
N°:	
 	
 2009	
 ENAM	
 XXXX	

	

MINES ParisTech
Centre de Recherche en Informatique

35, rue Saint-Honoré, 77305 Fontainebleau, France

TT
HH
EE
SS
EE

	
 	

 École doctorale n° 432 : Sciences des Métiers de l’Ingénieur

	

	

	

	

	

	

	

	

	

	

	

	

	

présentée et soutenue publiquement par

Duong NGUYEN QUE

le 26 novembre 2010

Domaine abstrait robuste et générique pour les analyses statiques de programme :
le cas des polyèdres

~~~~ 
Robust and generic abstract domain for static program analyses : 

The polyhedral case 

Doctorat ParisTech 
T H È S E 

pour obtenir le grade de docteur délivré par 

MINES ParisTech 
Spécialité “ Informatique temps-réel, robotique et automatique ” 

 
 

	
  

Directeur de thèse : François IRIGOIN  
Co-encadrement de la thèse : Corinne ANCOURT 	
  

 
Jury : 
M. Nicolas HALBWACHS, Directeur de recherche CNRS, VERIMAG,   Rapporteur 
M. Matthieu MARTEL, Maître de Conférence, Université de Perpignan,  Rapporteur 
M. Antoine MINÉ, Chargé de Recherche, Ecole Normale Supérieure,   Examinateur 
M. Robert MAHL, Professeur, Mines ParisTech,      Examinateur 
M. François IRIGOIN, Maître de Recherche, Mines ParisTech   Directeur de Thèse 
Mme Corinne ANCOURT, Chargée de Recherche, Mines ParisTech  Invitée 

 
 
 
 

 

T 
H 
È 
S 
E 



1

Remerciements

En premier lieu, je tiens à remercier les membres du jury :

Robert Mahl, professeur à l’école nationale supérieure des mines de Paris, ParisTech,

pour avoir accepté d’être président de mon jury.

Nicolas Halbwachs, directeur de recherche CNRS/Vérimag, et Matthieu Martel, mâıtre

de conférence à l’Université de Perpignan, pour avoir accepté d’être rapporteurs de ce

manuscript.

Antoine Miné, chargé de recherche à l’école normale supérieure, pour avoir accepté

d’être membre de ce jury.

François Irigoin, mâıtre de recherche à l’école nationale supérieure des mines de Paris,

ParisTech, pour avoir encadré ma thèse.

François, qui m’a proposé le sujet de thèse, qui m’a initié dans ce domaine de recherche,

qui m’a encadré tout au long de ces années de thèse, et surtout, qui m’a appris une bonne

méthode pour attaquer les problèmes rencontrés, je te remercie pour tout !

Certes, quelques lignes ne suffisent pas pour exprimer ma gratitude envers les gens qui

m’ont aidé pendant ces années, mais quand il faut y aller, il faut y aller :

Je te remercie, Corinne Ancourt, pour tout ce que tu as fait pour moi, dès mon arrivée.

Pour avoir encadré mon stage, pour m’avoir aidé avec PIPS, pour avoir encadré ma thèse

avec François, pour avoir fait de nombreuses relectures et corrections de ma thèse. Et pour

ta gentillesse.

Je te remercie, Pierre Jouvelot, le professeur le plus cool que je connaisse. Je suis

toujours agréablement surpris par tes réflexions, tes questions, tes remarques et tes conseils.

Tu fais partie des trois mousquetaires très patients qui ont passé du temps à corriger mon

manuscrit.

Je tiens à exprimer ma reconnaissance à Fabien Coelho, pour son support technique, à

Laurent Daverio, pour des heures de jeux de société avec Benôıt Pin et d’autres thèsards, à

Claire Medrala, pour m’avoir aidé quand j’oublais mon mot de passe, à Jacqueline Altimira,

pour m’avoir donné les tickets de resto quand j’en avais besoin ! Jaqueline, je rigole, t’étais

toujours là pour m’aider, je te remercie !

Finalement je voudrais bien remercier mes parents, ma soeur, mon beau frère et mes

deux nièces pour m’avoir soutenu jusqu’à ... la soutenance.

Merci pour tout !



2



Table des matières

1 Introduction 1

2 Static program analysis overview 5

1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Basic Concepts (POS, lattices, chains) . . . . . . . . . . . . . . . . . . . . . 6

2.1 Partially Ordered Set, Lattices and Chains . . . . . . . . . . . . . . 6

2.2 Fixed Points Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Static Program Analysis Approaches . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Program Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Control-Flow Analysis . . . . . . . . . . . . . . . . . . . . . 8

3.1.2 Interprocedural Analysis . . . . . . . . . . . . . . . . . . . 9

3.2 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Galois Connection . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2 Widening/Narrowing Approach . . . . . . . . . . . . . . . 11

4 Examples of Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 A Simplified Language . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Array Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Abstract domains and their application 23

1 Numeric Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1 Interval Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Polyhedral Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.2 Convex Polyhedron Operators . . . . . . . . . . . . . . . . 28

1.3 Octagonal Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.2 Octagonal Operators . . . . . . . . . . . . . . . . . . . . . 32

1.4 Presburger formulae - The OMEGA project . . . . . . . . . . . . . . 34

3



4 TABLE DES MATIÈRES

1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4.2 Presburger formulae operators . . . . . . . . . . . . . . . . 35

1.5 List of Polyhedra - Arnauld Leservot’s work . . . . . . . . . . . . . . 36

1.6 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Projects and Their Underlying Domains . . . . . . . . . . . . . . . . . . . . 37

2.1 ASTRÉE Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 About the octagon domain . . . . . . . . . . . . . . . . . . 39

2.2 NBAC Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 PIPS Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Other Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Available Polyhedral Libraries and Operators . . . . . . . . . . . . . . . . . 44

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Towards a Multi-Domain Interface for Abstract Interpretation 51

1 The Need for a Generic Interface . . . . . . . . . . . . . . . . . . . . . . . . 51

1.1 Motivation for a Common Generic Interface . . . . . . . . . . . . . . 51

1.2 First Issue : C3, New POLKA, PPL and POLYLIB - Different Contexts 53

1.3 Second Issue : Control of Execution Time . . . . . . . . . . . . . . . 54

1.4 Third Issue : Octagons vs Polyhedra . . . . . . . . . . . . . . . . . . 56

1.5 Forth Issue : Variable Assignment . . . . . . . . . . . . . . . . . . . 57

1.6 Fifth Issue : Omega’s Presburger Formulae vs Polyhedra . . . . . . . 58

1.7 Sixth Issue : Finite Union of Polyhedra . . . . . . . . . . . . . . . . 59

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 HQ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Main Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Differences in Implementations . . . . . . . . . . . . . . . . . . . . . 63

2.4.1 The Emptiness Test . . . . . . . . . . . . . . . . . . . . . . 63

2.4.2 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.3 Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 Missing Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.6 Other Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6.1 Domain-related Problems . . . . . . . . . . . . . . . . . . . 70

2.6.2 Signature-related Problems . . . . . . . . . . . . . . . . . . 71

2.6.3 Implementation-related Problems . . . . . . . . . . . . . . 71

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1 APRON project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 73



TABLE DES MATIÈRES 5

3.1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.3 Main Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.4 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.5 Different Contexts of HQ and APRON . . . . . . . . . . . 77

3.2 Parma Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Comparative section for polyhedral operators 81

1 Polyhedral Operators and Open Issues . . . . . . . . . . . . . . . . . . . . . 81

1.1 Polyhedral Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1.2 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2 Dual Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.2 Available Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.3 Practical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Available Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.1 Fourier - Motzkin . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.2 Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.3 JANUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.4 Dual Conversion . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3 Practical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Available Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Practical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Available Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Practical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Convex hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Available Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Decomposition defined by Corinne Ancourt and Fabien

Coelho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Cartesian Factorization by Nicolas Halbwachs and al. . . . 105

6.2.3 Decomposition by Inclusion Test . . . . . . . . . . . . . . . 106

6.3 Practical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



6 TABLE DES MATIÈRES

8 Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Widening and Narrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10 Other Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Benchmarking existing libraries 119

1 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

1.1 Motivation : Impact of exceptions on accuracy . . . . . . . . . . . . 119

1.2 Large Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

1.2.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 122

1.2.2 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

1.2.3 Convex Hull . . . . . . . . . . . . . . . . . . . . . . . . . . 123

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

1.4 Building a Polyhedral Benchmarking System . . . . . . . . . . . . . 126

2 Constitution of a Polyhedral Benchmark - POLYBENCH . . . . . . . . . . 127

2.1 Benchmarking Conventions . . . . . . . . . . . . . . . . . . . . . . . 127

2.2 POLYBENCH Overview . . . . . . . . . . . . . . . . . . . . . . . . . 127

2.3 Execution Time Measurements . . . . . . . . . . . . . . . . . . . . . 128

2.4 Size Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

2.6 Target Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2.7 Presentation of Results . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.8 Polyhedral Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2.9 Distribution of Dimension Space . . . . . . . . . . . . . . . . . . . . 136

2.10 Evaluation of POLYBENCH and Future Work . . . . . . . . . . . . 136

3 Results for Satisfiability Test . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.1 JANUS 64-bit versus C3 Simplex 64-bit . . . . . . . . . . . . . . . . 139

3.1.1 Random Sampling Database of PerfectClub . . . . . . . . . 139

3.1.2 Biased Database of PerfectClub . . . . . . . . . . . . . . . 141

3.1.3 Parallel Algorithm . . . . . . . . . . . . . . . . . . . . . . . 141

3.2 JANUS 64-bit versus C3 Fourier-Motzkin 64-bit . . . . . . . . . . . 141

3.3 JANUS 64-bit versus C3 Double Description Method 64-bit . . . . . 142

3.4 Overflow and Timeout Exceptions : 64-bit . . . . . . . . . . . . . . . 144

3.5 Integer versus Rational : 64-bit . . . . . . . . . . . . . . . . . . . . . 147

3.6 Arithmetic Precision : 64-bit versus 32-bit . . . . . . . . . . . . . . . 148

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4 Results for Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.1 C3 approach : Constraints versus Generators, 64-bit . . . . . . . . . 153

4.2 Overflow and Timeout Exceptions : 64-bit . . . . . . . . . . . . . . . 154

4.3 Arithmetic Precision : 64-bit versus 32-bit . . . . . . . . . . . . . . . 154



TABLE DES MATIÈRES 7

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5 Results for Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.1 C3 approach : constraints versus generators, 64-bit . . . . . . . . . . 157

5.2 Overflow and Timeout Exceptions : 64-bit . . . . . . . . . . . . . . . 158

5.3 Arithmetic Precision : 64-bit versus 32-bit . . . . . . . . . . . . . . . 158

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Results for Dual Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.1 C3 Dual Conversion versus CDD, 64-bit . . . . . . . . . . . . . . . . 161

6.2 Overflow and Timeout Exceptions : 64-bit . . . . . . . . . . . . . . . 163

6.3 Arithmetic Precision : 64-bit versus 32-bit . . . . . . . . . . . . . . . 163

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Results for Convex Hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1 C3 Partial Factorization versus POLYLIB, 64-bit . . . . . . . . . . . 165

7.2 C3 Partial Factorization versus New POLKA, 64-bit . . . . . . . . . 167

7.3 Overflow and Timeout Exceptions : 64-bit . . . . . . . . . . . . . . . 168

7.4 Arithmetic Precision : 64-bit versus 32-bit . . . . . . . . . . . . . . . 169

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Conclusion 175



Chapitre 1

Introduction

Abstraction lies at the heart of computer science. To write a loop is to abstract a se-

quence of operations. To write a subroutine is to abstract what is common in sequences of

operations in different places in a program. To define a type is to abstract what is common

among all instances of the type, while the type’s member data define what differentiates

individual instances. Classes and inheritance, templates and type classes, functional and lo-

gic programming, are also just more sophisticated abstractions. As users expect increasing

sophistication in program behavior and as programs accordingly become more complex,

the need for improved abstractions will continue to grow.

Thus the history of computer programming has tended toward more sophisticated

forms of abstraction, and promises to continue to do so. These abstractions, however,

often come at a price : slower execution and greater memory consumption. Unfortunately,

this conflicts with the broad principle in programming language design that you should

not have to pay for a feature you do not use. Smart compiler optimizations, however, can

often avoid these disadvantages, if they can determine how individual uses of an abstraction

will behave. This is where static analysis comes in. It is the function of a static analyzer

(henceforth just called an analyzer) to determine things about the way a program will

behave that are not directly specified by the programmer.

The abstract interpretation introduced by the Cousots [CC77, Cou97, CC00] provides

a solid theoretical foundation for static analysis. It is a theory of sound approximation

of the semantics of computer programs, based on monotonic functions over ordered sets,

especially lattices, called abstract domain. Its main concrete application is formal static

analysis, the automatic extraction of information about the possible executions of com-

puter programs. Such analyses have two main usages in analyzers : to analyze programs

in order to decide whether certain optimizations or transformations are applicable ; for

debugging or even the certification of programs against classes of bugs.

Abstract domain libraries used in current analyzers are dealing with problems limiting

the effectiveness of checking statically safety and security properties of programs written

in different languages, and identifying and locating origins of failures. Approximate ana-

lyses must be used to overcome computing limit, especially when dealing with large scale

application.

One of the two main goals of this dissertation is to help designing a common interface

for abstract domain libraries used in five static analyzers PIPS [IJT90, IJT91a], NBAC

[tea02d, Jea00], ASTRÉE [tea02a, BCC+03], the OMEGA framework [tea02e, Pug91] and

CHINA [tea02b, tea02f, BRZH02].

1



2 CHAPITRE 1. INTRODUCTION

The other goal is to provide a case study with the polyhedra-based analyzers : bench-

marking polyhedral implementations used in these analyzers.

For the first goal, our starting point is to analyze problems existing in a particular

analyzer named PIPS [IJT90, IJT91a] when using abstract domain libraries, and then

extend to other analyzers such as ASTRÉE [tea02a, BCC+03] and NBAC [tea02d, Jea00].

Each static analyzer has its own library dealing with its own abstract domain(s). In

practice, these libraries seem to have problems when dealing with large scale applications.

However, recent developments from one team such as new abstract domains, e.g. the Oc-

tagon library [Min05, Min01b], or algorithmic improvements, e.g. Cartesian factorization

[HMPV03], cannot be readily exploited by other teams. Meanwhile existing static analy-

zers are mostly modular, and some important modules are based on similar technologies.

Each analyzer develops different techniques that are integrated in different modules.

How to profit all these abstract domain implementations, when they come with ad-

vantages and disadvantages at the same time ? And did we have the best use of each and

every abstract domain ? While it is still hard to compare the effectiveness among different

abstract domains, we can make comparisons possible for each abstract domain, to answer

the second question.

For the second goal, the most used polyhedral domain counts several implementations

with several algorithmic discoveries that make it very robust. These implementations are

varying and complicated to the point that without a benchmarking system, we cannot

determine which one is the most efficient. Benchmarking helps deciding when and where

to use which (appropriate) implementations. It also helps regression testing, bug detection,

performance and stability evaluations, etc.

Our work is divided into two parts. The first part deals with an adaptive abstract do-

main, which in fact leads to the construction of a common interface. This interface tries to

combine and use efficiently existing abstract domains implementations. The second part

describes a framework permitting evaluations of equivalent implementations for the poly-

hedral domain. This framework later can be used with other abstract domains. We notice

here that these two goals are new and original although they are both quite important.

A proposition of a common interface for already functional implementations, which are

used in different projects, must prove itself worthy. Seeing that abstract domain community

with strongly related groups is ignoring the possibility of sharing important progressions,

