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Abstract. We present a new compilation strategy, implemented at a
small cost, to optimize image applications developed on top of a high
level image processing library for an heterogeneous processor with a vec-
tor image processing accelerator. The library provides the semantics of
the image computations. The pipelined structure of the accelerator al-
lows to compute whole expressions with dozens of elementary image in-
structions, but is constrained as intermediate image values cannot be
extracted. We adapted standard compilation techniques to perform this
task automatically. Our strategy is implemented in PIPS, a source-to-
source compiler which greatly reduces the development cost as standard
phases are reused and parameterized for the target. Experiments were
run on the hardware functional simulator. We compile 1217 cases, from
elementary tests to full applications. All are optimal but a few which are
mostly within a mere accelerator call of optimality. Our contributions
include: 1) a general low cost compilation strategy for image process-
ing applications, based on the semantics provided by library calls, which
improves locality by an order of magnitude; 2) a specific heuristic to
minimize execution time on the target vector accelerator; 3) numerous
experiments that show the effectiveness of our strategy.

1 Introduction

Heterogeneous hardware accelerators, based on GPU, FPGA or ASIC, are used
to reduce the execution time, the energy used and/or the cost of a small set of
application specific computations, or even the cost of a whole embedded system.
They can also be used to embed the intellectual property of manufacturers or
to ensure product perennity. Thanks to Moore’s law, their potential advantage
increases with respect to standard general-purpose processors which do not gain
anymore from the increase in area and transistor number. But all these gains are
often undermined by large software development cost increases, as programmers
knowledgeable in the target hardware must be employed, and as this investment
is lost when the next hardware generation appears.

We present a compilation strategy to map image processing applications de-
veloped on top of a high-level image library onto a heterogeneous processor with
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a vector image processing accelerator. This approach is relatively inexpensive as
mostly-standard and reusable compilation techniques are involved: only the last
code generation phase is fine-tuned and target-specific.

Our hardware target, the SPoC vector image processing accelerator [9], cur-
rently runs on a FPGA chip as part of a SoC. The hardware accelerator im-
plements directly some basic image operators, possibly part of the developer
visible API: this hardware-level API characterizes the accelerator instruction
set. Dozens of elementary image operations such as dilatations, erosions, ALUs,
thresholds and measures, can be combined to compute whole image expressions
per accelerator call. However these capabilities come with constraints: only two
images can be fed into the accelerator internal pipeline structure, and two im-
ages can be extracted after various image operations performed on the fly. The
accelerator is a set of chained vector units. It does not hold a single image but
only a few lines (2 lines per unit) which are streamed in and out of the main
memory. There is no way to extract intermediate image values from the pipeline.

The application development relies on the FREIA image processing library
API [2]. A software implementation on top of Fulguro [8], a portable open-
source image processing library, is used for functional tests. The developer has
no knowledge of the target accelerator hardware. Operators of the FREIA image
library must be programmed specifically for the chosen target accelerator, either
by simply calling basic hardware accelerated operators (basic hardware operator
library implementation), or, better, with a specialized implementation (hard-
ware optimized library implementation) that takes advantage of the hardware
by composing basic operations. Although the library layer provides functional
application portability over accelerators, it does not provide all the time, energy
and cost performance expected from these pieces of hardware.

In order to reach better performance, library developers may be tempted
to increase the sizes of API’s to provide more opportunities for optimized code
to be used, but this is an endless process leading to over-bloated libraries and
possibly non-portable code: up to thousands of entries are defined in VSIPL [1],
the Vector Signal Image Processing Library. In contrast to this library-restricted
approach, we use the basic hardware operator library implementation, but the
composition of operations needed to derive an efficient version is performed by
the compiler for the whole application. We see the image API as a domain
specific programming language, and we compile this language for the low-level
target architecture.

The keys to performance improvement are to lower the control overhead and
to increase data locality at the accelerator level, so that larger numbers of opera-
tions are performed for each memory load. This is achieved by merging successive
calls to the accelerator, with no or few memory transfers for the intermediate
values. To detect which calls to merge, techniques have been developed such
as loop fusion or complex polyhedral transformations. Such techniques cannot
be applied usefully on a well-designed, highly modular software library such as
Fulguro: loops and memory accesses are placed in different modules and loop



nests are not adjacent: size checks, type dispatch and dynamic allocations of
intermediate values are performed between image processing steps.

