁ) € 5QM

xc = Ac*xc + Bcxyc;

% x € Ery R=[(Ac B)Q (A BT

13/26

Example System

Using limited-precision

Ac = [0.4990, -0.0500; : .
0.0100, 1.0000]; arithmetic:
Bc = [1; 0];
Cc = [664.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
% xc €Ep

yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bcxyc;
send(u, 1);
receive(y, 2); receive(yd, 3);
h xc€Ep

end

1426

Example System

ng};kb'iééi':b'ééii: Using limited-precision

: 0.0100, 1.0000] ;! arithmetic:

1 1

 Be = [1; 01; | ® Constant values are
'Cc = [564.48, 01; !

'De = -1280 ! altered

xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
% XCESP
yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bcxyc;
send(u, 1);
receive(y, 2); receive(yd, 3);
h xc€Ep
end

1426

Example System

Ac = [0.4990, -0.0500;"
0.0100, 1.0000] ;!

Bc = [1; 0];
Cc = [564.48, 0]; !
Dc = -1280; !

,_
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
% Xe=€p
yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bcxyc;
send(u, 1);
receive(y, 2); receive(yd, 3);

% XeE€p

end

Using limited-precision
arithmetic:
@ Constant values are
altered

= &p no longer
valid;

1426

Example System

[Aélitbfiééi'ibjééiﬁi Uynglnﬁmedﬂxeamon
' 0.0100, 1.00007 ;! arithmetic:
1 1
|Bc = [1; 0]; | ® Constant values are
'Cc = [564.48, 01; ! altered
'Dc = -1280; ;
xc = zeros(2, 1); = &p no longer
receive(y, 2); receive(yd, 3); valid;
while (1) ® Rounding errors
h Xe€€p during computations.

yc = max(min(y - yd, 1), -1);

send(u, 1);
receive(y, 2); receive(yd, 3);

% XeE€p

end

1426

Example System

"Ac = [0.4990, -0.0500; Using limited-precision
; 0.0100, 1.0000] ;' arithmetic:
|Bc = [1; 0]; | @ Constant values are
'Cc = [564.48, 0]; ! Altered
De = -1280; ________ !
%c = Zeros(2, 1); = Ep no longer
receive(y, 2); receive(yd, 3); valid;
while (1) ® Rounding errors
h xe=€p during computations.
ye = max(min(y - yd, 1), -1);
'u = Cckxc + Dc*yc;i Adapt invariants.
(¥¢ = Ac*xc + Bexycy
send(u, 1);
receive(y, 2); receive(yd, 3);
% Xe=€p
end

1426

Theoretical Framework

Transpose code + invariants in two steps:

Real

% d
i
% d =6(d, i)

15/26

Theoretical Framework

Transpose code + invariants in two steps:

Real

Intermediate

hd
i

% d = 0(d, i)

% d
.Zv ~ ~
v d' = 0(d,7)

L

J

Code: constants converted

into machine numbers

Invariants recomputed using
the same propagation theorem

6

15/26

Theoretical Framework

Transpose code + invariants in two steps:

Code: constants converted
into machine numbers

Invariants recomputed using
the same propagation theorem

6

Real

Intermediate

Machine

hd
i

% d = 0(d, i)

% d
’i ~ ~
v d' = 0(d,7)

% d
7

% d D 0(d,7) e

L

S U

J

Code: real functions +, *...

replaced by their machine
counterparts

Invariants enlarged to include
rounding error

Preserve invariant shape for
propagation

15 /26

Example System, 32-bit Floating-Point Numbers

Ac = [0.4990, -0.0500;
0.0100, 1.0000];

Bc = [1; 0];

Cc = [564.48, 0];

Dc = -1280;

xc = zeros(2, 1);

® Convert constants:

Acf = [0.49899999999999999911182158029987476766109466552734375,
-0.05000000000000000277555756156289135105907917022705078125;
0.01000000000000000020816681711721685132943093776702880859375,
1.0000]

Bef = [1; 0];

Ccf = [564.48000000000001818989403545856475830078125, 0]

Dcf = -1280

16 /26

Example System, 32-bit Floating-Point Numbers

xc = zeros(2, 1);

% xc € Ep In the rest of the
receive(y, 2); receive(yd, 3); code:
% xc € gp
while (1)
yA Xe € Ep

yc = max(min(y - yd, 1), -1);
h xc € gF’a }/3 <1
0 Xc uwP 0
h (:) € Equ Qu= (“o 1—ﬂ)
= Cc*xc + Dcxyc;
() S gQﬂ
xc = Ac*xc + Bcexyc;
% xc € Er, R=[(Ac B)Q. H(Ac B.)"]
send(u, 1);
% Xc € Er
receive(y, 2); receive(yd, 3);
% X € Er
% x. € &p
end 17 /26

-1

Example System, 32-bit Floating-Point Numbers

xc = zeros(2,
% xc € Ep
receive(y, 2);
% x. € &p
while (1)

% Xcegp

1);

receive(yd, 3);

yc = max(min(y - yd, 1), -1);

% xc € Ep,
W(35) € Eqp

<1
Qu= (HOP 1Eﬂ)

Cc*xc + Dcxyc;

z)ESQM

xc = Acf*xxc + Bcf*yc;

%XCE((:R., R =

send(u, 1);
%XcegR

receive(y, 2);

% X € Er
% x. € &p
end

[(Ac B)Q:Y(A. B.)T]

receive(yd, 3);

-1

In the rest of the
code:

= A, Bc replaced
by Acf, Bers

17/26

Example System, 32-bit Floating-Point Numbers

xc = zeros(2, 1);