it is of our strong feeling that someone must start this work. Even if we could not solve

all the problems, we would be able to help understanding these problems.

As described in chapter 4, a French project named APRON was launched in 2004

where such a common interface is of interest. Although Omega [tea02e, Pug91] and Parma

[tea02b, tea02f, BRZH02] teams are not members of the project, the common interface

should be compatible with their interfaces.

In order to design an interface which can replace all interfaces already used in current

implementations, first of all we need to study these interfaces and to find out common



3

points and incompatibilities among them. Incompatibilities may happen at the interface

level, that is to say the signatures of operators, the data structures, etc., as well as at

the implementation level, with exception management, thread-safety features, underlying

arithmetics, etc.

Our benchmark system is quite different to existing benchmarks. Besides the perfor-

mance, the stability (ability to cope with computational problems) analyses, we integrate

some polyhedral characteristics into our evaluations. Since our set of tests is generated by

a static analyzer (PIPS [IJT90, IJT91a]) using standard benchmarks with large size ap-

plications (PerfectClub and SPEC95 benchmarks), the results provide richer information

than previous experimental work. Moreover, new comparisons of implementations that

were not considered before are presented.

Indeed, pre-existing evaluations are not satisfying for several reasons : our bibliographic

study has revealed the fact that, it doesn’t exist yet a mechanism to evaluate effectively

these works, especially in the domain of program analysis and transformation with real-life

examples. Conducted evaluations are based on at most one hundred problems, mostly theo-

retical, without analyses on quantity, on criteria, on exceptions (cases where algorithms

fail because of resource limits), etc...

Apart from clarifying whether CPU or memory efficiency or both are the intended

measures of interest, we offer problem-related analyses (such as polyhedral size parameters,

their origin), stability comparisons, incoherent results checking, precision of computing

comparisons, etc... Those features are not available elsewhere.

Since our work is in the context of static program analysis, chapter 2 summarizes im-

portant concepts in static program analysis, introduces some examples of program analysis,

and discusses our motivation in this point of view. It begins with some basic mathematical

concepts and some main approaches in static program analysis, among which the uses of

abstract interpretation with abstract domains. Some examples of program analyses are

discussed in order to give a view of what a program analysis can consist of, and to discuss

problems that may occur in analysis.

In chapter 3, we introduce important numerical domains used in static program ana-

lysis, based on abstract interpretation. We present in this chapter some related projects

such as PIPS [IJT90, IJT91a], NBAC [tea02d, Jea00] and ASTRÉE [tea02a, BCC+03],

with their underlying domains, and discuss in great detail three of these projects cove-

ring most of important abstract domains. We are interested in differences and problems

concerning the utilization of these abstract domains. Some important definitions of convex

polyhedra and octagons are introduced. Also in this chapter, existing implementations for

these abstract domains are presented, in order to draw the picture of abstract domains

used in actual analyzers.

Chapter 4 discusses the problems with the abstract domains presented in the previous

chapter and with their libraries. The design of a common interface for those different

domains and libraries, called HQ interface, is introduced. Also in this chapter, we briefly



4 CHAPITRE 1. INTRODUCTION

present a related project, APRON, to which we contributed our HQ proposition. The main

decisions made for APRON are discussed. We conclude by comparing HQ and APRON

while taking into account their different goals.

Chapter 3 and chapter 4 deal with several abstract domains. Meanwhile chapter 5 and

chapter 6 concern only the polyhedral domain. Chapter 5 focus on polyhedral algorithms,

whose implementations are briefly covered in chapter 3, and important practical issues.

Our contribution to improve some of these operators is also presented in this chapter,

including the decomposition of polyhedra by the inclusion test.

Chapter 6 presents our framework to analyze the performances of the mentioned im-

plementations. Then it discusses our experimental results which are obtained for the most

important operators : satisfiability test, dual conversion, projection, minimization and

convex hull. Also in this chapter, some examples illustrate the impact of exceptions and

the occurrence of magnitude overflows during PIPS execution in section 1.2.



Chapitre 2

Static program analysis overview

This chapter begins with some basic mathematical concepts and principal approaches

in static program analysis. Then several concrete examples of analysis are given to illustrate

what a program analysis can consist of, and to discuss problems that may occur in analysis.

The conclusion part summarizes the chapter and discusses our motivation.

1 Context

Any compiler checks the syntax of a program written in a programming language, and

then translates it into machine code, in order to execute the program. Thanks to program

analysis, advanced compilers can help programmers to see whether the written program

will do correctly what they want it to do, or produce an equivalent but better program,

by using the semantics of the program. There are two types of program analysis.

Dynamic program analysis proposes methods that analyze programs in their execution

phase, whereas static program analysis studies the behaviors of programs without actually

running it. Thus, an interpreter can perform static analysis as well as dynamic analysis.

A compiler can perform static analysis only.

Static program analysis, based on properties of programs that are sometimes incompu-

table, offers techniques for predicting safe approximations of behavioral properties arising

dynamically at runtime of programs. Information obtained from this analysis can be used

to support compiler optimization, verification, program comprehension, debugging and do-

cumentation. We should be able, for example, to determine every error that might occur

in the execution of programs. Several approaches to static program analysis exist such as

program flow analysis, denotation - or logical formulations - based approaches, abstract

interpretation, but important similarities and connections among them have been found.

This chapter summarizes well-known concepts in static program analysis that we use

in the dissertation and introduces some examples of analysis with encountered problems.

We start with basic mathematical concepts, namely lattices, functions and fixed points

(section 2). Then main approaches in static program analysis such as program control and

data flow analysis as well as interprocedural analysis are briefly described in the second

section (section 3). The semantic foundations of programs with the abstract interpretation

methodology are also presented in this section.

A few examples of analysis are given in the next section (section 4) to show what

a program analysis looks like, and to discuss real problems that we have observed. The

conclusion part summarizes the chapter and discusses our motivations.

5



6 CHAPITRE 2. STATIC PROGRAM ANALYSIS OVERVIEW

2 Basic Concepts (POS, lattices, chains)

This section recalls some definitions and theorems on lattice theory, based on Birkhoff

[Bir67], and the approximation of fixed points, based on Nielson and al. [NNH99].

2.1 Partially Ordered Set, Lattices and Chains

DEFINITION 2.1 A partially ordered set (poset) is a set in which a binary relation

x ≦ y is defined, which satisfies for all x, y, z the following conditions :

1. Reflexive : for all x, x ≦ x

2. Anti-symmetry : if x ≦ y and y ≦ x, then x = y

3. Transitivity : if x ≦ y and y ≦ z, then x ≦ z

An upper bound of a subset X of a poset P is an element a ∈ P such that x ≦ a for

all x ∈ X. a is called the least upper bound of X if a is an upper bound of X and if for

any upper bound b of X, a ≦ b. The notions of lower bounds and the greatest lower bound

of X are defined dually.

DEFINITION 2.2 A lattice is a partially ordered set P that any two of whose elements

have a greatest lower bound denoted by x ⊓ y (meet operator), and a least upper bound

denoted by x ⊔ y (join operator).

A lattice L is complete when each of its subsets X has a least upper bound and a

greatest lower bound. A non-void complete lattice L has a greatest lower bound denoted

by ⊥ (least element), and a least upper bound denoted by ⊤ (greatest element).

DEFINITION 2.3 A subset X of a partially ordered set L(≦) is a chain if ∀x1, x2 ∈

X : (x1 ≦ x2) ∨ (x2 ≦ x1). A chain is a finite chain if it is a finite subset of L.

A sequence x0, x1, . . . , xn, . . . is an ascending chain if n ≤ m =⇒ xn ≦ xm. Similarly,

a sequence x0, x1, . . . , xn, . . . is a descending chain if n ≤ m =⇒ xm ≦ xn.

We shall say that a sequence x0, x1, . . . , xn, . . . eventually stabilizes if and only if ∃n0 ∈

N : ∀n ∈ N : n ≥ n0 =⇒ xn = xn0
.

The partially ordered set L satisfies the ascending chain condition if and only if all

ascending chains eventually stabilize. Similarly, it satisfies the descending chain condition

if and only if all descending chains eventually stabilize.

2.2 Fixed Points Theorems

DEFINITION 2.4 Let f be a function from a partially ordered set L1(≦1) to a partially

ordered set L2(≦2).

– f is surjective if ∀x2 ∈ L2 : ∃x1 ∈ L1 : f(x1) = x2

– f is injective if ∀x1, x
′
1 ∈ L1 : f(x1) = f(x′1) =⇒ x1 = x′1

– f is monotone if ∀x1, x
′
1 ∈ L1 : x1 ≦1 x′1 =⇒ f(x1) ≦2 f(x′1)



3. STATIC PROGRAM ANALYSIS APPROACHES 7

– f is an isomorphism if f is monotone and there exists a unique monotone function

f−1 : L2 −→ L1 such that f ◦ f−1 = id2 and f−1 ◦ f = id1 (where idi is the identity

function over Li, i = 1, 2)

DEFINITION 2.5 Let L be a complete lattice and f a monotone function on L into

L : f : L −→ L. An element a ∈ L is called a fixed point of f if f(a) = a. Then the set of

fixed points of f is denoted by :

Fix(f) = {a ∈ L : f(a) = a}

An element b ∈ L is called a pre-fixed point of f if b ≦ f(b) and dually, a post-fixed

point of f if f(b) ≦ b.

We denote by lfpa(f) the least fixed point of f that is greater than a, if it exists, and

dually by gfpa(f) the greatest fixed point of f that is smaller than a.

We also denote by lfp(f) and gfp(f) the least and greatest fixed points of f , if they

exist :

lfp(f) = ⊓Fix(f) = ⊓{x ∈ L : f(x) ≦ x}

gfp(f) = ⊔Fix(f) = ⊔{x ∈ L : x ≦ f(x)}

THEOREM 2.1 (Tarski) Let L be a complete lattice and f a monotone function on L

into L : f : L −→ L. Then f(a) = a for some a ∈ L.

The set Fix of fixed points of a monotone function f on a complete lattice L(≦

,⊔,⊓,⊥,⊤) is a nonempty complete lattice with the partial ordering ≦. In particular we

have the least upper bound and a greatest lower bound of Fix :

⊔Fix = ⊔{x ≦ f(x)} ∈ Fix

and

⊓Fix = ⊓{f(x) ≦ x} ∈ Fix

This theorem, called Tarski’s Fixed Point Theorem is proven by Tarski in [Tar55].

3 Static Program Analysis Approaches

3.1 Program Flow Analysis

Program flow analysis, in a few words, is a method for describing what a program does

to its data. For each possible control point in the program, flow analysis establishes a finite

description of the set of data states that the program could have when actual execution

goes through that point. The resulting description may be either exact or approximate, in



8 CHAPITRE 2. STATIC PROGRAM ANALYSIS OVERVIEW

the sense that it does not provide all information, but sound, in the sense that it must be

correct.

In this section, we describe the control flow and data flow analysis that apply to a

procedure, as well as an interprocedural analysis that deals with whole programs. These

analyses are vital for doing correct optimization and verification of programs, since ob-

viously we have to understand how things work before trying to verify and optimize them.

The material in the next subsections is based on the book Advanced Compiler Design and

Implementation of Muchnick [Muc97].

3.1.1 Control-Flow Analysis

As the name tells, the purpose of this analysis is to reveal the structure of control flow

within each procedure. For each routine of the program, its control structure is represented

by a rooted and directed graph G = (N,E), where N is the set of nodes including the root

and E ⊆ N ×N is the set of edges. G is called the control flow graph of the subroutine.

Basic components of the graph are defined as follows : a basic block is a straight-line

sequence of statements that can be entered only at the beginning and exited only at the

end. Set N contains a unique entry node, a unique exit node and the other basic blocks.

A branch node is a node that has more than one successor and a join node is a node that

has more than one predecessor. We say that “node d dominates node n” if every possible

execution path from the entry node to n must go through d. Dually, node p post-dominates

node n if every possible execution path from n to the exit node includes p.

A strongly connected component of the graph G is a subgraph Gs = (Ns, Es) such that

every node in Ns is reachable from every other node by a path that includes only edges

in Es.

Figure 2.1 shows an example of a control flow graph.

entry 

i = 1

i <= m−

I = 1

A(I) = I

ENDDO

a(i) = i

i = i + 1

+

exit

DO WHILE (I.LE.M)

Fig. 2.1 – Example of a control flow graph

There are two main approaches to control flow analysis of single routines, both of which

start by determining the basic blocks that build up the routine and then constructing its



3. STATIC PROGRAM ANALYSIS APPROACHES 9

flow graph. The first approach uses dominators, which can be calculated efficiently, to

discover loops and simply notes the loops it finds for use in optimization. This approach

is sufficient for iterative data flow analyzers and is the fastest to implement.

The second approach is called interval analysis, includes several methods that analyze

the overall structure of the routine and that decompose it into nested regions called in-

tervals. They have widely been employed by optimizing compilers because they are fast,

especially for structural analysis and programs that use only simple types of structures.

3.1.2 Interprocedural Analysis

Intraprocedural analyses are applied within a single procedure, without regard to the

calling context in which that procedure is used or the procedures it calls. Interprocedu-

ral analysis refers to gathering information about the entire program instead of a single

procedure. It studies the interactions among procedures in the whole program, including

control-flow and data-flow.

Interprocedural Control-flow Analysis The problem addressed by interprocedural

control-flow analysis is the construction of a program’s call graph, which is a multi-graph

with multi-directed edges from one node to another. We take figure 2.2 from [Ngu02] as

an example to illustrate a call graph, as follows :

Given a program P with procedures p1, p2, . . . , pn, the call graph of P is the graph

G = (N,S,E, p1) with the node set N = {p1, p2, . . . , pn}, the set S of call-site labels for

different calls, the set E ⊆ N × S ×N of labeled edges, and the distinguished entry node

for the main program p1 ∈ N . For each e in E with e = (pi, sk, pj), sk denotes a call-site

in pi to pj.

1     PROGRAM A

2     CALL B( )

3     CALL C( )

4     CALL C( )

5     END

6     SUBROUTINE B( )

7     CALL D( )

8     CALL C( )

9     END 2 3,4

7

8

11

10   SUBROUTINE C( )

11   CALL B( )

12   END

13   SUBROUTINE D( )

14   END

B

D

C

A

Fig. 2.2 – Example of a call graph

For more information, the reader is referred to Advanced Compiler Design and Imple-

mentation of Muchnick [Muc97], pages 609 to 621.



10 CHAPITRE 2. STATIC PROGRAM ANALYSIS OVERVIEW

3.2 Abstract Interpretation

The semantics of a program is a computation model describing the behavior of a

computer system executing this program. The concrete semantics of a syntactically correct

program is a standard semantics that specifies exactly the effect of the program and the

values it manipulates. In general, questions related to the concrete semantics of a non-

trivial program are undecidable, in the sense that no computer can always answer them

in finite time.

The Cousots in [CC77, Cou97, CC00] propose using an abstract semantics, which is a

non-standard semantics that gives a conservative approximation of the concrete semantics.

The abstraction does not allow to answer all questions about the program semantics but

all answers given by the abstract semantics are always correct with respect to the concrete

semantics. Abstract interpretation is a method of formalizing the approximation relation

between the concrete semantics and the abstract semantics, thus providing tools for tuning

this approximation.

Each semantics must be based on a semantic domain which is a partially ordered set, or

a stronger set, a complete lattice. To represent the relation between the concrete semantic

domains and abstract semantic domains, we need the concept of Galois connection that

is defined below.

3.2.1 Galois Connection

Let L1(≦1,⊔1,⊓1,⊥1,⊤1) and L2(≦2,⊔2,⊓2,⊥2,⊤2) be two complete lattices corres-

ponding to the concrete and abstract semantic domains. To express the relationship bet-

ween these two domains, a pair of functions are defined : a abstraction function α : L1 −→

L2 gives an abstract representation of the elements belonging to the concrete domain in the

abstract domain, and a concretization function γ : L2 −→ L1 that expresses the meaning

of some abstract information in concrete terms.

DEFINITION 3.1 (L1, α, γ, L2) is a Galois connection between the complete lattices

L1 and L2 if and only if ∀l1 ∈ L1 and ∀l2 ∈ L2, α : L1 −→ L2 and γ : L2 −→ L1 are

monotone functions that satisfy :

α(l1) ≦2 l2 ⇐⇒ l1 ≦1 γ(l2)

As a consequence, we have (α ◦γ)(l2) ≦2 l2 and l1 ≦1 (γ ◦α)(l1). The partial orderings

≦1 and ≦2 formalize the loss of information. l1 ≦1 (γ◦α)(l1) means that the concretization

of the abstract representation of l1 is a safe approximation of l1. The above conditions