Instead of studying the low-level source code and trying to guess its semantics
with respect to the available hardware operators, we remain at the higher image
operation level. We inline high-level API function calls not directly implemented
in the accelerator, unroll loops, flatten the code, so as to increase the size of basic
blocks. These basic blocs are then analyzed to build expression DAGs using the
instruction set of the accelerator. They are optimized by removing common sub-
expressions and propagating copies. Up to here, the hardware accelerator is only
known by the operations it implements. We then consider hardware constraints,
such as the number of vector units, data paths, code size or local memory avail-
able, and split these expression DAGs into parts as large as possible, but meeting
these constraints. Finally, using the expression DAGs as input, we generate the
configuration code ands calls to a runtime library activating the accelerator, and
replace the expressions by these calls.

The whole optimization strategy is automated and implemented in PIPS [17,4],
a source-to-source compiler, which let the user see the C source code that is gen-
erated. This greatly helps compiler debugging. We compile 1217 test cases, from
elementary tests to full applications, all of which are optimal but a few. Experi-
ments were run with the SPoC functional simulator. The results on the running
example included in this paper show a speed-up of 16.5 over the most näıve use
of the accelerator, and a speed-up of 3 over the use of the optimized library.

In the remainder of this paper, we first introduce our running example which
is a short representative of the application domain (Section 2) and present the
target architecture (Section 3). Then we show how the user source code is prepro-
cessed to obtain basic blocks with optimization opportunities (Section 4). Next,
compiler middle-end optimizations for locality are described (Section 5), and the
back-end SPoC specific hardware configuration generation is detailed (Section 6).
We finally present our implementation and experimental results obtained with
a SPoC simulator (Section 7), and discuss the related work (Section 8).

2 Applications and Running Example

The FREIA project aims at mapping efficiently an image processing applications
developed on top of a high-level API onto different hardware accelerators. The
image applications use all kind of image processing operations, such as: AND-ing
an image with a mask to select a subregion; MAXLOC-cating where is the hottest
point; THR-esholding an image with values to select regions of interest; mathemat-
ical morphology (MM) [20] operators. The MM framework created in the 1960’s
provides a well-founded theory to image analysis, with algorithms described on
top of basic image operators. The project targets high performance, possibly
hardware accelerated, very often embedded, high-throughput image processing.
For this purpose, the software developer is ready to make some efforts in order
reach the expected high performances for critical applications on selected hard-
ware. Current development costs are high, as application must be optimized



Fig. 1. License plate (LP): character extraction

Fig. 2. Out of position (OOP): airbag ok or not

Fig. 3. Video survey (VS): motion detection



from the high-level algorithmic choices down to the low-level assembler code
and memory transfers for every hardware targets. The project aims at reducing
these costs through optimizing compilation and careful runtime designs. Typical
applications extract informations from one image or from a stream of images,
such as a license plate in a picture (LP, Figure 1), whether a car passenger is
out of position and could be harmed if the airbag is triggered (OOP, Figure 2),
or whether there is some motion under a surveyance camera (VS, Figure 3).

The high-level FREIA image API has several implementations. The first one
is pure C, based on the Fulguro [8] open-source image processing library, and
is used for the functional validation of the applications. There are two imple-
mentations for the SPoC vector hardware accelerator (Section 3), which can run
over a functional simulator or on top of the actual FPGA-based hardware: One
uses SPoC for elementary functions, which are directly supported by the SPoC
instruction set, one elementary operator at a time. The other is hand-optimized
at the library call level by taking full advantage of the SPoC vector hardware
capability to combine operations. Other on going versions of the library are opti-
mized for the Terapix [5] SIMD accelerator, and for OpenCL targeting graphics
hardware (GPGPU).

The code in Figure 4 was defined as part of the FREIA project to provide
a short test case significant both for the difficulties involved and for the opti-
mization potential, with the two hardware accelerators in mind. The test case
contains all the steps of a typical image processing code: an image is read, in-
termediate images are allocated and processed, and results are displayed. As it
is short enough to fit in a paper, we use it as running example, together with
extracts from larger applications. Optimization opportunities at the main level
of our test case are very limited. The min and vol function calls correspond to
two SPoC instructions. Since they are next to each other and use the same in-
put argument, they can be merged into a unique call to SPoC. The dilate and
gradient functions are not part of the SPoC instruction set. They are imple-
mented in the non-optimized SPoC version of the FREIA library, using calls to
elementary functions. Since these calls are not visible in the main function, no
optimization is possible in this case. With the näıve elementary function based
implementation, 33 calls to the accelerator are used per frame, hidden in the
callees. A hand-optimized SPoC implementation of the FREIA image library
results in 6 accelerator calls only, because calls to elementary functions can be
merged within the implementation of the FREIA functions.

