BDSC-Based Automatic Task Parallelization:

Experiments

Dounia KHALDI

CRI, Mathématiques et systémes
MINES ParisTech

Septiémes rencontres de la communauté francaise de compilation,
Dammarie-les-Lys, France
December 04, 2013

2
BPPS

1/19

Context and Motivation

@ Anyone can build a fast CPU. The trick is to build a fast system.
Attributed to Seymour Cray
@ Parallelism handling:

Parallel software developed by converting sequential programs by hand
Automatic task parallelism extraction: Scheduling problem

Resource constraints: memory requirements, processor features...
Scientific, signal and image processing benchmarks

Automatic Resource-Constrained Static Task Parallelization

@ BDSC: a memory-constrained, number of processor-bounded
extension of DSC

e Experimentation on shared and distributed memory systems

2/19

© BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC

© Experimental Evaluations with PIPS

© Conclusion and Future Work

3/19

Parallelization Process

blue indicates contributions; an ellipse, a process; and a rectangle, results

Program

| C Source Code | Input Data

Parsing

Sequential IR

PIPS Analyses

i

Program DAG Execution Time,
(sequences) Communication Cost and
Memory Size
v

Polynomial Estimation

| Numerical Profile |

v

| Scheduled Task Graph |

4/19

@ BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC
@ List-Scheduling Heuristics

@ Dominant Sequence Clustering (DSC)
@ BDSC: A Resource-Constrained Extension of DSC

5/19

List-Scheduling Heuristics

@ Priorities are computed for all unscheduled vertices using:

o Top level (tlevel(7)): length of the longest path from entry to T
o Bottom level (blevel(7)): length of the longest path from 7 to exit

task tlevel blevel

[EY
o
e. O
—_
>N 0
~» O WO
W o~

=)

0
=~

@ Vertex 7 with the highest priority is selected for scheduling
e 7 is added to the cluster (logical process) with the earliest start-time

6/19

A List-Scheduling Heuristic:

Dominant Sequence Clustering (DSC)

DSC (Dominant Sequence Clustering) [Yang and Gerasoulis 1994]
Task list-scheduling heuristic for an unbounded number of clusters
priority(7) = tlevel(T) + blevel()

zeroing(7p, T) puts 7 in the cluster of a predecessor 7, =

reduces tlevel(7) by setting to zero the cost of the edge (7, 7)

@ @ 1 step | task | tlevel | blevel | prio scheduled tlevel
Ko K1 K2

1 D 0 7 7 o*
2 C 3 2 5 2 | 3%

2 3 A 0 5 5 0%
4 B 4 3 7 2% 4

o Complexity: O(nlog(n))

7/19

A List-Scheduling Heuristic:

Dominant Sequence Clustering (DSC)

e DSC algorithm weaknesses for our purpose:

Unbounded number of clusters

Number of clusters is not predefined — blind clustering
Memory size is not predefined — blind clustering
Creates long idle slots in already existing clusters

Proposal

BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC

8/19

Bounded DSC: Resource Constraint Warranty

@ Memory Constraint Warranty (MCW):

e Do not exceed a memory threshold M
e Overapproximation of the amount of memory used in tasks
o data_size(cluster_data (k) U task_data (7)) < M

@ Bounded number of clusters P:

o Number of cluster allocations do not exceed Threshold P
e Maintain the constraint MCW
® argMinke usters Cluster_time(x)

© Efficient cluster allocation by exploiting idle slots
O Complexity: O(n?)

9/19

Related Work: Static Task Parallelization Tools

Resource Dependence Execution | Communica- Memory
blevel | tlevel | constraints | control | data time tion time model
estimation estimation

BDSC Vv Vv vV Vv Vv vV Shared,
Parallelization distributed
Sarkar's Vv Vv Vv v Shared,

work distributed

[Sarkar, 1989]

OSCAR v v V. v Shared
[Kasahara et al., 1992]

Pedigree Vv Vv Vv Vv Vv Shared
[Newburn and Shen, 1996]

SPIR 4 V4 4 4 4 Vv Shared
[Choi et al., 2009]

10/19

© Experimental Evaluations with PIPS

@ Experimental Setting
@ BDSC vs. DSC
o Comparative Study with Faust Parallelizing Compiler

11/19

Experimental Setting

@ Benchmarks

o Thales ABF (Adaptive Beam Forming), with 1,065 lines
o SPEC benchmark equake, with 1,432 lines
e Harris corner detector, with 105 lines

o NAS Parallel Benchmark IS (Integer Sort), with 1,076 lines

® Machines

o Shared Memory: host Linux (Ubuntu)
2-socket AMD quadcore Opteron, 2.4 GHz
M = 16GB of RAM
gcc 4.6.3 -03
OpenMP 3.0
Cluster ~ Thread

o Distributed Memory: host Linux (RedHat)
6 dual-core processors Intel® Xeon(®), 2.5 GHz
M = 32GB of RAM per processor
gcc 4.4.6 -03
Open MPI 1.6.2
Cluster ~ Process