express that we do not lose safety by going back and forth between the two domains

although we may lose precision.

A program analysis can be developed in several steps of refinement, by using different

combinations of Galois connections such as sequential composition, parallel combinations,



3. STATIC PROGRAM ANALYSIS APPROACHES 11

etc. Galois connections are indeed useful for transforming computations into more ap-

proximate computations that have better time, memory space or termination behavior

and whose correctness properties are still preserved.

Program flow analysis and abstract interpretation have many common points. For

instance, in order to remain computable, both sometimes give approximate answers. These

answers do not provide precise information but may give useful information.

3.2.2 Widening/Narrowing Approach

In general, the program analysis produces a possibly larger set of possibilities than

what will ever happen during execution of the program. In addition, the information

obtained from the analysis must be proven to be correct with respect to the semantics

of the programming language. A well-known method [CC76, CC77, CC79] for correct

enforcing termination of the abstract interpretation approach consists in using widening

operators.

DEFINITION 3.2 An operator ▽ ∈ L× L 7−→ L is a widening if :

∀x, y ∈ L : x ⊑ (x ▽ y)

∀x, y ∈ L : y ⊑ (x ▽ y)

for all increasing chains x0 ⊑ x1 ⊑ . . ., the increasing chain defined by y0 = x0, . . . , yi+1 =

(yi ▽ xi+1) is not strictly increasing.

As we will see in section 4 of this chapter, polyhedra can be used to represent program

states. We can cite here an example of a widening operator on polyhedral domain that

is presented in [BHRZ03]. In words, this widening operator of two polyhedra P1 and P2,

denoted P1▽P2, is the polyhedron defined by the constraints of P1 that are also satisfied

by P2, plus the constraints of P2 that have an equivalent constraint in P1 .

Approximation using widening operator permits the termination of the abstract inter-

pretation, whereas using narrowing operator permits improvements of this approximation.

DEFINITION 3.3 An operator ∆ ∈ L× L 7−→ L is a narrowing if :

∀x, y ∈ L : (y ⊑ x) =⇒ (y ⊑ (x ∆ y) ⊑ x)

for all decreasing chains x0 ⊒ x1 ⊒ . . ., the decreasing chain defined by y0 = x0, . . . , yi+1 =

(yi ∆ xi+1) is not strictly decreasing.

In [CC91], it is shown that, in general, using infinite abstract domains with widenings

and narrowings is more powerful and more precise than using finite lattices to ensure the

termination of abstract interpretation of programs on infinite lattices.



12 CHAPITRE 2. STATIC PROGRAM ANALYSIS OVERVIEW

4 Examples of Analyses

In this section we present briefly four important analyses implemented in the tool PIPS

([IJT90]). The tool, presented in section 2.3, page 41, chapter 3, is heavily used in our

work, especially in our benchmarks experimentation.

Because that the four analyses are very closely related, we will not present them in a

balanced way : the first one will contain more information, and the others will be introduced

very briefly. Instead, we will point the reader to some important articles for much greater

details.

4.1 A Simplified Language

Procedure := head : Header decls : Declaration∗ body : Statement END

Header := PROGRAM name : Name

| SUBROUTINE name : Name [(formals : V ariable∗)]

Declaration := PARAMETER (var : V ariable = cons : Constant)

| DIMENSION var : V ariable (dims : Dimension∗)

| EQUIVALENCE (var1 : V ariable, var2 : V ariable)

| COMMON [/com : Name/] vars : V ariable∗

| type : Type var : V ariable [(dims : Dimension∗)]

| DATA var : V ariable /cons : Constant/

Type := INTEGER | REAL | DOUBLE PRECISION |

COMPLEX | LOGICAL | CHARACTER

Dimension := lower : Expression : upper : Expression

Statement := STOP

| READ ref : Reference

| WRITE exp : Expression

| ref : Reference = exp : Expression

| IF (cond : Expression) THEN true : Statement

ELSE false : Statement ENDIF

| DO (cond : Expression) body : Statement ENDDO

| CALL proc : Name [(actuals : Expression∗)]

| sequence : Statement∗

Expression := cons : Constant

| ref : Reference

| (exp : Expression)

| unop : Unary op exp : Expression

| exp1 : Expression binop : Binary op exp2 : Expression

Unary op := - | .NOT.

Binary op := + | - | * | / | ** |.LT.|.LE.|.EQ.|.NE.|.GT.|.GE.|

.AND.|.OR.|.EQV.|.NEQV.

Reference := var : V ariable [(exp : Expression∗)]

Fig. 2.3 – FORTRAN toy language syntax



4. EXAMPLES OF ANALYSES 13

Since the syntax of real-life programming languages is complex, we need to use a very

simple language, based on which the three analyses will be described. Figure 2.3 shows a

simplified version of the syntax of a FORTRAN toy language that we have chosen for this

purpose. In fact, this is a slightly modified version of the one introduced in [Mey90] and

[Ngu02]. This choice is conveniently independent from the rest of the work.

It’s important to note that there is no recursion in the language. We do not consider

arrays for the shake of simplicity.

In figure 2.3, the sign := denotes a definition, the sign [ ] an optional item, the sign |

the choice production and the sign ∗ the list production. For example, an unary operator

can be a negation (−) or a logical negation (.NOT.) ; < statement >∗ is a sequence of

zero, one or more statements.

An executable program includes the main program, function and subroutine subpro-

grams, characterized by their header. Specification statements are parameter, type, com-

mon, equivalence, dimension and data declarations. Executable statements consist of stop,

read, write, assignment, conditional statement, loop, call to external subroutine and se-

quence of statements. An expression is either a constant, a reference to a variable, an

unary or a binary expression. A variable reference can be a scalar variable. The syntactic

domains of this language include :

Variable : set of variables

Expression : set of expressions

Statement : set of statements

The semantic definition of a programming language characterizes the effect of programs

on the values they manipulate. To define the semantics of our language, we have the

following semantic domains :

B : set of boolean values

N : set of positive integers

Z : set of integers (positive, zero or negative)

Q : set of rational numbers

R : set of reals

Constant : set of constants

Value : set of values

State : set of states

A program defines a dynamic discrete system that is a transition relation on states

[Muc97]. The set of possible states of a program is defined as the set of functions from the

set of variables to the set of values. In other words, the state of a program at any instant

of its execution is a function that associates each variable to its value at that instant, and

a transition system is a relation between states. Those are mechanisms to approximate

program behaviors, which can be computing state predicates, i.e. pre- and post-conditions

[CH78], or state transformers [IJT91b, Iri92], as will be presented shortly.



14 CHAPITRE 2. STATIC PROGRAM ANALYSIS OVERVIEW

To illustrate the analyses, we extract a small fragment of code (figure 2.4) from the

program ocean.f in Perfect Club benchmark [BCK+89], then analyze it with PIPS. In

the following subsections we briefly define the analyses and expose problems related to

them. Since definition of transformers, pre- and post-conditions are closely related, we will

present transformers first, and then briefly introduce preconditions, postconditions

SUBROUTINE SHUF (A,N2P,N1,WORK)

DIMENSION A(N2P,1),WORK(1)

DO J = 1, N1, 2

DO I = 1, N2P

II = I+I

WORK(II-1) = A(I,J)

WORK(II) = A(I,J+1)

ENDDO

DO I = 1, N2P

A(I,J) = WORK(I)

ENDDO

DO I = 1, N2P

A(I,J+1) = WORK(I+N2P)

ENDDO

ENDDO

END

Fig. 2.4 – Example of code from ocean.f

4.2 Transformers

A statement is a state-to-state transformer, which means when a statement is executed

in a certain state, it creates a new and unique state upon termination. The transformer

represents the transformation of an input state to an output state, which is the result

of the execution of the concerned statement. The inverse transformer corresponds to the

transformation from the output to the input state.

Transformers are based on the semantic function E that represents the evaluation

of expressions. This evaluation yields a value that depends on the current state. The

denotation of an expression is semantically a function from the set of states to the set of

values, defined as follows :

E : Expression −→ State −→ Value

Let e ∈ Expression, κ ∈ State, we have :



4. EXAMPLES OF ANALYSES 15

E(e) := λκ. Case e of :

Constant −→ e

Reference −→ κ(e)

(exp) −→ E(exp)(κ)

unary op (exp) −→ Θ[unary op](E(exp)(κ))

(exp1) binary op (exp2) −→ ∇[binary op](E(exp1)(κ), E(exp2)(κ))

where Θ and ∇ are some predefined functions.

Transformers are computed hierarchically from elementary statements such as stop,

read, write and assignments to compound statements such as conditional statements, loops

and sequences of statements. They are also analyzed inter-procedurally through procedure

calls with the no side effects assumption.

The transformer, denoted by T , is a function from the set of states to itself :

T : Statement −→ State −→ State

The set of a program states contains many states including entry and exit states.

Let κ, ξ ∈ State be the input and exit states and s ∈ Statement. σ is the substitution

operator, also known as overriding union operator [Mey90], where κσ[var/val] returns a

state identical to κ, except that the value of var becomes val. We denote stdin the input

of the program and suppose that the input is given at the beginning of the program, thus

belongs to the entry state. We do not consider the scope changing when calling subroutine,

as well as the method of passing the parameters. The definition of the transformer is then

simplified as follow :

T (s) := λκ. If κ = ξ then ξ else case s of :

STOP −→ ξ

READ var −→ κσ[var/stdin]

WRITE exp −→ κ

var = exp −→ κσ[var/E(exp)(κ))]

IF e THEN s1 ELSE s2 ENDIF −→ if E(e)(κ) then T (s1)(κ) else T (s2)(κ)

DO e s1 ENDDO −→ if E(e)(κ) then T (s)(T (s1)(κ)) else κ

CALL p(e1, . . . , en) −→ T (p.body)(κσ[(p.f1, E(e1)(κ))/ . . . , (p.fn, E(en)(κ))])

s1; s2; . . . ; sn; −→ T (s2; . . . ; sn; )(T (s1)(κ)))

The STOP statement causes the termination of the whole program, and results in the

exit state ξ. The WRITE statements do not change the program state. The READ var

statement gives var the value from the standard input. The CALL statement yields a

program state which is the output state of the transformer of the called procedure body.

The input state of this transformer is the input state κ, except that the value of each

formal parameter is associated to the value of the corresponding actual parameter.



16 CHAPITRE 2. STATIC PROGRAM ANALYSIS OVERVIEW

Data-flow analysis is performed by operating on a lattice. Elements of the lattice

represent abstract properties of variables, expressions, or other programming constructs

for all possible executions of a procedure, independently of the values of the input data

and, usually, independently of the control-flow paths through the procedure.

C T() {}

SUBROUTINE SHUF (A,N2P,N1,WORK)

DIMENSION A(N2P,1),WORK(1)

C T(I,II,J) {}

DO J = 1, N1, 2 0001

C T(I,II) {}

DO I = 1, N2P 0002

C T(II) {2I==II}

II = I+I 0003

C T() {}

WORK(II-1) = A(I,J) 0004

C T() {}

WORK(II) = A(I,J+1) 0005

ENDDO

C T(I) {}

DO I = 1, N2P 0006

C T() {}

A(I,J) = WORK(I) 0007

ENDDO

C T(I) {}

DO I = 1, N2P 0008

C T() {}

A(I,J+1) = WORK(I+N2P) 0009

ENDDO

ENDDO

END

Fig. 2.5 – Example of PIPS output for Transformer calculation

In figure 2.5, calculation of the transformer T is given at each step of the code : T

is printed out in comment using PIPS, i.e. the lines starting with C, where {} means

an empty set. The constraint systems describe the relations between variables and values

from the program. The line numbers are also printed on the right for easy verification.

[Muc97], in section 4, shows us that when a set of states of the dynamic discrete

system is partitioned, transformers can be decomposed into systems of equations. This

is an upper approximation of collecting semantics of the program. In other words, these

systems of equations, or constraint systems, can be used to represent the semantic meaning

of transformers, or other program analyses, where comes the term polyhedral representation

because any set of constraints can be understood as a polyhedron ([CH78, Hal79]).

The constraint system representing the transformers to be handled at every step of

program analysis can grow up in size quite fast. The above semantic functions for trans-

formers are usually not computable in finite time, or not machine representable, except

for very simple programs. Non trivial programs containing loops and having an infinite



4. EXAMPLES OF ANALYSES 17

set of states could lead to the undecidable termination problem. Furthermore, the value of

variables is not always known at compile-time. In addition, describing the exact behavior

of any program written in any language may be impossible. Therefore in order to analyze

complex programs, calculation of transformers is sometimes approximated.

Approximations of Transformers Approximated transformers are computed for sca-

lar integer variables and represented as systems of equalities and inequalities. They are

propagated from the module entry point up to the abstract syntax tree leaves.

Since the exact transformer contains only one program state, its under-approximation,

denoted T , gives either the same result as the exact one or the least element ⊥ of State,

which is always safe but not interesting.

T : Statement −→ State −→ State

T (s)(κ) 7−→ T (s)(κ) or ⊥

So we are only interested in the over-approximation of transformers, denoted T , that

computes a set of states containing the exact state :

T : Statement −→ State −→ ℘(State)

T (s)(κ) ∈ T (s)(κ)

Theoretically, this over-approximation can be built from the definition of the exact

transformer by using approximate operators. Then an over-approximation of the inverse

transformer can be defined as :

T
−1

: Statement −→ State −→ ℘(State)

T
−1

(s)(κ) 7−→ {κ1 : κ ∈ T (s)(κ1)}

In fact, a constructive definition of the over-approximated transformers depends on the

representation choice. It is often impossible to represent every set of states S ∈ ℘(State),

but only sets that share common properties.

Transformers can be approximated by polyhedra and manipulated by libraries imple-

menting operators such as the test of emptiness of a polyhedron, the projection along

one dimension, or the convex hull of two polyhedra. When analysis becomes complex,

polyhedra of very large size appear so that existing polyhedral libraries cannot handle

them. Examples of these polyhedra are given in the experimental part, chapter 6. Since

we cannot handle this kind of problem, techniques for approximation are used ; accuracy

of analysis is then reduced.

Approximations reduce the physical size of transformers. However, transformers are

forwarded and combined, thus new transformers of larger size appear. The following para-

graph discusses possible reasons of transformer’s size accumulation, and related operations.



18 CHAPITRE 2. STATIC PROGRAM ANALYSIS OVERVIEW

Size expansion A simple example in which the transformer becomes larger is that when

we model an assignment to a scalar variable with an affine right hand size expression that

contains the same variable. Then we need to keep the initial input value and the final

output value of the variable. A new variable has to be introduced. If we denote σ the

substitution operator, to model I = I + 1 assignment, we have :

T [I = I + 1] = (I == I#init + 1) σ[I#init/I]

In another case, the transformer of a test statement if is in fact the approximate

convex hull of two polyhedra : the first represents the transformer of the then part, and

the second represents the transformer of the else part. In practice, the convex hull of two

polyhedra sometimes can be physically much larger.

The transformer for a sequence of statements is the combination of transformers of all

the elementary transformers. In this combination, variables are renamed and then merged

into the resulting transformer, whereas intermediate values are eliminated by projection.

The size of the transformer becomes important, especially when interprocedural analysis

is performed : transformer translation is needed, which adds equations that model links

and bindings among parts of programs.

4.3 Preconditions

Precondition analyses try to discover the constraints holding among variables of a

program at a control point and at entry point. For any statement, the precondition and

the postcondition provide a condition that holds just before the statement execution for

the former and just after for the latter. In these analyses, the conditions can also be

abstracted by constraint systems.

Preconditions and Postconditions Preconditions and postconditions describe the

set of program states reached just before or after the execution of statements and can be

represented as functions from the set of statements to the power-set of State :

Pre,Post : Statement −→ ℘(State)

Let s ∈ Statement and κ ∈ State :

Pre(s) = {κ : κ ∈ dom(T (s))}

Post(s) = {κ′ : κ′ = T (s)(κ), κ ∈ Pre(s)}

According to these definitions, we say that the transformer of a statement is applied to

the precondition of the statement to obtain the postcondition. This postcondition becomes

the precondition of the following statement in a sequence. So the computation of the

precondition (and the postcondition) can be based on the transformer computation whose

semantic function has already been described in section 4.2.



4. EXAMPLES OF ANALYSES 19

C P() {}

SUBROUTINE SHUF (A,N2P,N1,WORK)

DIMENSION A(N2P,1),WORK(1)

C P() {}

DO J = 1, N1, 2 0001

C P(I,II,J) {1<=J, J<=N1}

DO I = 1, N2P 0002

C P(I,II,J) {1<=I, I<=N2P, 1<=J, J<=N1}

II = I+I 0003

C P(I,II,J) {2I==II, 1<=I, I<=N2P, 1<=J, J<=N1}

WORK(II-1) = A(I,J) 0004

C P(I,II,J) {2I==II, 1<=I, I<=N2P, 1<=J, J<=N1}

WORK(II) = A(I,J+1) 0005

ENDDO

C P(I,II,J) {1<=I, N2P+1<=I, 1<=J, J<=N1}

DO I = 1, N2P 0006

C P(I,II,J) {1<=I, I<=N2P, 1<=J, J<=N1}

A(I,J) = WORK(I) 0007

ENDDO

C P(I,II,J) {1<=I, N2P+1<=I, 1<=J, J<=N1}

DO I = 1, N2P 0008

C P(I,II,J) {1<=I, I<=N2P, 1<=J, J<=N1}

A(I,J+1) = WORK(I+N2P) 0009

ENDDO

ENDDO

END

Fig. 2.6 – Example of PIPS output for Precondition calculation