3 SPoC Architecture

Figure 5 outlines the structure of the SPoC processor. It can be seen as a sim-
plified version of the 30 year old CDC Cyber 205 [16], specialized for image
processing instead of floating point computation. A MicroBlaze provides a gen-
eral purpose scalar host processor and a streaming unit, the SPoC pipeline, made
of several image processing vector units, constitutes the image processing accel-
erator. It also contains a DDR3 memory controller, DMA engines, FIFOs to



#include <stdio.h>
#include <freia.h>

int main(void) {
freia dataio fin, fout;

freia data2d *in, *og, *od;

int32 t min, vol;

// initializations
freia common open input(&fin, 0);

freia common open output(&fout, 0, ...)

in = freia common create data(fin.bpp, ...);

od = freia common create data(fin.bpp, ...);

og = freia common create data(fin.bpp, ...);

// get input image
freia common rx image(in, &fin);

// perform some computations
freia global min(in, &min);

freia global vol(in, &vol);

freia dilate(od, in, 8, 10);

freia gradient(og, in, 8, 10);

// output results
printf("input global min = %d\n", min);

printf("input global volume = %d\n", vol);

freia common tx image(od, &fout);

freia common tx image(og, &fout);

// cleanup
freia common destruct data(in);

freia common destruct data(od);

freia common destruct data(og);

freia common close input(&fin);

freia common close output(&fout);

return 0;

}

Fig. 4. FREIA API running example
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synchronize memory transfers and vector computations and the host, a gigabit
Ethernet interface and video converters for I/Os.

Figure 6 shows one vector unit of the SPoC pipeline, with two inputs and
two outputs of 16 bit-per-pixel images. The units are chained linearly, directly
one to the next, using their outputs and inputs: there is no apparent vector
image registers. The first inputs and last outputs are connected to the external
memory by DMA engines. A vector unit is made of several operators, but the
interconnection is not free: the data paths are quite rigid, with some control by
multiplexers MX. One morphological operator MORPH can be applied to each
input. Their results can be combined by an arithmetic and logic unit, ALU. Two
outputs are selected among those three results by the four multiplexers which
control the stream of images. Then a threshold operator, THR, can be applied
to each selected output and the reduction engine MES compute reductions such
as maximal or sum of the passing pixels, the result of which can be extracted if
needed after the accelerator call. To sum up, each micro-instruction can perform
concurrently up to 5 full image operations and a number of reductions, equivalent
to 29 pixel operations per tick. A NOP micro-instruction is available to copy the
two inputs on the two outputs. It is useful when some vector units of the SPoC
pipeline are unused.

The host processor controls the vector units by sending them one micro-
instruction each and by configuring the four DMA engines for loading and stor-
ing pixels. The host processor can also retrieve the reduction results from the
vector units. The control overhead remains small because images are always large
enough to generate very long pixel vectors. A low resolution image, for instance
320 × 240, is equivalent to a 76800 element vector.

When considering FPGA implementations, the number of vector micro-ins-
tructions that can be executed concurrently, i.e. the number of vector units,
ranges from 4 to 32. The limiting factor is the internal RAM available. Our
reference target hardware includes 8 vector processing units, but the solution
we suggest below is parametric with respect to this number. In practice, this
vector depth provides a reasonable cost-performance trade-off as it fits patterns
of iterated erosions and dilatations on few images that are often found in typical
applications, but is yet not too expensive when these patterns are not found.
With a specific set of application in mind, several vector depth can be tested to
choose the best setting. The total number of image operations that can be exe-
cuted at a given time is 5 times the number of units, not counting the reductions.
So the compiler must chain 40 image operations of the proper kind and order
to obtain the peak performance. Unlike the Cray vector register architecture,
only two inputs are available. Unlike the CDC 205, no general interconnection
is present between elementary functional unit. Chaining and register allocation
are very much constrained as each vector processing unit is pipelined: delay
lines help compute 3 × 3 morphological convolutions, including a transparent
and accurate management of image boundaries which are out of the stencil.
Thus the size of the output image is equal to the input image size, contrary to
repeated stencil computations [11] which usually reduce the image size. This is



another reason why low-level loop transformation-based approaches are likely
to fail. Micro-instruction scheduling and compaction is easy once the order of
operations is determined.