12/19

ABF and equake

Speedups with OpenMP and MPI

45 = ABF-DSC 6
4 mABF-BDSC
35 5
3 o 4
25 E]
2 $ 3
1.5
& 2
1
0.5 1
0
1(0.35s) 2 4 6 8 0
Number of cores 1(230s) 2 4
Number of cores
3 = ABF-DSC 35 # equake-DSC
(B mABF-BDSC ' mequake-BDSC
S
o
o =]
8 3
o 2
n [
1(0.25s) 2 4 6
Number of processors 1(160s) 2 4 8
Number of processors

13/19

Harris

Speedups with OpenMP and MPI: Impact of Tiling(

Speedup 3 threads vs. sequential

Harris-OpenMP

1024x1024 2048x1024 2048x2048 IMage size
sequential = 183 ms sequential = 345 ms sequential = 684 ms

Speedup 3 processes vs. sequential

1024x1024 20481024 20482048 Image size
sequential = 97 ms Sequential = 244 ms sequential = 442 ms

14/19

NAS Parallel Benchmark IS

Speedups with

OpenMP and MPI: Different Class

s
T
5
3
o
@
(2]
3
>
o
=
[=
@
a
(o)
o
3
el
?
@
a
%)

H Class A (sequential = 1.68 s)
3 | mClass B (sequential = 4.55 s)
Class C (sequnetial = 28 s)

OMP (2 tasks) OMP-tiled-2 OMP-tiled-4 OMP-tiled-6 OMP-tiled-8
Benchmark version

3 u Class A (sequential = 0.26 5)
HClass B jal = 1.69'5)
25 Class C (sequential = 13.57 s)

Speedup MPI vs. sequential

MPI (2 tasks) MPI-tiled-2 MPI-tiled-4 MPI-tiled-6
Benchmark version

15/19

Faust Parallel Scheduling vs. BDSC

Speedup 2 threads vs. sequential

e Faust (Functional AUdio STream) [Orlarey et al., 2009]

@ DSL for real-time audio signal processing and synthesis

@ Generation of C or C4++ with or without OpenMP directives

e omp task (BDSC) vs. omp section (Faust Parallelizing Compiler)
@ Scheduling: BDSC vs. Faust topological ordering

@ Speedups for two programs: Karplus32 and Freeverb

3 Faust
2 Faust =BDSC
=BDSC

Freeverb(1024) Freeverb(2048) count

count Sequential = 40 ms sequential = 80 ms.

Speedup 8 threads vs. sequential

Karplus32(1024) Karplus32(2048)
Sequential = 1.2 ms Sequential = 1.8 ms

16/19

© Conclusion and Future Work

17/19

@ BDSC-based hierarchical scheduling algorithm
e Memory constraint, bounded number of clusters,
efficient cluster allocation
o BDSC-based task parallelization algorithm
e Communication, data and time cost models

@ Experiments:
o BDSC-based automatic parallelization in PIPS
o Code generation in OpenMP and MPI
e Good speedups for coarse-grained parallelism

18/19

@ BDSC Scheduling

e Handling of heterogeneous devices
e More precise cost models

@ Parallel Code Generation

e More experimentation needed
e Solving communication generation problems (MPI)
e Hybrid task + data parallelism

19/19

BDSC-Based Automatic Task Parallelization:

Experiments

Dounia KHALDI

CRI, Mathématiques et systémes
MINES ParisTech

Septiémes rencontres de la communauté francaise de compilation,
Dammarie-les-Lys, France
December 04, 2013

pog

BPIPSw +een

References |

Choi, Y., Lin, Y., Chong, N., Mahlke, S., and Mudge, T. (2009).

Stream Compilation for Real-Time Embedded Multicore Systems.

In Proceedings of the 7th annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO '09,
pages 210-220, Washington, DC, USA.

Kasahara, H., Honda, H., Mogi, A., Ogura, A., Fujiwara, K., and Narita, S. (1992).

A Multi-Grain Parallelizing Compilation Scheme for OSCAR (Optimally Scheduled Advanced Multiprocessor).
In Proceedings of the Fourth International Workshop on Languages and Compilers for Parallel Computing, pages
283-297, London, UK. Springer-Verlag.

Nandivada, V. K., Shirako, J., Zhao, J., and Sarkar, V. (2013).

A Transformation Framework for Optimizing Task-Parallel Programs.
ACM Trans. Program. Lang. Syst., 35(1):3:1-3:48.

Newburn, C. J. and Shen, J. P. (1996).

Automatic Partitioning of Signal Processing Programs for Symmetric Multiprocessors.
In IEEE PACT, pages 269-280. IEEE Computer Society.

Sarkar, V. (1989).

Partitioning and Scheduling Parallel Programs for Multiprocessors.
MIT Press, Cambridge, MA, USA.

	BDSC: A Memory-Constrained, Number of Processor-Bounded Extension of DSC
	List-Scheduling Heuristics
	Dominant Sequence Clustering (DSC)
	BDSC: A Resource-Constrained Extension of DSC

	Experimental Evaluations with PIPS
	Experimental Setting
	BDSC vs. DSC
	Comparative Study with Faust Parallelizing Compiler

	Conclusion and Future Work