Figure 2.6 shows the precondition P of the example, where the preconditions P are

printed out as comments, i.e. the lines starting with C. As for transformers, the precondi-

tion constraint systems also describe the relations between variables and values from the

program.

Approximations of Preconditions Like transformers, we are interested in the over-

approximation of preconditions. Over-approximated preconditions are computed for scalar

integer variables and represented as systems of equalities and inequalities. They are pro-

pagated from the module entry point down to the abstract syntax tree leaves.

Size expansion In order to obtain the postcondition by combining the precondition and

the transformer, variables of precondition and initial values of transformer are renamed to

intermediate variables which are then eliminated. Just like the transformers, precondition

and postcondition in test statements can be obtained by calculation of convex hull of two

polyhedra.

In a sequence of statements, we repeat applying transformers to preconditions to obtain

postconditions, then postconditions become preconditions of the next transformers. Thus

the precondition at the end can be a very complicated combination. The complexity in

computation for precondition is multiplied in interprocedural analysis.



20 CHAPITRE 2. STATIC PROGRAM ANALYSIS OVERVIEW

Since preconditions and postconditions are combined with transformers, their calcula-

tion can be even more expensive. In some cases, an operation can take up to hours before

running out of memory space.

4.4 Array Regions

Array region analyses collect information about the way array elements that are defined

and used by programs.

C <A(PHI1,PHI2)-R-MAY-{1<=PHI1, PHI1<=N2P, 1<=PHI2, PHI2<=1+N1, 1<=N1}>

C <A(PHI1,PHI2)-W-MAY-{1<=PHI1, PHI1<=N2P, 1<=PHI2, PHI2<=1+N1, 1<=N1}>

C <WORK(PHI1)-R-EXACT-{1<=PHI1, PHI1<=2N2P, 1<=N1}>

C <WORK(PHI1)-W-EXACT-{1<=PHI1, PHI1<=2N2P, 1<=N1}>

SUBROUTINE SHUF (A,N2P,N1,WORK)

DIMENSION A(N2P,1),WORK(1)

C <A(PHI1,PHI2)-R-MAY-{1<=PHI1, PHI1<=N2P, 1<=PHI2, PHI2<=1+N1, 1<=N1}>

C <A(PHI1,PHI2)-W-MAY-{1<=PHI1, PHI1<=N2P, 1<=PHI2, PHI2<=1+N1, 1<=N1}>

C <WORK(PHI1)-R-EXACT-{1<=PHI1, PHI1<=2N2P, 1<=N1}>

C <WORK(PHI1)-W-EXACT-{1<=PHI1, PHI1<=2N2P, 1<=N1}>

DO J = 1, N1, 2 0001

C <A(PHI1,PHI2)-R-EXACT-{1<=PHI1, PHI1<=N2P, J<=PHI2, PHI2<=1+J, 1<=J, J<=N1}>

C <WORK(PHI1)-W-EXACT-{1<=PHI1, PHI1<=2N2P, 1<=J, J<=N1}>

DO I = 1, N2P 0002

II = I+I 0003

C <A(PHI1,PHI2)-R-EXACT-{PHI1==I, PHI2==J, II==2I, 1<=I, I<=N2P, 1<=J, J<=N1}>

C <WORK(PHI1)-W-EXACT-{PHI1==II-1, II==2I, 1<=I, I<=N2P, 1<=J, J<=N1}>

WORK(II-1) = A(I,J) 0004

...

ENDDO

ENDDO

END

Fig. 2.7 – Regions analysis example

Many studies concerning these analyses have been realized. Béatrice Creusillet, in her

dissertation [Cre96], continued and developed more techniques that are implemented in

our tool PIPS. These techniques are based on convex array regions [TFI86].

In this section, we do not present in details these analyses. However, it is important

to point out that in practice, these analyses are even more expensive than transformers,

pre- and post-conditions analyses, as shown in figure 2.7, especially when interprocedu-

ral regions analysis is applied. Furthermore, unlike transformers and preconditions, both

under- and over-approximations are computed for array regions. It is therefore interesting

to understand how to approximate these analyses without losing too much information.

5 Conclusion

Static program analyses aim at discovering the run-time behavioral properties of a

program without actually running it. There are numerous approaches to static program



5. CONCLUSION 21

analyses.

Program flow analysis considers a program as a graph whose nodes are basic blocks and

whose edges describe how control might pass from one block to another (section 3.1). In

interprocedural analysis, the node set is the set of procedures and the edge set represents

procedure calls. Each program analysis is formalized by a set of data-flow equations.

Abstract interpretation is a general theory for calculating and combining analyses

rather than specifying them (section 3.2). The abstraction of a semantics provides an

approximation which is less precise but computable. In general, this abstraction is the

fixed point solution of an equation system that can be solved iteratively by using the

widening and narrowing operators (section 3.2.2) to speed up convergence.

As examples, we have presented three key analyses of PIPS with their brief definitions

(section 4). These examples are simplified in order to show that polyhedra, in form of

sets of constraints, are a natural way to approximate the semantic meaning of transfor-

mers, preconditions, postconditions and array regions. In these examples, we have seen

the application in static program analysis of some polyhedral operators that manipulate

polyhedral structures such as the test of emptiness of a polyhedron, the projection along

one dimension, or the convex hull of two polyhedra.

Problems that we encounter in the process of those analyses, such as magnitude pro-

blems, timeout exceptions or accuracy issues, must be considered at a lower level, by

means of sub-libraries. Examples from PIPS’s execution are given in the experimental

part (chapter 6).

In the next chapter (chapter 3), important static analyzers are introduced along with

their abstract domains, since these analyzers are based on abstract interpretation (sec-

tion 3.2). A brief presentation of available abstract domains, such as polyhedra, octagon

and interval domains, as well as their related libraries are introduced.



22 CHAPITRE 2. STATIC PROGRAM ANALYSIS OVERVIEW



Chapitre 3

Abstract domains and their application

In this chapter, we introduce important numerical domains used in static program

analysis. We talk about several related projects with their underlying domains, and discuss

in greater detail three of these projects covering most of important abstract domains.

We are mostly interested in differences and problems concerning the utilization of these

abstract domains. Important definitions of convex polyhedra, octagons are given.

Also in this chapter, existing implementations for these abstract domains are presented,

in order to show the picture of abstract domains used in actual static analyzers.

1 Numeric Domains

Verifying the correctness of complex software systems requires reasoning about numeric

quantities. In particular, an analysis technique may have to discover relationships among

values of numeric objects, such as numeric variables, numeric arrays elements, or numeric-

valued fields of heap-allocated structures [CH78].

Numeric analyses have been a research topic for several decades, and a number of nu-

meric domains to approximate the numeric states of a system have been designed over the

years. These domains exhibit varying precision/cost tradeoffs, and target different types

of numeric properties. The list of existing numeric domains includes intervals [CC76],

congruences [Mas93], difference constraints, octagons [Min04a], polyhedra [CH78], trape-

zoidal congruences [Mas92], Presburger formulae [Pug91] and Binary Decision Diagrams

(BDDs) [tea02a, BCC+03]. In this dissertation, we will not discuss all of these domains,

for example we will skip the domain of Binary Decision Diagrams, which does not form a

lattice over Rn, Qn or Zn.

In the following subsections, we describe three main domains which are widely used

in static program analysis : interval, polyhedral, octagonal domains. Each domain forms a

lattice over Rn, Qn or Zn. In this chapter, we use Dn when we do not specify which one.

1.1 Interval Domain

The simplest numerical domain is the well-known interval domain which was discovered

early and has been exploited up until now. Despite its low accuracy, it can be widely

applied by static analysis, for constant propagation, elimination of dead code, arithmetic

optimization, static range checking, etc. [VCH96, CC76]. In practice, good precision can

sometimes be achieved and computation on this domain is normally quite fast (linear in

23



24 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

space and time complexity), thus nowadays projects such as ASTRÉE [tea02a, BCC+03]

still use this domain for some fragments of their analyses.

In static analysis using interval domain, values of a variable at each point in the

program is estimated by the minimum and maximum values this variable can have. The

interval domain is then : closed (scalar) intervals, partially ordered by inclusion with both

⊥ - the smallest element (⊥ = ∅, the empty interval) and ⊤ - the largest element (⊤ =

(−∞, ..∞), where by ∞ we mean the largest machine representable scalar). Figure 3.1

presents an example of a two dimensional interval : 1/2 ≤ x ≤ 3 and 1/2 ≤ y ≤ 3.

�� ��
1/2 < y < 3

1/2 < x < 3

��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������������������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

0

y

x31

3

1

Fig. 3.1 – Example of an interval

Almost every data type fits into this paradigm ; chars, shorts, int, longs, floats and

doubles, as discrete approximations to real numbers, structs as aggregate scalars, and even

pointers as unsigned integers. Arrays are approximated as the merge of their elements. If

[a, b] and [c, d] are (inclusive, closed) intervals, one can consider [a, b] ≦ [c, d] if a ≥ c and

b ≤ d. The join operator of two intervals [a, b] and [c, d] is then the interval which includes

them both : [min(a, c),max(b, d], and the meet’s [max(a, c),min(b, d]. For these types of

data, every element is finitely represented, and there exist least upper bounds for arbitrary

sets of elements. The existence of fixed points for monotonic functions, and closure under

cross-product are then guaranteed.

Even that using the interval domain is quite fast, in some cases very large memory space

is required if one does not apply approximation. For example, it is said in [VCH96] that

sometimes semantic functions can have range in monotonic chains of very long length,

e.g., [0..0] ≦ [0..1] ≦ . . . ≦ [−∞..∞], where ∞ is typically 231. In the worst case, the

monotonicity only ensures convergence after 232 steps per variable.

Another example is to consider a while loop such as x = 0;while(true)x = x + 1. The

interval of variation of variable x is [1,+∞). This make the convergence nearly impossible.

The widening technique described in chapter 2, section 3.2.2 can be used to accelerate the

convergence.



1. NUMERIC DOMAINS 25

1.2 Polyhedral Domain

1.2.1 Introduction

The domain of convex polyhedra is extensively used in some important projects aiming

high precision analyses, for instance PIPS [IJT90, IJT91a] and NBAC [tea02d, Jea00]. We

suggest the book “Theory of linear and integer Programming”, by Alexander Schrijver

[Sch86], for the mathematical background lecture on convex polyhedra. Application of

convex polyhedra is precise but come with a huge memory cost : exponential in the number

of variables. Examples of techniques developed using this domain can be found in Nicolas

Halbwachs’s thesis [Hal79].

In this section, we introduce basic definitions and important work concerning polyhe-

dra, which makes it possible for us to represent and then manipulate them in computer

memory space. The fundamental theorem on polyhedra is due to Farkas, Minkowski and

Weyl.

THEOREM 1.1 (The fundamental theorem of linear inequalities) Let a1, . . . am, b

be vectors in n-dimensional space. Then :

– either b is a nonnegative linear combination of linearly independent vectors from

a1, . . . am ;

– or there exists a hyper-plane {x|cx = 0}, containing t−1 linearly independent vectors

from a1, . . . am such that cb < 0 and ca1, . . . , cam ≥ 0, where t := rank{a1, . . . am, b}

From this theorem, we derive some important results such as the decomposition theo-

rem for polyhedra, the duality theorem of linear programming (see [Sch86] page 85).

DEFINITION 1.1 The convex hull of a nonempty set S of n points xi in Euclidean

space is the set :

convex.hull(S) = {
i=1
∑

i=n

λixi|xi ∈ S,∀iλi ≥ 0,

i=1
∑

i=n

λi = 1}

It is finitely generated by the vectors x1, . . . , xn, thus also denoted as convex.hull{x1, . . . , xn}.

A nonempty set C of points in Euclidean space is called a convex cone if λx + µy ∈ C

whenever x, y ∈ C and λ, µ ≥ 0. A cone is polyhedral if C = {x|Ax ≤ 0} for some matrix

A, i.e. if C is the intersection of finitely many linear half-spaces. Here a linear half-space is

a set of the form {x|ax ≤ 0} for some nonzero row vector a. The cone C finitely generated

by the vectors x1, . . . , xm is the set :

cone{x1, . . . , xm} := {λ1x1 + . . . + λmxm|λ1, . . . , λm ≥ 0}

The characteristic cone or recession cone of P is the polyhedral cone :

char.cone P := {y|x + y ∈ P ∀x ∈ P} = {y|Ay ≤ 0}



26 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

Thus, the linearity space of P is the linear space :

linear.space P := char.cone P ∩ −char.cone P = {y|Ay = 0}

DEFINITION 1.2 A convex polyhedron consists of points in Dn defined as :

P = {x ∈ Dn : Ax ≤ b}

where A is a matrix of Dm ×Dn and b a vector in Dm.

Then the corresponding system of constraints or constraint system is :

Ax ≤ b (3.1)

where A is a matrix of m × n dimension containing the coefficients, b is a vector

of m components containing m constants and x is a vector of n unknown variables :

x = (x1, . . . , xn). Each line of the system represents a constraint. The base of P is the

basis {e1, . . . , en} of Dn.

The system of generators or generating system of P consists of three sets : vertices

V = {v1, . . . , vα}, rays R = {r1, . . . , rβ}, and lines L = {l1, . . . , lγ}, where :

1. A point of P is a vertex (or extremal point) of P if it is not a linear combination of

other points of P .

A point u is a linear combination of p points ui 6= u, i = [1, p], if ∃λi, i = [1, p], such

that u =
∑p

i=1 λiui.

2. A ray of a polyhedron P is a vector r ∈ Dn that belongs to P :

∀x ∈ P, ∀µ ∈ D, x + µr ∈ P

An extremal ray of P is a ray of P that is not a linear combination of other rays of

P .

3. A line of P is a vector l ∈ Dn such that l and −l are rays of P :

∀x ∈ P, ∀ν ∈ D, x + νl ∈ P

The polyhedron P with vertices vi, rays ri and lines li is then defined as (see [Sch86],

page 106) :























x :

∣

∣

∣

∣

∣

∣

∣

∃λ1, . . . , λα ∈ [0, 1] :
∑α

i=1 λi = 1

∃µ1, . . . , µβ ∈ D+

∃ν1, . . . , νγ ∈ D

x =
∑α

i=1 λivi +
∑β

i=1 µiri +
∑γ

i=1 νili























(3.2)



1. NUMERIC DOMAINS 27

These two representations are dual. We can apply algorithms to change from one to

another.

In fact, a polyhedron P can also be considered as the intersection of hyper-planes

(representing the equalities) and half-spaces (representing the inequalities), defined by

constraints.

DEFINITION 1.3 For each vector a ∈ Dn and scalar b ∈ R, where a 6= 0, and for each

relation symbol ⊲⊳∈ {=,≥, >}, the linear constraint, denoted ax ⊲⊳ b, defines :

– an affine hyper-plane if it is an equality constraint, i.e., if ⊲⊳∈ {=} ;

– a topologically closed affine half-space if it is a non-strict inequality constraint, i.e.,

if ⊲⊳∈ {≥} ;

– a topologically open affine half-space if it is a strict inequality constraint, i.e., if

⊲⊳∈ {>}.











































x ≤ 3

y ≤ 3

−x + y ≤ 1

−3x− y ≤ −3

−x− 3y ≤ −3

−x + y ≤ −1
��

��

��

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

0

y

1 x3

x + 3y = 3

x = 3

3x + y = 3 x − y = 1

−x + y = 1

3

1

y = 3

Fig. 3.2 – Example of a polyhedron

Figure 3.2 presents an example of a two dimensional polyhedron, represented by the

constraint system on the left.

We note that each hyper-plane ax = b can be defined as the intersection of the two

closed affine half-spaces ax ≥ b and −ax ≥ −b. Also, when a = 0, the constraint 0x ⊲⊳ b is

either a tautology (i.e., always true) or inconsistent (i.e., always false), so that it defines

either the whole vector space Dn called universe polyhedron or the empty polyhedron ∅.

The understanding of polyhedra advances one step further with this important theo-

rem :

THEOREM 1.2 (Decomposition of polyhedra) Any polyhedron P has an unique

minimal representation as :



28 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

P = convex.hull{v1, . . . , vα}+ cone{r1, . . . , rβ}+ linear.space P

where the set of vertices v1, . . . vα and rays r1, . . . , rβ are orthogonal to the linearity

space of P , and where the ri,∀i = [1, β], are unique up to multiplication by a positive

scalar (see [Sch86] page 106).

More information related to this theorem and the decomposition of polyhedra can be

found in [Sch86] from page 85 to page 111. A convex polyhedron P has two representa-

tions, namely H-representation (H for half-space, also known as constraint system) and

V-representation (V for vertex, also known as generating system).

DEFINITION 1.4 We present here some other definitions needed in the following chap-

ters :

– A bounded n-dimensional polyhedron is called a n-polytope.

– A polyhedron P is a closed convex polyhedron if and only if either P can be expressed

as the intersection of a finite number of closed affine half-spaces of Dn or n = 0 and

P = ∅.

– The topological closure of a polyhedron P is the smallest closed set that contains

P . A vector c ∈ Dn is called a closure point of P if it is a point of the topological

closure of P .

– A hyper-plane h of Dn is supporting the polyhedron P if one of the closed half-spaces

of h contains P .

– A subset of the polyhedron P is called a face of P if it is either ∅, P itself or the

intersection of P with a supporting hyper-plane.

– The faces of dimension 0, 1, n−2, and n−1 are called the vertices, edges, ridges and

facets respectively.

– A polyhedron P is degenerate in n dimensions if at least one of its vertices lies on

n + 1 or more facets.

From now on, we might omit the words convex and affine.

1.2.2 Convex Polyhedron Operators

In a polyhedral library, usually both H-representation and V-representation of polyhe-

dra are used. That is why sometimes we can have the same operator with different name,

such as emptiness or feasibility test, depending on how we visualize the object.

A polyhedron defined by H-representation or V-representation, in a geometric view can

be empty or not. The emptiness test using the H-representation, is in fact the test to see if

all the constraints in the system are satisfied at the same time, or not. That said, with this

very same polyhedron, sometimes can be purely regarded as a constraint system, so the