To sum up, the useful hardware constraints are 1) the structure of the micro-
instruction set and the structure of the vector unit data paths, 2) the maximal
number of chained microinstructions, i.e. the number of vector units, and 3) the
number of image paths, two. Furthermore, the operations must be as packed as
possible to reduce the number of micro-instructions. With 8 vector units, up to 40
full image operations can be performed for two loads and two stores, which leads
to 10 SPoC operations per memory access, including high-level morphological
convolutions which require more than 20 elementary operations each, and not
counting the many reductions. So between 50 and 100 elementary operations
can be executed per memory access.

4 Phase 1 – Application Preprocessing

The FREIA API [2] and its Fulguro [8] implementation are designed to be general
with respect to the connectivity, the image sizes and the pixel representation.
Standard or advanced loop transformations cannot take advantage of such source
code because the loops are distributed into different functions and because ele-
mentary array accesses are hidden into function calls to preserve the abstraction
over the pixel structure.

To build large basic blocks of elementary image operations, control flow
breaks such as procedure call sites, local declarations, branches and loops must
be removed by using key parameters such as connectivity and image size set
up by the main and propagated to callees such as the image dilatation. Several
source-to-source transformations help achieve this goal: 1) inlining to suppress
functional boundaries, 2) partial evaluation to reduce the control complexity and
3) constant propagation to allow full loop unrolling, 4) dead code elimination to
remove useless control, 5) declaration flattening to suppress basic block breaks.
Safety tests are automatically eliminated as the application is assumed correct
before its optimization is started. The order of application of these five trans-
formations is chosen to maximize the available information so as to simplify the
code and obtain larger basic blocks. Figure 7 shows the resulting code after au-
tomatic application of these transformations on the main function in Figure 4. It
contains a sequence of elementary image operators mixed with scalar operations
and temporary image allocations and deallocations.

5 Phase 2 – DAG Optimization

The basic blocks of the image application are analyzed to build an expression
DAG as the one in Figure 8 (on next page), which is then optimized for local-
ity. The vertices are the operations to perform, which may be image operations
(MORPH as rectangles, ALU as trapezium, THR as parallelogram, MES as



// perform some computations
freia aipo global min(in, &min);

freia aipo global vol(in, &vol);

freia aipo dilate 8c(od, in, k8c);

freia aipo dilate 8c(od, od, k8c);

// previous line repeated 10 times...
I 0 = 0;

tmp = freia common create data(...);

freia aipo dilate 8c(tmp, in, k8c);

freia aipo dilate 8c(tmp, tmp, k8c);

// previous line repeated 10 times...
freia aipo erode 8c(og, in, k8c);

freia aipo erode 8c(og, og, k8c);

// previous line repeated 10 times...
freia aipo sub(og, tmp, og);

freia common destruct data(tmp);

Fig. 7. Excerpt of the main of Figure 4 after preprocessing
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diamond, copy and input/output images as circles) or intermediate scalar oper-
ations depicted as question marks. The arcs represent the dependencies between
operations, when a piece of data defined at the source node end is used at the
sink node. Arcs shown as black arrows embed image dependencies, and white
arrows represent scalar dependencies. For instance the result of reductions on an
image is used after some computation for thresholding it.

The DAG derived from our running example is shown in the upper part of
Figure 9. The third row of dilatations is the call to the freia dilate function
with connectivity 8 and size 10. This DAG is then optimized in a target indepen-
dent manner, with standard compilation techniques: common sub-expressions
elimination and copy propagation are applied at the image level. Operator com-
mutativity is taken into account to perform CSE, thanks to the image operator
semantics which is available by recognizing the calls. Simple information about
parameters, image or scalar, input and/or output, are derived automatically from
C source stubs. Image copies are propagated forward toward their uses, with the
exception of copies on output images which are propagated backward to their
producer so that they are directly generated instead of using a temporary image.
Remaining input and output image copies are extracted from the DAG to be
performed outside of the accelerator. In our running example, the optimization
detects that all operations of the dilatation are also performed within the gra-
dient, so they are removed in the lower part of Figure 9, and the intermediate
result is simply extracted.