% x. € Ep In the rest of the
receive(y, 2); receive(yd, 3); code:
% x. € &p
while (1) = A, Bc replaced
Y x. € Ep by Acf, Ber;
yc = max(min(y - yd, 1), -1); = R depends on
) 2
A XCXG Ep, yc<1 s A., Be,
h(5) € Equr Qu= (* 17,¢) replaced by S;
u = Cc*xc + Dcxyc;

W (%) €&q,
xc = Acf*xxc + Bcf*yc;
% xc €&, S=[(Acr Ber)Q (Acr Ber)']
send(u, 1);
% Xce € 55
receive(y, 2); receive(yd, 3);
% xc € &g
% x. € &p
end 17 /26

1

Example System, 32-bit Floating-Point Numbers

xc = zeros(2, 1);

% x. € Ep In the rest of the

receive(y, 2); receive(yd, 3); code:

% x. € &p

while (1) = A, Bc replaced
h xc€Ep by Acs, Ber;
yc = max(min(y - yd, 1), -1); = R depends on
hxeeép, yi<1 . A, Be,
W ()€ Equ Qu= ("o 17,¢) replaced by S;
:1 =XCCC*XC * Dexyes = Check if
A (yc) € ng, 85 C gP

xc = Acf*xxc + Bcf*yc;

% xc €&, S=[(Acr Ber)Q (Acr Ber)']
send(u, 1);

% Xc € 55

1

end 17 /26

Example System, 32-bit Floating-Point Numbers

® Replace functions:

yA (;z) € 5%
xc = Acf*xc + Bcfx*yc;

% x €&, S=[(Acr Ber) @ (Acr Ber)']

= Replace 4+ and x by their FP counterparts;

= Increase s to include arithmetic error.

18/26

Example System, 32-bit Floating-Point Numbers

e1, e is the arithmetic error on x¢, Xc,.

E1 D &g is an ellipse s.t.:

Vxc € Es, Vx. € R?,
Ix¢, = Xa| SeN|x,, = x| <o = x{ €& ()

E7 can be the smallest magnification of s s.t. (x) holds.
19/26

Example System, 32-bit Floating-Point Numbers

W (%) €&,
xc = Acf*xc + Bcfxyc;
) Xc € gSa S= [(Acf Bcf)Qﬂ_l(Acf Bcf)T} -
send(u, 1);
% Xe € 55
receive(y, 2); receive(yd, 3);
% x. € 55
% xc € Ep
end

2

In the rest of the code:

20 /26

Example System, 32-bit Floating-Point Numbers

W (%) €&,
xc = Acf*xc + Bcfxyc;
% x. € ET
send(u, 1);
%XCEST
receive(y, 2); receive(yd, 3);
%h xc €ET
% xc € Ep
end

In the rest of the code:

= Replace £s by E7;

20 /26

Example System, 32-bit Floating-Point Numbers

W (%) €&,
xc = Acf*xc + Bcfxyc;

% x. € ET
send(u, 1);
%XCEET

In the rest of the code:

= Replace £s by E7;
= Check if £ C Ep.

It works! = Stable in 32 bits.
If not, can’'t conclude.

20 /26

Automation: The LyaFloat Tool
In Python, using SymPy.

from lyafloat import *
setfloatify(constants=True, operators=True, precision=53)

P = Rational("1e-3") * Matrix(rationals(
["0.6742 0.0428", "0.0428 2.4651"]1))
EP = Ellipsoid(P)

xcl, xc2, yc = symbols("xcl xc2 yc")
Ac = Matrix(constants(["0.4990 -0.0500", "0.0100 1.0000"]1))

ES = Ellipsoid(R)
print ("ES included in EP :", ES <= EP)

i = Instruction({xc: Ac * xc + Bc * yc},
pre=[zc in EQmu], post=[xc in ES])
ET = i.post() [xc]
print ("ET =", ET)
print ("ET included in EP :", ET <= EP)
21 /26

Closed Loop

Closed-loop system:

= Pseudocode for controller and for environment;
» send & receive;

= Only controller code is changed.

Does not work with 32 bits.
OK with 128 bits.

22/26

Extensions of LyaFloat

Suitable method if bounded error.

@ Arithmetic paradigms:

= OK with floating point: rounding error is bounded for +, -, * if
far enough from extremal values;

= Same for fixed point;

= Not sure what happens with two integers;

23 / 26

Extensions of LyaFloat

Suitable method if bounded error.

@ Arithmetic paradigms:

= OK with floating point: rounding error is bounded for +, -, * if
far enough from extremal values;

= Same for fixed point;

= Not sure what happens with two integers;

® Other functions (non-linear systems):

= Differentiable, periodic functions (cos)
(can be computed with an abacus/polynomial interpolation);
= Differentiable functions restricted to a finite range
(assuming values in the range).

23/26

Related Work

Compute bounds from source code:

= Astrée;
= PhD P. Roux.

From pseudocode to C:
= Feron ICSM’10.
Floating-point arithmetic:

= PhD P. Roux.

Proof translation, code-level invariants.

Closed loop.

24 /26

Conclusion

Theoretical framework to translate proof invariants on code with
real arithmetic, while preserving the overall proof structure.

LyaFloat: implementation for Lyapunov-theoretic proofs on
floating-point arithmetic.

Future work:
= Support for other arithmetic paradigms, more functions,
more invariant propagators;

= Coq rather than Python
—> formalization (or proof?) of propagators;

= ..or generate Coq scripts?

25/

26

Translation of Lyapunov Stability Proofs
to Machine Arithmetic

Vivien Maisonneuve

pos

MINES
Tech

Eighth meeting of the French community of compilation

Nice, July 2014

	Context
	Stability Proof
	With Machine Numbers
	Example
	Conclusion