emptiness test operator is considered as the feasibility test on the set of the constraints.

This raises a compatibility problem among existing libraries.



1. NUMERIC DOMAINS 29

It is important to note that in this section, we do not aim to define mathematically

the operators, but we use constraints system point of view to define them 1. For instance,

we define the term feasibility instead of emptiness test, knowing that they should be

interchangeable in the right context.

The Emptiness Test or the Constraints Feasibility Test - A constraint system

over Dn is said to be feasible when it contains at least one solution in Dn. On the contrary,

if a contradiction between its constraints is detected, it is said to be infeasible 2.

The Normalization - With both H-representation and H-representation, the same po-

lyhedron can have several variants representing it in the space Dn. The normalization

performs transformation to have a unique representation of the polyhedron.

The Equality and Inclusion Test - A constraint system P1 over Dn is said to include

another constraint system P2 over Dn when it contains all solutions of P2 in Dn. P1 and

P2 are said to be equal when P1 includes P2 and vice versa.

The Elimination of a Variable - The projection performs the elimination of a variable.

Using constraint systems, it computes the convex hull of the projections of all the rational

points that belong to the initial constraint system. The variable is eliminated, even if the

projection is not exact, i.e., it introduces new integer points that do not belong to the

projections of the initial integer points. It is then a rational/integer algorithm.

The Intersection - The intersection of two constraint systems is the constraint system

containing the union of the constraints. It is in fact the intersection of all their hyper-

planes (representing the equalities) and half-spaces (representing the inequalities), because

a polyhedron is a finite intersection of hyper-planes and half-spaces.

The Union and Convex Hull - The union of two constraint systems is defined by the

union of the two corresponding polyhedra. The union of two polyhedra is not necessarily

a convex polyhedron. Therefore, the convex hull operator is used instead. It may contain

points that do not belong to the original polyhedra.

The Widening - The widening operators in abstract interpretation provide an upper

approximation of the least fixpoint. They are used to speed up the analyses and ensure

their convergence. We do not try to define here the widening method in general, given

1While mathematic definition for these operators is important, we are interested here in revealing the

incompatibility issue and at the same time, we aim at set operators with a pragmatic approach, as will be

discussed in chapter 4
2In practice, where we cannot prove that the system is feasible or infeasible, for example when a memory

overflow exception occurs, we say that the system is non practically computable.



30 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

several possible widening operators. For example, the standard widening operator of two

polyhedra P1 and P2, denoted P1▽P2, introduced in [Hal79], is the polyhedron of all the

inequalities in P1 that are satisfied by P2. Another example of a widening operator on

polyhedral domain is presented in [BHRZ03]. This widening operator of two polyhedra P1

and P2, denoted P1▽P2, is the polyhedron defined by the constraints of P1 that are also

satisfied by P2, plus the constraints of P2 that have an equivalent constraint in P1. To see

how these widending operators work, please refer to these papers for more detail.

1.3 Octagonal Domain

1.3.1 Introduction

The octagonal domain proposed by Antoine Miné is a new numerical abstract domain

for static analysis by abstract interpretation [Min04a, Min01b, Min01a, Min04b, Min02]. It

extends a former numerical abstract domain based on Difference-Bound Matrices (DBMs)

and allows representation of invariants of the form (±x ± y ≤ c), where x and y are

program variables and c is a real constant.

This abstract domain proposes a representation based on DBMs of O(n2) memory

cost, where n is the number of variables, and graph-based algorithms manipulating its

objects, of O(n3) time cost in most of cases. The material in this section is from the paper

[Min01b].

DEFINITION 1.5 Let V = {v0, . . . vN−1} be a finite set of variables with value in a

numerical set D (which can be Z,Q or R). We extend D by adding the +∞ element and

standard ≤,=,+, min and max to D.

A potential constraint over V is a constraint of the form (vi− vj ≤ c), where vi, vj ∈ V

and c ∈ D. Let C be a set of potential constraints over V . Without lost of generality,

C can be represented uniquely by a N × N matrix m, called a Difference-Bound Matrix

(DBM) with elements in D :

mij :=

{

c if (vj − vi ≤ c) ∈ C

+∞ otherwise
(3.3)

A potential graph of a DBM m is the weighted graph G(m) = {V,A,w}, defined by :

A ⊆ V × V, w ∈ A 7→ D,

A := {(vi, vj)|mij < +∞} w(vi, vj) := mij.

The ≤ order on D induces a point-wise partial order � on the set of DBMs :

m � n↔ ∀i, j mij ≤ nij

Given a DBM m, the subset of V 7→ D verifying the constraints ∀i, j, vj − vi ≤ mij is

denoted D(m) and call the V − domain of m.



1. NUMERIC DOMAINS 31

constraint over V + constraint over V

vi − vj ≤ c(i 6= j) v+
i − v+

j ≤ c, v−j − v−i ≤ c

vi + vj ≤ c(i 6= j) v+
i − v−j ≤ c, v+

j − v−i ≤ c

−vi − vj ≤ c(i 6= j) v−j − v+
i ≤ c, v−i − v+

j ≤ c

vi ≤ c v+
i − v−i ≤ 2c

−vi ≤ −c v−i − v+
i ≤ −2c

Tab. 3.1 – Translation between extended constraints over V + and potential constraints

over V

D(m) := {(s0, . . . , sN−1) ∈ DN |∀i, j, sj − si ≤ mij}

DEFINITION 1.6 We suppose that V + = {v0, . . . , vN−1} is a finite set of variables, and

consider V = {v+
0 , v−0 , . . . , v+

N−1, v
−
N−1} and DBMs over V . Given a potential constraint,

a positive variable v+
i will be interpreted as +vi, a negative variable v−i as −vi. Thus,

any set of constraints of the form (±vi ± vj ≤ c) can be represented by a DBM over V ,

following the translation defined by table 3.1.

We define the operator on indices of variables in V by : i := i ⊕ 1, where ⊕ is the

bit-wise exclusive or operator. So that, if i corresponds to v+
j , then i corresponds to v−j

and if i corresponds to v−j , then i corresponds to v+
j .

A DBM m+ over V representing a set of extended constraints over V + is called coherent

if and only if ∀i, j,m+
ij = m+

ji
.

The V + − domain of the DBM m+ is denoted D+(m+), defined by :

D+(m+) :=
{

(s0, . . . , sN−1) ∈ DN |(s0,−s0, . . . , sN−1,−sN−1) ∈ D(m+)
}

(3.4)

The V − domain of a DBM m is not empty if its graph corresponding G(m) has no

strictly negative cycle. Given a DBM m of which the V −domain is not empty, its shortest

path closure m∗ is defined by :

{

m∗ii := 0

m∗ij := min
(i=i1,i2,...,iM=j)
1≤M

∑M−1
k=1 mikik+1 if i 6= j

(3.5)

A DBM m+ is strongly closed if and only if :

– m+ is coherent : ∀i, j,m+
ij = m+

ij

– m+ is closed : ∀i,m+
ii = 0 and ∀i, j, k,m+

ij ≤ m+
ik + m+

kj

– ∀i, j,m+
ij ≤ (m+

ii
+ m+

jj
)/2

The notation of strong closure is needed for the operations of the octagonal domain.

From a DBM m+, we can find its closed form (m+)• in O(n3) in time, by the strong closure

operator, denoted •.



32 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION











































x ≤ 3

y ≤ 3

−x + y ≤ 1

−x ≤ −1/2

−y ≤ −1/2

−x + y ≤ −1
�
�
�
�

��

��

�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

��������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0

y

x3

x − y = 1

−x + y = 1

3
y = 3

1

1 x = 3

y = 1/2

x = 1/2

Fig. 3.3 – Example of an octagon

Figure 3.3 presents an example of a two dimensional octagon, represented by the

constraint system of the left.

1.3.2 Octagonal Operators

In this section, we briefly present some important operators. Greater details on these

operators and others can be found in Octagon library’s documentation, available on the

web [Min05, Min01b].

The Emptiness Test - The V +−domain D+(m+) can be empty, based on the fact that

the graph G(m) corresponding has a cycle with a strictly negative weight. The Bellman-

Ford algorithm (O(N3) in time) is used in this case.

The Normalization - This algorithm modifies the Floyd-Warshall shortest path algo-

rithm of O(N3) time to find the shortest path closure of a DBM, which is proved to be a

normal form.

The Equality and Inclusion Test - Given two DBM m+ and n+, we need to compare

their V +− domains. If none of their V +− domains are empty, otherwise it is obvious, we

have :

– D+(m+) ⊆ D+(n+)↔ (m+)• � (n+)•

– D+(m+) = D+(n+)↔ (m+)• = (n+)•

The Projection - The interval in which a variable vi ranges is removed : {t|∃(s0, . . . sN−1) ∈

D+(m+) such that si = t} = [−(m+)•2i,2i+1/2, (m
+)•2i+1,2i/2]



1. NUMERIC DOMAINS 33

The Union and Intersection - The max and min operators on I lead to the point-wise

least upper bound ∨ and greatest lower bound ∧ (with respect to the � order) operators

on DBMs :

[m+ ∨ n+]ij := max(m+
ij , n

+
ij)

[m+ ∧ n+]ij := min(m+
ij, n

+
ij)

In order to keep the octagonal representation, the union of octagons has an upper

approximation by using the strong closure algorithm. We have :

– D+(m+ ∨ n+) ⊇ D+(m+) ∪D+(n+)

– D+(m+ ∧ n+) = D+(m+) ∩D+(n+)

The Widening - The following definition is a widening operator :

[m+▽ n+]ij :=

{

m+
ij if (n+

ij ≤ m+
ij)

+∞ otherwise
(3.6)

THEOREM 1.3 Given the definition (3.6) above, we have :

– D+(m+▽ n+) ⊇ D+(m+) ∪D+(n+)

– For all chains (n+
i )i∈N , the chain defined by induction :

m+
i :=

{

n+
0
•

if (i = 0)

m+
i−1▽ n+

i
•

otherwise

is increasing, ultimately stationary and with a limit greater than the least fixed point

of n+
i
•
i∈N .

This theorem shows that definition 3.6 satisfies the two conditions of a widening ope-

rator (see chapter 2, section 3.2.2 for widening operators).

The Guard and Assignment - They are designed to model tests and assignments

in program analysis. Given a DBM m+ that represents a set of a possible value of the

variables V + at a program point, an arithmetic comparison g, a variable vi ∈ V +, and an

arithmetic expression e, the set of possible values of V + if the test g succeeds and after

the assignment vi ← e(v0, . . . , vN−1) are denoted by m+
(g) and m+

(vi←e).

PROPERTY 1.1 Since the exact representation of the resulting set is in general impos-

sible, an upper approximation is computed :

– D+(m+
(g)) ⊇ {s ∈ D+(m+)|s satisfies g}

– D+(m+
(vi←e)) ⊇ {s[si ← e(s)]|s ∈ D+(m+)}

where s[si ← x] means s with its ith component changed into x.



34 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

1.4 Presburger formulae - The OMEGA project

1.4.1 Introduction

The OMEGA project has two major components. One component is the OMEGA test,

a system for manipulating sets of affine constraints over integer variables, e.g. decision

test for the existence of integer solutions to affine constraints. The other component is a

framework for analyzing and transforming programs using the OMEGA test (PETIT and

UNIFORM tools) [tea02e, Pug91].

The OMEGA test forms an abstract domain by implementing a system for simplifying

and verifying Presburger formulae. Presburger formulae use affine constraints, the usual

logical connectives =, <,≤, >,≥,¬,∧,∨, =⇒ , and existential ∃ and universal ∀ quan-

tifiers. Unlike the convex polyhedra model which sometimes requires approximation to

remain closed, i.e. convex, the Presburger formulae model is exact.

In order to describe some important operators later on, instead of complete definitions

(which can be found in OMEGA’s documentation [tea02e, Pug91]), we present here two

examples of OMEGA’s structures, a set S and a relation R :

S := {[x] | (0 ≤ x ≤ 100 ∧ ∃y such that (2n ≤ y ≤ x ∧ y is odd )) ∨ x = 17}

where x, y ∈ R, for some n ∈ N , and :

R := {[i, j] −→ [i′, j′] | 1 ≤ i ≤ i′ ≤ n ∧ ¬(F (i) = F (i′)) ∧ 1 ≤ j, j′ ≤ m}

where i, j, i′, j′ ∈ R, a function F : R −→ R , for some n,m ∈ N . We notice that

we can have n and m as parameters in these formulae. We also notice that since both

structures, set and relation, are standard Presburger formulae, we consider them without

difference in this dissertation.

Figure 3.4 presents another example of a Presburger formula that represents the logical

OR (denoted ∨) of three polyhedra in two dimensions. With the Omega test we can find

8 integer points.

The OMEGA test cannot simplify all Presburger formulae efficiently : there is a 22n

non-deterministic lower bound and a 222
n

deterministic upper bound on the time required

to verify Presburger formulae.

The domain of Presburger formulae can sometimes provide more useful information

for static analysis than polyhedra. In [Pug91], it is said that with dependence analysis

using Presburger formulae, one can construct a set of constraints that describes all possible

dependency distance vectors which can be used directly in deciding the validity of program

transformation, which gives more power than using polyhedra, structured as a decision

problem with only answers yes or no.

However, because of its complexity even higher than polyhedral case, when the com-

putation becomes impossible, we will lose all the information. Therefore, large scale ap-

plications should use this abstract domain only in complement with other domains.



1. NUMERIC DOMAINS 35











y ≤ 3

−3x− y ≤ −3

x− y ≤ −1

∨











−3x− y ≤ −3

x + 3y ≤ 3

x− y ≤ 1

∨











−x ≤ −3

x− y ≤ 1

y ≤ 3

�
�
�
�

��

��

�
�
�
�

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

0

y

1 x3

x + 3y = 3

x = 3

−x + y = 1

3

1 3x + y = 3

y = 3

x − y = 1

Fig. 3.4 – Example of a Presburger

formula

1.4.2 Presburger formulae operators

The Satisfiability Test checks if the Presburger formula (a set S or a relation R) is

satisfiable or not.

The Simplification operator simplifies the Presburger formula to its simplified form

(see OMEGA’s document for more details [tea02e, Pug91]).

The Projection operator of a set (or a relation) A := {x|f(x)} along a variable v is a

Presburger formula A′ := {x|∃z such that f ′(x)}, where f ′ is the same as f except that

all occurrences of variable v are replaced by z.

The Intersection operator of two sets (or two relations) of the same dimensions A :=

{x | P (x)} and B := {y | Q(y)} gives a Presburger formula A ∩B := {z | P (z) ∧Q(z)}.

The Difference operator of two sets (or two relations) of the same dimensions A :=

{x | P (x)} and B := {y | Q(y)} gives a Presburger formula A \B := {z | P (z) ∧ ¬Q(z)}.



36 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

The Union operator of two sets (or two relations) of the same dimensions A := {x | P (x)}

and B := {y | Q(y)} gives a Presburger formula A ∪B := {z | P (z) ∨Q(z)}.

The Convex Hull operator of a set A is a Presburger formula representing the smallest

set of inequalities whose intersection contains A.

In fact the computation of the convex hull operator in OMEGA is also approximated

since it is an expensive operation. For more information, readers are referred to [Pug91].

1.5 List of Polyhedra - Arnauld Leservot’s work

Arnauld Leservot, in his dissertation, has shown the utilization of the domain of lists of

polyhedra [Les96]. Starting from the fact that all Presburger formulae can be represented

in Disjunctive Normal Form (DNF) or Conjunctive Normal Form (CNF), an element of

the domain can have two representations based on convex polyhedra.

Given k convex polyhedra P i, i = [1, k], in DNF, we have a disjunction of these

polyhedra :

D(x) = {x ∈ Dn : ∨k
i=1P

i(x)}

In CNF, we then have a conjunction of a convex polyhedron and the negation of others :

C(x) = {x ∈ Dn : P 0(x) ∧k
i=1 ¬P i(x)}

where P 0 is the positive polyhedron of the element C.

These representations can be referred as a list of convex polyhedra. Figure 3.5 presents

an example of the two representations.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

Fig. 3.5 – Example : DNF (left) and its CNF(right)

The set of lists of polyhedra, with its operations like union, difference, inclusion and

equality between two elements, the emptiness test as well as the conversion from one

form to another, form an abstract domain, which has been implemented in PIPS for

the calculation of Array Data Flow Graph. Given that the polyhedral operations are



2. PROJECTS AND THEIR UNDERLYING DOMAINS 37

computationally expensive themselves already, operations on set of lists of polyhedra are

even more expensive 3.

1.6 Other approaches

General abstract domains like intervals, octagons or polyhedra cannot offer enough

precision in all cases, particularly in non-linear cases. However, general purpose non-linear

abstract domains would probably be extremely costly. For example, most algorithms from

semi-algebraic geometry have costs in the form of towers of exponentials.

Another approach which has been explored recently is more domain-aware and restricts

its preciseness ambition to specific constructs such as digital filtering in [Fer05b, Fer04,

Fer05a].

if (C) {

Y := i;

X := j;

} else {

X’ := aX - bY + t;

Y := X;

X := X’;

}

Fig. 3.6 – Ellipsoid domain : Example of C code

Let us consider the C code in figure 3.6, where a and b are constants, i, j, t are expres-

sions, C is a boolean expression, X,Y,X ′ are program variables. If we use octagonal or

interval domain, we have an imprecise result that X and Y may take any value.

If t is bounded : |t| ≤ tM , and 0 < b, a2−4b < 0 and k ≥
(

tM
1−
√

b

)2
, then the constraint

X2 − aXY + bY 2 ≤ k is preserved by the affine transformation X ′ := aX − bY + t. Thus

this type of formulae forms a new abstract domain (called ellipsoid domain) that gives a

more precise result. This approach has proved to be precise and efficient [BCC+03].

Figure 3.7 gives an example which compares the four domains, where it shows that the

Presburger formulae domain is even more precise than polyhedral domain : disjunctions

of polyhedra are representable. The reader is also referred to [tea02a, BCC+03] for further

details about the domain of Binary Decision Diagrams which is used for example in the

project ASTRÉE.

2 Projects and Their Underlying Domains

In this section, we provide a short description of three important static analyzers using

most of abstract domains available nowadays. These projects share many features, among

3Please notice here that we only compare the computational aspect of those abstract domain libraries.

We consider the aspect of integer solutions or not with our benchmarking results in chapter 6