Other challenges are found in the DAG for the license plate application in
Figure 10, where repeated operations are denoted as dashed arrows. In this de-
bug version of the code, every two operations are image copies either inserted
within the computations or diverted to extract intermediate images. All these
useless copies are removed from the optimized DAG. Eliminating such diversions
is important for our target vector accelerator because extractions break the com-
putation pipeline, thus inducing more accelerator calls. The DAG in Figure 11
is extracted from the OOP application. The optimized version removed both
copies and a common subexpression involving 3 operations. These redundancies
are not obvious to spot in the source code. The optimization of the DAG in
Figure 8 removes both copy operations on input and within the graph.

The result of this phase is an optimized image expression DAG ready to be
mapped onto the available hardware.

6 Phase 3 – SPoC Hardware Configuration

Finally, an accelerator specific compilation phase generates the hardware config-
uration, i.e. the micro-instructions for evaluating the optimized DAG resulting
from the previous phase. We have two code generators; one for SPoC described
hereafter, and one under development for the Terapix SIMD accelerator.



Problem Description

The SPoC hardware accelerator [9] constraints discussed in Section 3 must be
met: The computations in the hardware accelerator must only involve two live
images at any single point because only two data paths are available (Figure 6).
Actual computations must be scheduled on components so that live images can
still reach their use or the end of the path. If all available vector units in the SPoC
pipeline are used for a computation and more operations remain, the pipeline
spilling must be managed. The optimality criterion is to minimize the number
of calls to the accelerator, taking into account its actual number of vector units,
as one call lasts about the same time whatever the operations performed in the
pipeline.

The problem of mapping an image expression DAG onto the SPoC accelerator
is very close to the pebble game problems used in register allocation, with in our
case only two registers. However, unlike register allocation problems, our spill
code is to interrupt our computation pipeline, resulting in both registers to
be spilled at the same cost as one of they occur simultaneously. So although
mapping scalar expression DAG onto a register machine [6,3] is NP-complete,
these results do not apply directly to our case.

We conjecture nevertheless that our problem is NP-complete, because of the
close similarity with the code generation problem for register-machines. First,
the setting is highly combinatorial if one enumerates all possible evaluation or-
ders compatible with the dependencies when there is a high degree of parallelism
available in the DAG. Second, evaluating the cost of a proposed solution is rea-
sonably easy: given an order of operations, one can detect in one pass over the
vertices when an infinite pipeline should be cut because an operation would cre-
ate more than two live images; if the finite number of vector units is considered,
instruction compaction can tell when the pipeline is full.

Code Generation

Given the combinatorial nature of the problem, our heuristic consists in break-
ing down the problem into three successive stages. Each stage satisfies one of
the constraints independently, and there is no guarantee of global optimality.
First, we meet the two live image constraint with a decomposition of the ex-
pression DAG into sub-DAGs, where each resulting sub-DAG operations are
ordered by the decomposition process so that their evaluation in that order only
requires two live images. Then, instructions are compacted in a conceptually
infinite pipeline, which is finally cut according to the number of available vector
units. We chose to avoid a global combinatorial optimization because this simple
heuristic, which satisfies each constraint one after the other, leads to excellent
experimental results (Section 7).

The optimized expression DAG is first split into sub-DAGS with no more than
two live images and no internal scalar-carried dependencies. As noted above, this
is very similar to evaluating an expression with only two registers. We use the
simple list scheduling of basic blocks technique described in the Dragon book, with



a prioritized topological order which focuses on the critical resource, namely the
small number of data paths. Scalar dependencies, cannot be handled within one
hardware accelerator call as images are processed concurrently, so the needed
result would not be available at the start of the dependent computation: they
must be split across distinct sub-DAGs. The greedy list scheduling heuristic
expands a subgraph as much as possible, and never backtracks. The priority
choices favor the immediate use of computed images in the pipeline: reductions
that do not update their source are performed first, then operations that use
up an image and define another one, ordered by the number of uses, then other
operations. The result of the first pass is a list of DAGs, each with an ordered
list of operations that require no more than two live images if processed in that
particular order along the pipe.

