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Context and Motivation

Anyone can build a fast CPU. The trick is to build a fast system.
Attributed to Seymour Cray
Parallelism handling:

Parallel software developed by converting sequential programs by hand
Automatic task parallelism extraction: Scheduling problem
Resource constraints: memory requirements, processor features...
Scientific, signal and image processing benchmarks

Automatic Resource-Constrained Static Task Parallelization
BDSC: a memory-constrained, number of processor-bounded
extension of DSC
Experimentation on shared and distributed memory systems
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List-Scheduling Heuristics
Priorities are computed for all unscheduled vertices using:

Top level (tlevel(τ)): length of the longest path from entry to τ
Bottom level (blevel(τ)): length of the longest path from τ to exit

entry 0

A 1 D 2

B 3
C 2

exit 0

0

0

2
1 1

0

0

task tlevel blevel
D 0 7
C 3 2
A 0 5
B 4 3

Vertex τ with the highest priority is selected for scheduling
τ is added to the cluster (logical process) with the earliest start-time
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A List-Scheduling Heuristic:
Dominant Sequence Clustering (DSC)

DSC (Dominant Sequence Clustering) [Yang and Gerasoulis 1994]
Task list-scheduling heuristic for an unbounded number of clusters
priority(τ) = tlevel(τ) + blevel(τ)
zeroing(τp, τ) puts τ in the cluster of a predecessor τp ⇒
reduces tlevel(τ) by setting to zero the cost of the edge (τp, τ)

A 1 D 2

B 3 C 22

1
1 step task tlevel blevel prio scheduled tlevel

κ0 κ1 κ2
1 D 0 7 7 0*
2 C 3 2 5 2 3*
3 A 0 5 5 0*
4 B 4 3 7 2* 4

Complexity: O(n2log(n))
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A List-Scheduling Heuristic:
Dominant Sequence Clustering (DSC)

DSC algorithm weaknesses for our purpose:
Unbounded number of clusters
Number of clusters is not predefined → blind clustering
Memory size is not predefined → blind clustering
Creates long idle slots in already existing clusters

Proposal
BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC
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Bounded DSC: Resource Constraint Warranty

1 Memory Constraint Warranty (MCW):
Do not exceed a memory threshold M
Overapproximation of the amount of memory used in tasks
data_size(cluster_data (κ) ∪ task_data (τ)) ≤ M

2 Bounded number of clusters P:
Number of cluster allocations do not exceed Threshold P
Maintain the constraint MCW
argmink∈clusters cluster_time(κ)

3 Efficient cluster allocation by exploiting idle slots
4 Complexity: O(n3)
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Related Work: Static Task Parallelization Tools

Resource Dependence Execution Communica- Memory
blevel tlevel constraints control data time tion time model

estimation estimation

BDSC
√ √ √ √ √ √

Shared,
Parallelization distributed

Sarkar’s
√ √ √ √

Shared,
work distributed

[Sarkar, 1989]

OSCAR
√ √ √ √

Shared
[Kasahara et al., 1992]

Pedigree
√ √ √ √ √

Shared
[Newburn and Shen, 1996]

SPIR
√ √ √ √ √ √

Shared
[Choi et al., 2009]
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Experimental Setting

1 Benchmarks
Thales ABF (Adaptive Beam Forming), with 1,065 lines
SPEC benchmark equake, with 1,432 lines
Harris corner detector, with 105 lines
NAS Parallel Benchmark IS (Integer Sort), with 1,076 lines

2 Machines
Shared Memory: host Linux (Ubuntu)
2-socket AMD quadcore Opteron, 2.4 GHz
M = 16GB of RAM
gcc 4.6.3 -O3
OpenMP 3.0
Cluster ∼ Thread
Distributed Memory: host Linux (RedHat)
6 dual-core processors Intel R© Xeon R©, 2.5 GHz
M = 32GB of RAM per processor
gcc 4.4.6 -O3
Open MPI 1.6.2
Cluster ∼ Process
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ABF and equake
Speedups with OpenMP and MPI
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Harris
Speedups with OpenMP and MPI: Impact of Tiling (P=3)
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NAS Parallel Benchmark IS
Speedups with OpenMP and MPI: Different Class Sizes
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Faust Parallel Scheduling vs. BDSC

Faust (Functional AUdio STream) [Orlarey et al., 2009]
DSL for real-time audio signal processing and synthesis
Generation of C or C++ with or without OpenMP directives
omp task (BDSC) vs. omp section (Faust Parallelizing Compiler)
Scheduling: BDSC vs. Faust topological ordering
Speedups for two programs: Karplus32 and Freeverb
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Conclusion

1 BDSC-based hierarchical scheduling algorithm
Memory constraint, bounded number of clusters,
efficient cluster allocation
BDSC-based task parallelization algorithm
Communication, data and time cost models

2 Experiments:
BDSC-based automatic parallelization in PIPS
Code generation in OpenMP and MPI
Good speedups for coarse-grained parallelism
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Future Work

1 BDSC Scheduling
Handling of heterogeneous devices
More precise cost models

2 Parallel Code Generation
More experimentation needed
Solving communication generation problems (MPI)
Hybrid task + data parallelism
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