38 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

�
�
�
�

��

��

�
�
�
���������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������������������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������������������������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

0

y

x3

x − y = 1

−x + y = 1

3
y = 3

1

1 x = 3

y = 1/2

x = 1/2

�
�
�
�

��

��

�
�
�
��������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

0

y

1 x3

x + 3y = 3

x = 3

3x + y = 3 x − y = 1

−x + y = 1

3

1

y = 3

��

��

��

������������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

��
��
��

��
��
��

0

y

1 x3

x + 3y = 3

x = 3

−x + y = 1

3

1 3x + y = 3

y = 3

x − y = 1x

x
x

x x

x

x

x
x

x x

x

x

x
x

x x

x

������
1/2 < y < 3

����
1/2 < x < 3

��

��

��

��

����������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

��

��������������������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

0

y

x31

3

1

x

x
x

x x

x

Interval domain Polyhedral domain

Octagonal domain Presburger formulas domain

Fig. 3.7 – Representations of a finite set of points

which the capacity to deal with real-life applications. Large scale applications often lead

to problems of robustness and effectiveness in currently used static analyses. They all

participate to the APRON project [APR05] in order to deal with these problems. Some

related projects are also briefly presented.

2.1 ASTRÉE Project

ASTRÉE [tea02a, BCC+03] is a static program analyzer based on abstract interpre-

tation [CC79] for a class of C programs. These are programs used in real-time critical

industrial applications of 100000 to 400000 lines of code. Analyses can take several hours

of execution time. A tradeoff between precision and efficiency in static program analyses

is then unavoidable.

In abstract interpretation, this tradeoff can be tuned in two main categories : the

widening strategy and the symbolic representation of the sets of values. The latter can

be split into a number of abstract domains ; each domain is specialized on certain shapes

of sets of values, in order to obtain the most appropriate approximation/precision for the

analyses.

The authors of ASTRÉE have proposed and experimented successfully several new

abstract domains. Among those domains used by ASTRÉE, we are interested in the in-



2. PROJECTS AND THEIR UNDERLYING DOMAINS 39

terval and octagonal domain. Other abstract domains used in this project such as digital

filters (or ellipsoid domains, see [Fer05b, Fer04, Fer05a]) are very specific.

The design of ASTRÉE is parametric, which means that the rate between the cost

and the precision of its analyses can be adapted to the needs of users. The analyzer is

modular, which means for each domain we have independent libraries. Different modules

of ASTRÉE, based on different abstract domains, can be assembled and parameterized

to build application-specific analyzers. This also leads to a complex utilization, i.e. users

need to “know” the problem, requiring expertise.

The implementation of the project amounts to about 60000 lines of OCaml and 4000

lines C code (the Octagon library).

2.1.1 About the octagon domain

Considered costly, the polyhedral domain is not implemented in ASTRÉE. Instead,

the octagonal domain [Min01b, Min01a, Min02] is devised and implemented by Antoine

Miné. Like the polyhedral domain, this new abstract domain is a general purpose abstract

domain. It presents a good compromise between complexity and precision, between the

interval domain, which is not expressive enough for complex analyses, and the polyhedral

domain, which shows problems in time and magnitude complexity.

The octagonal domain is more expressive than the interval domain ; for example, it

can represent the relation x = y which is in fact a line that ranges [−∞,∞]. It is however

not as expressive as the polyhedral domain, for example with the relation x− 2y = 0 (see

also figure 3.7, page 38 for another example).

Though devised to replace the polyhedral domain, several incompatibilities between

these two domains exist, even at the interface level. We find out that it is not only difficult

to use existing implementations of the polyhedral domain in ASTRÉE if we want to, but

also it is much more difficult to exploit this octagonal domain in other analyzers that

still use the polyhedral domain without major changes to these analyzers. We will try to

address this problem in chapter 4, knowing that in the goal of expanding the utilization

of this new domain, some adaptation needs to take place.

2.2 NBAC Project

This tool analyses synchronous and deterministic reactive systems containing combi-

nations of Boolean and numerical variables and continuously interacting with an external

environment [tea02d, Jea00]. Its input format is inspired by the low-level semantics of the

LUSTRE data flow synchronous language [tea02c].

The kind of analyses performed by NBAC as the time of this writing are :

– Reachability analysis from a set of initial states, which computes invariants satisfied

by the system.



40 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

– Co-reachability analysis from a set of final states, which computes the sets of states

that may lead to a given final state.

– Combination of the above analyses, which allows to either verify invariance or more

generally safety properties or to slice a system, i.e., to compute sets of states (or

their approximations) belonging to executions from an initial state to a final state.

NBAC has been developed mainly with the Caml language [Cam95], and it uses the

Colorado University Decision Diagram library CUDD [Som93], and the convex polyhedra

library New POLKA [Jea02b, Jea00]. The tool is founded on the theory of abstract inter-

pretation (see chapter 2, section 3.2). Sets of states are represented in an approximate way

by abstract values belonging to an abstract domain, and computations are performed on

this abstract domain. This leads to conservative results : if a state is shown unreachable

(or not co-reachable), then it is for sure.

The abstract domain used is the direct product of the Boolean lattice and the convex

polyhedra lattice. A set of states is represented by the conjunction of a Binary Decision

Diagram(or a BDD, see [Weg00]) for the Boolean variables of the program, and a convex

polyhedron for its numerical variables.

It is considered by the authors that using a single abstract value would lead to imprecise

results. As such, the tool works with an explicit control structure, defined by a partitioning

of the state space. This allows to represent a global set of states as a finite union of abstract

values, instead of a single abstract value. This very general notion of control structure

permits precisely tuning of the tradeoff between precision and efficiency in the analyses,

and one can do it dynamically according to the needs of the analysis in question.

These dynamical refinements during the analysis which allow to improve the accuracy

of the results of this tool is of our very high interest.

To handle the BDDs, an extension to the library CUDD, called CUDDAUX, is de-

veloped. This library offers additional features and new functions are implemented (see

[Som93, Jea02a] for the list of functions). The New POLKA polyhedral library is mainly

based on the IRISA library POLYLIB [Loe02, Wil93] and the old library used in the

POLKA tool inside the SYNCHRONE team of the VERIMAG laboratory [tea02c].

In order to overcome problems linked to the high complexity of polyhedral compu-

tations, an adaptation to the octagonal domain is attempted. A very simple interface

between the polyhedral engine, New POLKA, and the octagonal one has been establi-

shed. However, this interface is not sufficient in many areas : genericity, completeness,

compatibility with other libraries, etc.

The implementation of NBAC is about 10000 lines of Objective Caml, as well as 750

lines of Objective Caml plus 2000 lines of C code for interfacing the libraries manipulating

BDDs and polyhedra.



2. PROJECTS AND THEIR UNDERLYING DOMAINS 41

2.3 PIPS Project

As we will see in chapter 6, the work presented in this dissertation contains a large

part of experiments, where the use of the tool PIPS is fundamental. In this section, we

present the overview of the PIPS project [IJT90, IJT91a].

The goal of the PIPS project is to develop a free, open and extensible workbench

for automatically analyzing and transforming scientific and signal processing applications.

The workbench includes program compilation, reverse-engineering, program verification,

source-to-source program optimization and parallelization. Its interprocedural analyses

help with program understanding and with checking legality and impact of automatic

program transformations. These transformations are used to reduce the execution cost

and latency.

PIPS takes as input Fortran 77 codes and emphasizes interprocedural techniques for

static program analyses. It automatically computes affine preconditions for integer scalar

variables and several kinds of polyhedral array regions (READ, WRITE, IN and OUT)

which are used for array and partial array interprocedural privatization as well as for inter-

procedural parallelization (see [Cre96] for analyses of array regions). Program verification

techniques such array bound checking, alias analysis and uninitialized variables checking

are also implemented [Ngu02]. For examples of analyses in PIPS, readers are referred to

chapter 2, section 4, page 12.

PIPS can be used as a reverse-engineering tool. Region analyses provide useful in-

formation about procedure effects, whereas partial evaluation and dead-code elimination

based on preconditions reduce code size. Cloning has also been used successfully to split a

routine implementing several functionalities into a set of routines, where each routine pro-

vides only one functionality. Automatic cleaning of declarations is useful when commons

are over-declared thru include statements.

Static analyses compute call graphs, memory effects, use-def chains, dependence graphs,

interprocedural checks, transformers, preconditions, continuation conditions, complexity

estimation, reduction detection, array regions and aliases. Several parallelization algo-

rithms are available, as well as automatic code distribution.

Program transformations include loop distribution, scalar and array privatization, ato-

mization, loop unrolling, strip-mining, loop interchange, partial evaluation, dead-code eli-

mination, use-def elimination, control restructuring, loop normalization, declaration clea-

ning, cloning, forward substitution and expression optimizations. Even though inputs for

PIPS actually are only FORTRAN programs, a version for C program is under develop-

ment, which can re-use developed techniques.

Having around 100000 lines of C code, PIPS is built on top of two other libraries. The

first one is Newgen which provides basic manipulation functions for persistent supported

data structures. All PIPS data-types are based on Newgen.

The second tool is the LINEAR C3 library which handles vectors, matrices, linear



42 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

constraints and structures based on these such as polyhedra. The library is extensively used

since in PIPS, analyses such as dependence testing, precondition and region computation

[IJT91a, Cre96], and transformations such as loop interchange and tiling [Bou02] are based

on linear algebra techniques.

The computation within the C3 library has shown to be very expensive when it deals

with large scale industrial applications. Our experiments (chapter 6) have shown that it is

not because the implementation in the library is not efficient enough with respect to other

implementations, but because of the exponential complexity of the polyhedral domain and

its variant, the domain of lists of polyhedra (section 1.5, page 36).

Polyhedral domain-based analyses in PIPS require great capacity of computation. Li-

mits in time and memory space have resulted in precision loss in analyses. In the worst

case they can block analyses. In order to refine the tradeoff between precision lost and the

efficiency of execution, other abstract domains have to be adopted.

The octagonal domain can be seen as a good compromise, which stands in between

the interval domain and the polyhedral domain. Nonetheless, in many cases, the precision

provided by this domain is not good enough. We are sometimes interested in a even higher

precision with the Presburger formulae (section 1.4, page 34), or the list of polyhedra

(section 1.5, page 36).

The open problem is then : how can we benefit from all these abstract domains, and

how can we provide a mechanism to switch among them ? A generic interface has been

developed in chapter 4 in order to deal with this problem.

2.4 Other Projects

CHINA Data Flow Analyzer. In order to perform precise and practical analyses,

most analyzers try to find a good way around the abstract domains. New abstract domains

and their combinations are discovered and experimented throughout many projects, and

each project has its own specific goals.

The abstract domain employed in CHINA [tea02b] for detecting the property of definite

groundness is based on the domain of positive Boolean functions, where many operations

on Boolean formulae have exponential worst-case complexity, on the polyhedral domain,

using the Parma library [tea02f, BRZH02], and also on an extension of the Binary Decision

Diagrams BDDs [BS99].

Another specific abstract domain is used in this analyzer to capture pair-sharing. This

domain is based on the set-sharing domain Sharing of Jacobs and Langen [HZB01, BHZ02].

The complexity of the Sharing domain is exponential in the number of program variables.

CTI. In program analysis, termination inference answers the termination question, with

a compact formula called a termination condition. The CTI system analyses programs to

infer termination of programs with Prolog style execution [CTI02].



2. PROJECTS AND THEIR UNDERLYING DOMAINS 43

CTI provides compact explanations for the provable properties of termination of all

predicates and improves a slicing-system in explaining reasons of non-termination. It is

written in SICStus Prolog, based on abstract interpretation by using the polyhedral do-

main and relying mostly on the Parma library [tea02f, BRZH02].

Action Language Verifier. Action Language is a specification language for reactive

software systems. It supports both synchronous and asynchronous compositions and hie-

rarchical specifications. An Action Language specification consists of integer, boolean and

enumerated variables, parameterized integer constants and a set of modules and actions

which are composed using synchronous and asynchronous composition operators [BYK01].

Action Language Verifier is an infinite state symbolic model checker [BGP97]. It

consists of a compiler that converts action language specifications to composite symbolic

representations, and a model checker that verifies CTL properties of Action Language

specifications [ALV02]. It uses conservative approximation techniques, reachability and

acceleration heuristics to achieve convergence.

Action Language Verifier uses the Composite Symbolic Library as its symbolic manipu-

lation engine [YKTB01]. It supports polymorphic verification procedures which dynami-

cally select symbolic representations based on the input specification. Composite Symbolic

Library combines different symbolic representations, such as BDDs for representing boo-

lean logic formulae and polyhedral representations for linear arithmetic formulae, with a

single interface.

Based on this common interface, these data structures are combined using a compo-

site representation. The idea is to use a disjunctive normal form where every disjunct

consists of a conjunction of different symbolic representations. Enumerated and boolean

variables are represented by BDDs, and integer variables are represented with polyhedral

representations.

The composite symbolic library is designed and implemented in an object-oriented way,

where CUDD [Som93] and OMEGA Library [tea02e, Pug91] are imported. Recently, an

experimental version of Action Language Verifier using the Parma library [tea02f, BRZH02]

is developed.

Overall, the composite symbolic library addresses the same problem as does our ap-

proach of a common interface (will be explained in chapter 4). Nevertheless, the library

is designed for the model checking community [YKTB01], deals only with BDDs and

Presburger domains (the version using PPL is not yet finished), and emphasizes the data

structures rather than the operators. Actually, the prototype using Composite Symbolic

Library deals only with a subset of analyses [Yav04]. Meanwhile, octagonal and polyhedral

domains consist of many more operators defined in abstract interpretation. Our approach

targets directly three analyzers (ASTRÉE, NBAC, PIPS) for incompatibilities, trying to

solve existing problems in their underlying abstraction engines, that is to say the polyhe-

dral libraries C3 [tea90, ACI00], New Polka [Jea02b, Jea00], PPL [tea02f, BRZH02] and



44 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

the Octagon library [Min05, Min01b].

CSSV (C String Static Verifier) is a tool that statically uncovers string manipulation

errors in C programs [Da00]. A prototype has been implemented, based on the polyhedral

domain, using the New POLKA library (see section 3, page 47). The tool uses static

analysis to reduce the problem of checking string manipulations to that of checking integer

manipulations, a problem for which well-known solutions exist.

3 Available Polyhedral Libraries and Operators

Much work has been concentrated on the possible improvements of the underlying

mathematical algorithms. Available implementations for manipulating polyhedra include

some “complete” polyhedral libraries like POLYLIB [Loe02, Wil93], New POLKA [Jea02b,

Jea00], C3 [tea90, ACI00], or just libraries that focus on some particular operators, like

CDD [FP95], LRS [AF92] or JANUS [Sog02, Sog96]. JANUS deals with the satisfiability of

constraints system problem using Simplex method [Sog96, ST01], whereas the calculation

of the convex hull of two or more polyhedra is maybe the most interesting operator [AB95,

BDH96, FLL01, FQ88, Bay99].

C3 , also known as LINEAR library, is a library that handles vectors, matrices, linear

constraints and structures based on them, such as polyhedra [tea90, ACI00]. This library