Each sub-DAG is then mapped onto a pipeline with a conceptually infi-
nite number of vector units by compacting operations into microinstructions.
We do not allow much freedom at this stage because the order of operations
cannot be modified without putting at risk the two live image constraint. It is
kept unchanged. Microinstruction compaction is performed at the same time be-
cause the packing constraints are very easy to meet: structural, control and data
pipeline hazards are avoided by the hardware, hence sophisticated microinstruc-
tion scheduling and compaction are not required. The compaction is achieved by
scheduling operations in the first available slot. When only one image is needed
by the pipeline, it is sent on both input paths so as to help the compaction at the
beginning of the pipe. Path selection implies the multiplexer configuration. It
must ensure that computed images reach the operators that process them, which
may shift a computation further down in the pipeline in some cases. Under these
assumptions, this compaction stage could be proven optimal, that is the number
of units used is minimal, by induction on the structure of the pipeline, as we
choose the first available operator at each iteration. However this optimality is
weak because it requires that there is no reordering of the operations, which
could improve the result if allowed. Moreover this optimality is local, and taking
this constraint in the previous stage could help improve the overall solution.

The third stage of the code generation process is to map the open-ended
pipeline onto the available vector units. This is simply achieved by cutting the
micro-instructions sequence at the number of available vector units, and to per-
form another activation of the SPoC pipeline for the remainder, until all sub-
DAG operations are performed. This stage of the process is trivially optimal if
the compaction is optimal.

This heuristic phase for the SPoC accelerator reuses standard compilation
techniques to generate most of the time optimal results. It is followed by a quick
cleanup of intermediate images which are not used anymore by the function.
The techniques are applied on very long vector flows of pixels from images,
whereas they were originally designed for scalars in registers. This works well
because the SPoC architecture takes care of pipeline hazards and performs stencil
computations without reducing the image size: images are equivalent to scalar
variables.



7 Discussion, implementation and experiments

There is a cost performance tradeoff in choosing the number of vector units,
as longer pipeline are less efficiently used when no operations can be scheduled
and add to the overall latency of accelerator calls. The solution to this tradeoff
depends on the actual applications and on the user ability to select optimal
hardware. It is not taken into account here as we assume that the number of
vector units is a given, with 8 a typical figure.

Phase 1 application preprocessing – enlarge basic blocs
1. inlining of FREIA library functions
2. partial evaluation
3. constant propagation and loop full unrolling
4. dead code elimination
5. block flattening

Phase 2 DAG optimization
1. DAG construction per sequence
2. common sub-expression elimination, with commutativity
3. forward or backward copy propagation
4. extraction of remaining copies
5. dead image operation removal

Phase 3 SPoC configuration: map DAG onto hardware
1. DAG splitting and scheduling of sub-DAGs
2. instruction compaction and path selection
3. pipeline overflow management
4. unused image cleanup

Fig. 12. Outline of our compilation strategy: phases and stages

Our optimization strategy is implemented in PIPS [10], for a small develop-
ment cost measured hereafter with the KLOCs (line of codes) involved. Figure 12
summarizes the different phases presented in detail in the previous sections.
Transformations of Phase 1 are standard in an advanced optimizing compiler.
Phase 2 operations are also standard, but are used here for full image processing
calls although the usual scope is on elementary scalar processor operations. Its
implementation uses about 2 KLOCs for representing the FREIA elementary op-
erator semantics, plus building and optimizing the DAG representation. Phase 3
is the back-end specific code generation. It uses about 1.6 KLOCs including
DAG splitting, scheduling, wiring, and SPoC configuration. It produces acceler-
ation functions to be called from the initial application. Each generated pipeline
configuration function (see excerpt in Figure 13) is called from the main with
the appropriate arguments (in Figure 14). Other applications may require more
preprocessing phases, such as while loop unrolling or code hoisting, to obtain
longer basic blocks.



void helper 0(f data2d *o0, f data2d *o1,

f data2d *i0, int32 t *red0, int32 t *red1,

int32 t * kern2 /* ... up to kern16 */)
{

// SKIPPED: declarations & initializations
// - si & op: micro instructions
// - sp & par: operation parameters
// - redres & reduc: reduction results

// set state of MUX stage 0 number 0
si.mux[0][0].op = SPOC MUX IN0;

// set state of POC stage 1 side 0
si.poc[1][0].op = SPOC POC DILATE;

si.poc[1][0].grid = SPOC POC 8 CONNEX;

// and its kernel
for(i=0 ; i<9 ; i++)

sp.poc[1][0].kernel[i] = kern2[i];

// SKIPPED: more configurations...