implements several important algorithms in linear programming such as Simplex, Fourier-

Motzkin, etc. IRISA contributed an implementation of the Chernikova algorithm [Wil97b]

(see section 3, page 46 page 46) and PRISM, a C implementation of PIP - Parametric

Integer Programming [Fea88]. These algorithms are designed for integer and/or rational

coefficients.

Although it is a ten year old library which has been used and optimized several times

by PIPS members, this library still encounters problems when dealing with large scale

industrial applications. Here are some specific notes about the library :

– Overflow exception handlers by longjumps are systematically implemented ;

– Memory management is dynamic ;

– Arithmetic modes are integer 32 − bit, 64 − bit, 128 − bit (GNU Multi Precision is

not provided) ;

– Support for string of variable name and constant with serialization/deserialization.

We call this representation sparse.

– A rich set of debugging functions.

CDD stands for C implementation of Double Description method, developed by Komei

Fukuda [Fuk02]. It implements the method of Motzkin and al for generating all vertices

(i.e. extremal points) and extremal rays of a general convex polyhedron P , given by a

constraint system, and vice versa. CDD can solve a linear programming problem, i.e. a



3. AVAILABLE POLYHEDRAL LIBRARIES AND OPERATORS 45

problem of maximizing and minimizing a linear function over P . It uses floating point

arithmetic, so it is fast but the low precision must be taken into account.

The program CDD+ is a C++ version of the ANSI C program CDD, basically for the

same purpose. The input, sharing the same format than LRS’s (see section 3, page 45),

consists of either an H − representation or V − representation of a convex polyhedron,

which needs not to be full dimensional. Linearities, respectively hyper-planes or lines, are

allowed in either description [Fuk02]. Here are some specific notes about the library :

– There are no overflow handlers, thus strange behavior can sometimes be observed ;

– A number MAX NB RAYS must be defined for memory management ;

– Arithmetic modes are rational GNU Multi Precision and C built-in double floating-

point ; While being not precise enough, this library might still be useful in program

analysis if we know how to control the approximation and use it in some particular

cases.

– A mixed arithmetic mode option is implemented. CDD uses floating-point arithme-

tics first and then checks with rational GNU Multi Precision whether the output is

correct. According to the author, when using this mixed mode, it runs much faster

(from 5 to 10 times) for most of the cases than when using only GNU Multi Precision

(see the CDD’s homepage [Fuk02]).

JANUS is a software developed by Jean-Claude Sogno at INRIA, addressing the emp-

tiness test of a system of affine constraints. The algorithm, presented in [Sog02, Sog96],

shows interesting results. However there are two limits. First, JANUS was written with

32−bit integers, so a wide range of large constraints systems containing large numbers

cannot be solved. This kind of constraints system often appears in our analyses where the

coefficients’ value increases after some computational iterations. And second, there is no

head-to-head comparison between equivalent methods that can show the efficiency of the

algorithm except a comparison between JANUS and OMEGA test [tea02e, Pug91] using

the “nightmare” problem (see [Sog96]).

To overcome the first problem, we have modified JANUS using a system of generic

wrappers called Value to hide 32-bit, 64-bit and multi precision computations from the

original algorithm. Then, we deal with the second problem with our own benchmarks in

chapter 6, using this new version.

An additional advantage of the modification is that, in spite of the overflow checking al-

ready integrated in JANUS, our implementation of JANUS using macros Value sometimes

detects overflows that are not detected by the original JANUS (see chapter 6).

LRS (Lexicographical Reverse Search) is an ANSI C implementation of the reverse

search algorithm for vertex enumeration/convex hull problems [Avi02], by David Avis.

It comes with two main driver programs : lrs and redund, a set of demo drivers suitable

for customization and a choice of three arithmetic packages (lrsmp, a multiple precision



46 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

arithmetic package ; lrslong, a fixed precision integer package ; lrsgmp, a multiple precision

arithmetic package, based on GNU Multi Precision). Input file formats are compatible

with Fukuda’s CDD package [Fuk02].

All computations are performed exactly in either multi-precision or fixed integer arith-

metic. Output is not stored in memory, so even problems with very large output sizes can

sometimes be solved. LRS converts an H-representation to a V-representation and vice

versa. The possibility of estimating the number of vertices/rays or facets of a polyhedron

is also implemented (using another algorithm that costs less than the reverse search al-

gorithm). It also can remove redundant constraints from an H − representation, or find

the extremal vertices in a V − representation. Here are some specific features about this

library :

– There is an overflow handler implemented in lrsmp version ; a number MAX DIGITS

need to be defined for this purpose ;

– Memory is allocated at the beginning, then garbage collection is implemented to

clean up after each problem has been solved ;

– Arithmetic modes are integer 32− bit, 64− bit and GNU Multi Precision, with and

without overflow checking.

POLYLIB is a polyhedral library operating on objects made up of unions of polyhedra

of any dimension, which was developed initially at IRISA, in Rennes, France, in connection

with the ALPHA project [Loe02, Wil93, Loe99]. It was written in ANSI C, and designed

to be general purpose and has since been used by several projects, including PIPS [IJT90,

IJT91a].

POLYLIB was originally written by Hervé Leverge based on the Motzkin Double Des-

cription method for finding the dual representation of a polyhedron and on an implemen-

tation of Chernikova’s algorithm [Ver92, Ver94, VDW94], and then continued by Doran

Wilde [Wil97a]. It was written Polyhedra are represented internally in their full dual form

as a list of mixed constraints (equalities and inequalities) or a list of geometric features :

vertices, rays, and lines. Philippe Clauss was the one who first signaled the possibility of

counting the number of integer points in a union of rational convex polyhedra by a special

kind of polynomial called Ehrhart polynomials [Cla96]. Thus, Ehrhart polynomials are

implemented in POLYLIB.

The following polyhedral operations are supported in POLYLIB : intersection, union,

difference, simplification (widening) of a polyhedron in the context of another polyhedron,

convex hull, image by an affine multi-dimensional transformation function and preimage by

an affine multi-dimensional transformation function. Here are some practical notes about

this library :

– Overflow exception handlers by longjumps are systematically implemented ;

– A number MAX NB RAYS must be defined for memory management ;

– Arithmetic modes are integer 32− bit, 64− bit, 128− bit and GNU Multi Precision ;



3. AVAILABLE POLYHEDRAL LIBRARIES AND OPERATORS 47

– No support for string of variable name and constant in serialization/deserialization.

New POLKA is a library handling convex polyhedra, whose constraints and genera-

tors have rational coefficients. It was written by Bertrand Jeannet in ANSI C, but an

interface to the language OCaml version 3.00 is also provided [Jea02b, Jea00]. This li-

brary is currently used in the verification tool NBAC of the same author (see NBAC in

section 2.2, page 39), and also by other research teams working on static analysis and

abstract interpretation.

It is mainly based on IRISA’s POLYLIB library (see section 3, page 46) and on the

old library used in the POLKA tool inside the SYNCHRONE team of the VERIMAG

laboratory [tea02c]. The main motivation to develop a new library was the need for multi-

precision integers and 64-bit integers (POLYLIB now has this feature, too). The interface

and memory management have also been changed, and some new memory strategies have

been included to save computation time.

Implemented operations include creation of polyhedra from constraints or generators,

intersection, convex hull, image and preimage by linear transformations, widening opera-

tor. Here are some practical points about the library :

– There are no overflow handlers, thus infinite loop can be observed ;

– A number POLKA MAX NB RAYS must be defined for memory management ;

– Arithmetic modes are integer 32− bit, 64− bit and GNU Multi Precision ;

– Share the same input format of constraints system with POLYLIB.

Parma Polyhedral Library - PPL (Parma Polyhedra Library, [tea02f, BRZH02,

BHRZ03, BHZ03]) is a C++ library for the manipulation of convex polyhedra. Studies

on previous polyhedral libraries (including POLYLIB, section 3, page 46) result in this

very complete and complex library, as well as an excellent bibliography. Although PPL’s

interface is supposed to be general purpose, it has been influenced by the needs of the sta-

tic analyzers. That is why the library implements a few specific operators, while lacking

some other operators that might be useful in other fields such as computational geometry.

Interfaces to other programming languages, including C and a number of Prolog systems,

are implemented.

An interesting feature4 of the library is the explicit separation of the domain of rational

convex polyhedra that are not necessarily closed, denoted by NNC, and the domain of

rational convex polyhedra that are topologically closed, denoted by C. While computing

NNC convex polyhedra may provide more precise results, closed convex polyhedra can be

represented and manipulated more efficiently. When an NNC polyhedron P is necessarily

closed, we can ignore the closure points contained in its generator system (as every closure

point is also a point). Similarly, P can be represented by a constraint system that has no

strict inequalities. Thus a necessarily closed polyhedron can have a smaller representation

4It is said that New Polka has implemented this feature, too



48 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION

than one that is not necessarily closed. Moreover, operators restricted to work on closed

polyhedra only can be implemented more efficiently. This way, one can choose to use NNC

only if he can actually see an increased accuracy.

The list of supported operators can be found in the PPL documentation. Here are

some quick notes for this library :

– Written in C++, exception handling and memory management are implemented. It

has interfaces for several languages such as C, OCaml.

– Three different arithmetic modes are 32-bit, 64-bit, GNU Multi Precision.

CONVEX is a Maple package to facilitate computations in convex geometry [Fra02]. It

provides functions to deal with rational polyhedral cones, general polyhedra, faces of one

of the above, and fans of arbitrary dimension or size.

PORTA is a collection of routines for analyzing polytopes and polyhedra [CL02]. The

polyhedra are either given as the convex hull of a set of points plus (possibly) the convex

cone of a set of vectors, or as a system of linear equations and inequalities.

POLYMAKE is a tool for the algorithmic treatment of convex polyhedra and finite sim-

plicial complexes [GJ00, GJ01]. The system offers access to a wide variety of algorithms

and packages within a common framework. POLYMAKE is flexible and continuously ex-

panding. The software includes C++ and PERL interfaces.

QHULL computes convex hulls, Delaunay triangulation, half-space intersections about

a point, Voronoi diagrams, furthest-site Delaunay triangulation, and furthest-site Voronoi

diagrams [BDH96]. It runs in 2 − d and higher dimensions. It implements the Quickhull

algorithm for computing the convex hull. QHULL computes volumes, surface areas and

approximations (when handling roundoff errors from floating point arithmetic) to the

convex hull.

Composite Symbolic Library proposes a common interface that is used in Action

Language Verifier, in order to represent boolean logic formulae by BDDs and linear arith-

metic formulae by polyhedral representations [YKTB01]. The current implementation uses

the CUDD and OMEGA libraries ; an experimental version uses PPL.

4 Conclusion

Static program analysis based on abstract interpretation (section 3.2, page 10) uses

abstract domains such as polyhedra, octagonal and interval domains. In this chapter,

we focused on differences and problems concerning utilization of these abstract domains.

Important definitions of convex polyhedra and octagons were presented, as well as a list

of existing implementations : static analyzers and their underlying libraries.



4. CONCLUSION 49

As we have seen, the rich set of numerical abstract domains is diverse. However, the

more precise we want to be, the longer execution time we have to deal with. In exceptional

cases, the more powerful abstract domain does not guarantee a better precision, because

of magnitude overflow, lack of memory space or unacceptable execution time.

Static analyzers using these abstract domains are tuned in order to achieve the best

trade-off between precision and efficiency, so using several domains is becoming a trend

[tea02a, tea02d]. Abstract domain for specific cases is also studied. The possibility of

sharing implementations of abstract domains, from the simple domains (e.g. intervals) to

the more precise domains (e.g. polyhedra, Presburger formulae), is of high interest. We

had greatly appreciated the modular of the above-mentioned tools, without which this

work cannot be possible.

In the next chapter (chapter 4), we aim at a generic interface for the design of which

adaptations to existing libraries are needed. Developments of new abstractions and libraries

should take into account the interface, whereas a mechanism that permits easily changing

abstract domains should be constructed.

A robust and efficient set of libraries, sharing a generic interface which allows mana-

gement of exceptions and that eases parameterization of all the implementations, is to

be studied. A complete set of benchmarks built from real applications is used, in order

to analyze performances of these libraries. The polyhedral benchmarks is presented in

chapter 6.

Meanwhile, the C3 library emphasizes constraint systems. Its operators deal only with

constraint systems with integer coefficients. As is explained in chapter 5, which is dedicated

to the polyhedral domain, there are some name incompatibilities between the existing

projects (page 81). Furthermore, in some libraries a few operators are not implemented.

We present here an example of some important operations on convex polyhedra that

are implemented in the polyhedral library called LINEAR C3 [tea90, ACI00] (C3 for short),

which is extensively used in the analyzer and transformer of scientific programs named

PIPS [IJT90, IJT91a]. This library implements several important algorithms in linear pro-

gramming such as Simplex, Fourier-Motzkin, etc. IRISA contributed an implementation

of Chernikova algorithm [Wil97b] and PRISM a C implementation of PIP (Parametric

Integer Programming) [Fea88]. For more details on polyhedral operators, readers are re-

ferred to chapter 5. In the library C3, only this operator calls the POLYLIB ’s function

(section 3, page 46) to calculate the convex hull, using the generating system.



50 CHAPITRE 3. ABSTRACT DOMAINS AND THEIR APPLICATION



Chapitre 4

Towards a Multi-Domain Interface for Abstract In-

terpretation

In chapter 3, we have introduced several abstract domains used in static program

analysis and their libraries.

In this chapter, we will discuss encountered problems in using these libraries, basically

we have three polyhedral libraries and one octagonal library, and then present our solution

to those problems by designing a common interface for those different libraries. Our second

approach to those problems will be discussed in the next two chapters, but it deals only

with polyhedral domain.

Section 1 explains why a common generic interface for those domains and libraries is

useful. Section 2 describes a prototype called HQ, which was built based on our analysis of

the compatibility problems. While we will try to define and describe the related operators,

it is not our main concern for this part.

In section 3, we present two related projects : APRON, to which we contributed this

study, and the Parma project. We conclude by comparing HQ and APRON.

1 The Need for a Generic Interface

In this section, we try to identify all the existing problems blocking the way towards

a framework in which codes written for different abstract domains can be reused between

abstract interpreters. In the first subsection, we describe our motivation for a common

interface with a short background. Then important issues are followed in the next six

subsections, and in the end the section conclusion.

1.1 Motivation for a Common Generic Interface

In the middle of figure 4.1, there are five static analyzers : PIPS [IJT90, IJT91a], NBAC

[tea02d, Jea00], ASTRÉE [tea02a, BCC+03], the OMEGA framework [tea02e, Pug91] and

CHINA [tea02b, tea02f, BRZH02] which are introduced in chapter 3, section 2. On the

left hand side of the API, we have the current status : each static analyzer has its own

library 1 dealing with its own abstract domain(s). In practice, they all have problems when

dealing with large scale applications.

However, recent developments from one team such as new abstract domains, e.g. the

Octagon library [Min05, Min01b], or algorithmic improvements, e.g. Cartesian factoriza-

1For the list of these libraries, readers are referred to chapter 3.

51



52 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

PIPS

NBAC

ASTREE

OMEGA

CHINA

A
P
I

xyz xyz
Omega

PPL

C3POLYLIB POLYLIB

POLKA
New

Octagon
JANUS

PIP PIP

JANUS

API

API

PPL

Omega

API

Octagon

API

POLKA
New

API

C3

Fig. 4.1 – Why we need a common interface !

tion [HMPV03], cannot be readily exploited by other teams. Meanwhile existing static

analyzers are mostly modular, and are mostly based on similar technologies.

On the right hand side of the API in figure 4.1, we show how a generic API would let

any analyzer benefit from specific features in other libraries. For example, this API would