// actual call to the hardware accelerator
// instructions, params, 2 images out, 2 images in
f cg process 2i 2o(op, par, o0, o1, i0, i0);

// extract reductions results
f cg read reduction results(&redres);

*red0 = (int32 t)reduc.measure[0][0].minimum;

*red1 = (int32 t)reduc.measure[0][0].volume;

}

Fig. 13. One stub source code (excerpt) for Figure 4

// perform some computations
helper 0(od, og, in, &min, &vol, k8c, /* 18 more k8c args */);
helper 1(od, og, od, og, k8c, k8c, k8c, k8c, k8c);

Fig. 14. Code in Figure 4 is reduced to two stub calls
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Fig. 15. Speed-ups on SPoC with 8 vector units for Figure 4

Figure 15 compares speed-ups obtained on versions the running example Fig-
ure 2 with differing numbers of iterations (the source code selected executes 10
iterations). In the baseline version, each call to the accelerator performs only
one operation. In the optimized library version, each call to a FREIA operator
is optimized independently. Finally the PIPS version is generated with the tech-
niques described in this paper to optimized the whole application. It fares better
than any other versions, thanks to the extracted common sub-expression and the
optimal (in this case) hardware mapping which combines elementary operations
whenever possible. Note that the optimized version runs out of vector units for a
size 8 gradient operation, whereas the version using the SPoC optimized library
goes down for 9: the first vector unit is used up by the optimized version for
the volume and minimum measurements in the input image, hence the shift of
the discontinuity between the two versions. Our compiler was tested on 1217
cases, comprising 1005 combinatorial tests (3 to 6 ops), 105 elementary tests (1
to 13 ops), 40 atomic tests (1 op for which we generate the hardware accelerated
version) and finally 57 significant applications or functional blocks (5 to 135 ops)
tested with various parameters. Only 15 results are not optimal for the target
SPoC accelerator: 14 are one call from optimality, and one is non optimal by 3
calls. Most of these non optimality cases are linked to the greedy nature of the
heuristic coupled with pipeline spilling effects.



8 Related Work

The related work is rather limited because people developing hardware accel-
erators in an academic environment usually do not have the resources required
to develop a full programming tool chain. They either design a specialized lan-
guage, or use pragmas to guide the optimizer, or build an optimized library,
which may grow with each new application to include the application-specific
API that leads to good performance, or they develop applications with target-
knowledgeable people and do not advertise it. We break the related work in
two parts, software development for accelerators and optimization of expression
evaluation.

Software development for accelerators

Specialized languages have been designed to address various needs of application
domains and target architectures which are not well served by general purpose
languages. The OpenCL recent standard aims at providing portability across
accelerators, especially GPGPU targets, but it is quite large and pretty low-
level: application developers should be able to ignore it. It remains an interesting
output language for a source-to-source tool like PIPS, or for implementing an
efficient runtime to be called by the generated code. Array-OL [13] is an example
of a domain-specific language designed for signal processing and for accelerator
programming. On the one hand, Array-OL is not general enough to write a
whole application, and on the other hand it is still hard to compile efficiently for
a given target: parts of the application must be isolated and coded in Array-OL,
and the Array-OL optimization process be performed under human supervision
using a graphical tool.

Pragma annotations on top of a standard language are used to preserve the
portability of applications and allow their functional validation in a standard en-
vironment. OpenMP allows the developer to hint about the program semantics,
say loop parallelism or critical sections, but does not yet address all the require-
ments of hardware accelerators, especially when the hardware accelerator must
be programmed. HMPP [7] is another pragma set designed by CAPS Enterprise
to provide higher level pragmas. It can be used to program an accelerator such
as Nvidia Tesla or AMD FireStream, including the use of several accelerators
linked to a unique host, issue which is not addressed by our technique. However
the set of directives is very specific and requires deep architectural insight from
the developer to be exploited fully.

Another way of achieving high performance on specialized hardware and still
retain portability is to use domain-specific libraries which can be implemented
for various targets. VSIPL [1] in the signal processing field was developed as an
open standard by an industry, government and research consortium. It contains
thousands of functions, and various level of partial implementations are defined
in the standard, starting from the 127 functions core lite profile, followed by the
513 functions core profile, but implementations do not necessarily implement
these profiles in full. As the functions are not independent and orthogonal, the



developer must choose an implementation strategy which may result in differ-
ent performances with differing library implementations, and may impair the
portability when all functions are not available. Moreover, we observed in the
Ter@ops project that an API has a direct impact on the application structure,
which may not lead to good performance on a new piece of hardware. A library
has been designed for vector-based instruction set additions such as Altivec or
Intel SSE extension family. To optimize its functions, application-level loops had
to be moved down into the library to improve data re-use. When the application
was ported on a new MPSoC, without any vector operation support but with
multiple processors, loops were moved back up across functional boundaries [15]
to re-optimize the application differently. When performance is a concern, a fixed
API cannot really remain target independent. Although our approach relies on
an API, it is used to provide the underlying application semantics, and the gen-
erated code does not have to respect the API; the compiler restructures the
computations to fit the target hardware.

Application-specific instructions can be added to an existing general-purpose
instruction set. For instance, the Video Specific Instruction Set Processor [18]
has special instructions for computational intensive parts such as inter-block
prediction but also uses co-processors for specific tasks such as entropy encoding.
This is close to our case, although these instructions are very algorithm-specific,
while we have generic elementary operators.

Optimization of expression evaluation

We use commutativity to detect more common subexpressions, but we do not
currently attempt to use advanced algebraic properties [21], mainly because none
of our test cases would benefit from these complex combinatorial optimizations.
However we would consider using them if we had a motivating example that
would be really improved by such optimizations. Basic block enlargement is
useful for trace scheduling [12] and obtained by different code transformations,
including code hoisting and code sinking [14]. For image processing applications,
code hoisting and sinking do not seem useful. Our technique is close to the opti-
mization of expression evaluation and vector instruction chaining [19], although
in our case we must preliminary meet the pipeline constraints of our target
hardware.

9 Conclusion and Future Work

We have shown how standard compilation techniques can be efficiently reused
and adapted to optimize applications based on an image processing library for a
domain-specific hardware accelerator composed of multiple chained vector units.
Applications can be developed in C by any programmer competent in the im-
age processing field, but without knowledge of the hardware accelerator, and
are automatically optimized for the specific target system without any of the
traditional hurdles such as the procedure calls imposed by the different APIs



used. The source code transformations and the high-level optimization strategy
is simple, it properly combines and adapts existing techniques to perform a wide
range of loop fusions based on semantical information. This simplicity is an as-
set, as it greatly reduces the development costs of the compiler and bring large
speedups.

Some experimental results are even better than expected. The PIPS auto-
matically optimized version of the running example beats the hardware expert
first-cut hand-optimized version, because common sub-expression elimination
opportunities were not considered. It is up to three times faster than the version
based on the hand optimized FREIA library implementation, and it is optimal, as
most of our 1217 test cases. The compiler also generates, as a side effect, the ba-
sic hardware accelerated library version by considering elementary operations as
a whole application. The full library hardware accelerated version is more subtle,
as it dynamically adapts the generated configuration to the parametric number
of iterated operations (see the dilatation) and the available hardware pipeline
depth. These are known to the compiler when considering a full applications in
context, but not when simply looking at a function library implementation.

What are the underlying reason of our success? Firstly, the application do-
main uses one large type of data, images, and a limited set of operators executed
on whole images, with a lot of implicit locality and parallelism. Secondly, the
architectural choices of the hardware with the high level instruction set provided
by SPoC [9] takes advantage of these opportunities to provide a potentially high
performance pipeline, which, although not as convenient as a crossbar which
would enable any operator chaining, fits the kind of DAG found in applications,
and is accessible through runtime calls which handle low-level details but en-
able all necessary configurations. Thirdly, the library API is reasonably small
(about 40 basic operations and about 20 higher level combined operations), and
is both relevant to the application developers who can find high level operations
and develop functional blocks, and still easily mapped onto the hardware which
implements directly most of the elementary operations. Thus the gap is small
enough to be compatible with a simple compilation strategy, allowing a low cost
fast development and integration in an existing source-to-source compiler.

This does not preclude the implementation of the same approach on more
traditional SIMD hardware accelerators or GPGPU targets, because the high
level API provides all the semantical information needed to generate code and
perform many classical compiler optimizations. However it may need to be com-
bined with more traditional loop transformation techniques to produce optimized
combined operation microcode for these targets, or to develop a specific runtime
which takes advantage of the available hardware once high-level optimizations
and choices are performed. Such work is already underway. A second direction
is to test our approach on more real-life applications. We also have to look at
the impact on our strategy on domains with multiple data types, such as signal
processing applications. A third direction is to reuse the semantical loop fusion
and emulate its the schedule of our target to benefit from the locality increase



for general-purpose processors. The technique used by our accelerator to handle
image boundaries by maintaining a constant image size could also be useful.
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