allow PIPS to use another abstract domain, e.g. octagonal domain or Presburger formulae,

while keeping the infrastructure developed in PIPS for the polyhedral domain. Precisely,

an unified framework could free its users from the compatibility burdens such as different

signatures for the same semantic abstract operator, exception handlers and sometimes

operator availability. Moreover, whenever a new improvement takes place somewhere for a

given abstract domain, for instance the Cartesian factorization in PPL [HMPV03], then not

only CHINA but also PIPS could profit from it without additional work. Finally, the new

API should provide mechanisms to assure the robustness for available implementations,

e.g. the timeout management.

As described in section 3.1, page 73, a French project named APRON [APR05] was

launched in 2004 where such a common interface is of interest. Although OMEGA [tea02e,

Pug91] and Parma [tea02b, tea02f, BRZH02] teams are not members of the project, the

common interface must be compatible with their interfaces which are dot linked in fi-

gure 4.1. Meanwhile, other teams have promised to support the new interface when it is

finished.

In order to design an interface which can replace all interfaces already used in current

implementations, first of all we need to study these interfaces and to find out common

points and incompatibilities among them. Incompatibilities may happen at the interface



1. THE NEED FOR A GENERIC INTERFACE 53

level, that is to say the signatures of operators, the data structures, etc., as well as at

the implementation level, with exception management, thread-safety features, underlying

arithmetics, etc. We will discuss these problems later in this section.

At the interface level, different abstract domains lead to different data structures, then

to different signatures for one generic operator. If we take the octagonal and the polyhedral

domains, we need an abstract object that represents an octagon and/or a polyhedron.

Even with only one abstract domain that has several implementations, many differences

exist because each interface was designed to meet the need of their own developers. For

example, the polyhedral library New POLKA was designed to be used in NBAC analyzer

for automation analysis, which usually has the number of variables between 10 and 30.

On the other hand, the C3 library was designed for and used by PIPS inter-procedural

analyzer has hundreds of variables (see chapter 3 for the introduction of these tools).

In the following sections, we describe in a general way, the difficulties which have not

been explored yet. Due to the nature of the comparisons among several complex interfaces,

the reader is suggested to read the libraries’ documentation if needed. Then in section 2,

page 60, we will analyze them in greater details with respect to the API reference that was

developed by the author. We begin with the comparison between polyhedral interfaces,

and then the comparison with other abstract domains.

1.2 First Issue : C3, New POLKA, PPL and POLYLIB - Different Contexts

Being arguably the most used abstract domain for advanced static program analyses,

the polyhedral domain is implemented by several libraries containing many algorithmic

improvements introduced over the years. Unfortunately, existing polyhedral interfaces are

not compatible as will be shown later in section 2.4. Different choices were made by

developers such as naming conventions, algorithms, exception handlers, etc.

Due to their completeness, we choose to compare four polyhedral libraries namely

POLYLIB [Loe02, Wil93], New POLKA [Jea02b, Jea00], PPL [tea02f, BRZH02] and C3

[tea90, ACI00].

These four polyhedral libraries were designed and developed in different contexts for

different languages C, C++, CAML. New POLKA and C3 have been developed and used

closely with their static analyzers, respectively NBAC and PIPS, as fundamental algebraic

engines, while POLYLIB and PPL libraries are somehow independently developed. This

leads to some particularities. For example, the PIPS analyzer does not use any widening

operator, therefore its C3 library does not implement this operator 2.

New POLKA was formerly based on POLKA and POLYLIB implementation ; however

its interface and memory management is different from POLYLIB’s. POLYLIB, designed

for automatic parallelization, code transformations and code synthesis, used as a part of

the C3 library, does not provide a complete interface for static analyzers. For example,

2This technique is described in the presentation of François Irigoin, September 2005 the 20th , which

can be found at APRON’s site [APR05].



54 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

neither the manipulation of the dimensions of polyhedra nor the widening operator are

not present in its interface. It however implements the computation of symbol Ehrhart

polynomials and Z-polyhedra manipulations, which can be used for specific purposes.

In fact, the Ehrhart polynomials, which are a special kind of polynomials, form another

abstract domain, where the set of integer points to be counted lies inside a union of rational

convex polytopes, thus the number of points can be formulated by an Ehrhart polynomial.

The Z polyhedra which are intersections of polyhedra with the integer lattice also form an

abstract domain. In our work, we do not study explicitly these domains because of their

given lower priority.

The PPL library, while being used by different projects such as the CHINA project

[tea02b, tea02f, BRZH02], the Action Language Verifier [ALV02, BYK01], etc., will not

have its final interface before version 1.0, according to the authors [tea02f, BRZH02].

Version 0.7 is the most recent version we had access to.

As a result, to construct a common interface for the above libraries, adaptations must

be made for each and every library. In the next section, we consider a problem concerning

not only the polyhedral implementations but all abstract domain implementations used

in static analyzers.

1.3 Second Issue : Control of Execution Time

We present here an example of the compatibility problems, not at the interface level

but at a lower level. This problem is illustrated with the control of the execution times of

analyses in PIPS (See chapter 3 for PIPS and the libraries mentioned below).

Being an underlying component of PIPS, the library C3 uses POLYLIB as an ex-

ternal library to perform polyhedral operations. To control the execution times of C3,

a timeout mechanism is added by the author. This mechanism requires modifications of

certain functions of POLYLIB, e.g. Chernikova function. We here present several possible

implementations and several functional interfaces. Then we propose a solution which we

wished to implement in the POLYLIB’s Chernikova function but we could not obtain a

general agreement. This mechanism could be added to the magnitude control, i.e. integer

overflow, which is already implemented in POLYLIB.

The pre-existing operators in the C3 library, such as boolean sc feasibility ofl ctrl()
3, boolean sc projection ofl ctrl() 4 and Psysteme sc convex hull() 5, or POLYLIB’s void

chernikova() 6 that is used by C3, did not have a timeout mechanism properly established.

Some analyses can last a long time whereas the abstract interpretation enables us to

sacrifice the precision to obtain speed. The activation of this timeout mechanism in C3

3The tests of satisfiability for a constraint system with overflow control, see chapter 5, section 3.
4It projects the constraint system along a dimension, with overflow control, see chapter 5, section 4.
5It computes the convex hull of two constraint systems, see chapter 5, section 6.
6POLYLIB’s implementation of Chernikova’s algorithm that computes the polyhedral dual conversion,

see chapter 5, section 2.



1. THE NEED FOR A GENERIC INTERFACE 55

with the example ocean.f 7, has greatly reduced PIPS execution time, from three days to

three hours with TRANSFORMER INTER FULL, PRECONDITIONS INTER FULL,

MUST REGIONS analyses 8.

Moreover, the execution times of some algorithms can be very sensitive to non-semantic

modifications of the parameters, for example the order of successive projections of a set of

variables. The exponential complexity of some operators can yield durations of some tens

of seconds to hours, with no differences in the final result.

If an operation may last a long time, we want to put a timeout so that its execution

finishes within a time limit set by the programmer. But we also want to preserve the

current functionality. That is possible using one of the two solutions as follows :

– Implementation of an ”alarm” call, which will stop the operation when the timeout is

reached. The routine handling an exception is launched by the means of a long-jump

and can position a flag which is tested later on in the operator ;

– Modification of POLYLIB so that it supports timeout management.

For the call of a throw exception 9 using a long-jump, we have a problem. If the main

process is executing a malloc, i.e. allocation of memory, or a system call, the memory

context is probably incoherent, which can lead to a core dump.

This first approach has however an advantage : it is not necessary to modify the

operator implementation itself. It is enough to add a layer of wrapping. If in the process,

there is no malloc or system calls, we can take the risk to use a long-jump. If there is,

we must modify the code somewhere in the operation, for example the main loop. The

new code should take into account the existence of the flag. The disadvantages are : 1, a

modification of the existing code which can be in an external library, such as for example

POLYLIB ; 2, a slightly slower algorithm since it is necessary to test the flag for timeouts

in one, or several, main loops of the initial algorithm.

One can directly use a throw exception in the case where there is no malloc, by releasing

the memory used in CATCH. For the convex hull operator with many calls to malloc, or

the satisfiability test using the simplex method with memory allocation of a hash table,

we must modify the code.

The implementation of the additional code can be hidden by a mechanism of #ifdef

which allows us to generate two versions of the original operator. This complicates the

non-regression tests but guarantees the absence of changes for those who do not need the

timeouts.

The second solution, which requires an activation of the timeout mechanism, is pre-

ferable. By default, the timeout mechanism is not active. To allow the use or not of the

timeout, there are at least two possibilities in the implementation : 1, specify the timeout

by using one or more variables of the environment, i.e. one always uses the same signa-

7see chapter 6, page 120.
8However, we did not study the output of PIPS in these two cases.
9A C implementation whose concept is similar to Java’s throw/catch mechanism.



56 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

tures of operators ; or 2, establish a new interface that takes into account the timeout as

additional parameters and additional pieces of code if a timeout took place. With 1, the

old interface is preserved and used in a wrapper which can activate or not the mecha-

nism of timeout. With 2, the old operator is modified to accept the necessary additional

parameters.

However, POLYLIB does not support this approach in general 10 ; in this way we

can see the human-factor complexity of the problems. Consequently, in order to use the

timeout in Psysteme sc convex hull 11, we must choose the first solution. POLYLIB has

the same mechanism for exception management using TRY/CATCH as the C3 library,

which is used at CRI, thus the solution was implemented by the author without difficulty.

As mentioned above, in this chapter we propose a new interface (section 2), and then

compare it to existing interfaces. However, POLYLIB is not considered 12, since its in-

terface is a subset of the other four that we have chosen which are C3’s, New POLKA’s,

Octagon’s, whose interface was based on New POLKA’s, and PPL’s. In the next section,

we present a comparison between the octagonal and the polyhedral interfaces.

1.4 Third Issue : Octagons vs Polyhedra

The octagonal domain is recent [Min04a], although similar ideas were used to speed

up convex array region analysis [HK91]. It was introduced to avoid the high complexity of

polyhedral operators without losing too much accuracy. Because it is a simpler domain,

it is less precise but offers a shorter run time when used in static analyzers. Indeed, its

operators execute faster with polynomial instead of exponential complexity.

The current implementation of the octagon library has an interface that is incom-

patible to existing polyhedral interfaces, even though this library is used in ASTRÉE

[tea02a, BCC+03] in order to replace the more expensive polyhedral domain. However,

since every octagon is also a polyhedron 13, we expect to use the octagonal domain ins-

tead of polyhedral one without major difficulties.

While the dual conversion with Minkowski representation is very important for po-

lyhedral implementations, e.g. the most efficient algorithm for the convex hull operator

implements this approach, it is not vital for the octagonal domain. We can compute the

generating system of an octagon, by some algorithm derived from Chernikova’s one, for

example, but it does not imply a better performance.

When we study some missing operators, i.e. the functions that are available in the

polyhedral interface but not in the octagonal interface, e.g. the dimension permutation

operators, fortunately no algorithmic problem has been found yet : we can implement

these missing operators without difficulty. Nonetheless, some operators such as the closure

10We posted this solution on the POLYLIB’s mailing list, and the response was negative.
11It computes the convex hull of two constraint systems, see chapter 5, section 6.
12We do not consider the Ehrhart polynomials here [Cla96].
13In 2-D, it is a polyhedron of at most eight edges.



1. THE NEED FOR A GENERIC INTERFACE 57

operator, because efficiency suggests that they should be selectively used by the user in

particular cases, operations that we consider as low-level are exposed.

In fact, we can find some similarities between the Octagon library’s interface and New

POLKA’s, since the former was built based on the latter. We even find the operators that

convert an octagon to a polyhedron, and vice versa, which indeed helps the move towards a

common interface. But it is hardly enough : we cannot use them interchangeably, thus they

are not compatible. Fortunately, the participation of the two groups in APRON project

(section 3) will make it easier to adapt to a new common interface.

We consider in the next section a problem with the Octagon library’s interface, because

dimension permutation operators are not available 14.

1.5 Forth Issue : Variable Assignment

Given our motivation in taking advantage of several implementation, in this section,

we present an example that shows one of the difficulties encountered to use the Octagon

library in the PIPS analyzer. We consider two interfaces, one of PIPS’s C3 library and the

other of the octagon library [Min05, Min01b].

It is considered in PIPS that the operator which models the assignment command
15 is of higher level than the intersection or union for the polyhedral domain. While the

assignment command is independent from the abstract domain used, which can be, for

instance, octagonal or polyhedral, or others, this decision is not shared among the authors.

This difference raises a problem in the Octagon integration into PIPS.

Moreover, when incompatibility happens, a wrapping is preferable to modification of

the existing interface. Accordingly, we have tried to re-implement the octagon assignment

operator, named oct t* oct assign variable(), from octagon’s lower level primitives, i.e.

from the API of the library. Retrospectively, it is not the best approach to deal with the

problem since there are other operators in PIPS that are more interesting to implement

using the octagons, but it is already complex. Manipulating variable names, i.e. polyhedra

dimensions, is not obvious. In fact, we encounter three problems :

– If we encode I := 1 and J := 2 independently, as we do in PIPS’s bottom-up

approach for transformers, I and J are represented by the first dimension in their

corresponding octagon. Therefore, when we want to combine these two, we have

to modify the binding of variable names to dimensions and to modify at least one

octagon.

It is even worse when we have to translate a function call like I = f(K), assuming

f ’s transformer known.

– If we want to combine I := I + 1 with the transformer for I := 1 (see chapter 2,

14C3, New POLKA and PPL have dimension permutation operators but not POLYLIB. Thus, POLYLIB

has this problem, too.
15A simple example is that variable I is replaced by variable J , then the encoded information about I

and J , which can be an octagon, or a polyhedron, shall be updated with the assignment operator



58 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

section 4.2, page 14 for transformers), we have to play, at least temporarily, with the

number of dimensions by adding something to represent the old value, the temporary

intermediate value and the new value of I.

– In this operator oct t* oct assign variable(), sometimes non-octagonal constraints

may appear. In this case they are approximated by their interval bounds. This kind

of heuristics should not appear at a higher level, which stops us from rewriting the

operator in a generic way.

Our conclusion of the study is that we need an operator to rename variables to solve

the first two problems. For the third problem, we should find another way to approximate

the result using only the API.

Finally, we notice that though POLYLIB is used in C3, the only used part is the

implementation of the Chernikova algorithm. The variable assignment is one of reasons

that stop us from exploiting more effectively this library.

1.6 Fifth Issue : Omega’s Presburger Formulae vs Polyhedra

The domain of Presburger formulae comes with high complexity but can provide more

accurate information than the polyhedral one in static program analysis, thanks to its

expressiveness.

Moreover, despite Presburger formulae’s worse case complexities, some algorithms im-

plemented in Omega library are worth to be considered. For example, exact integer pro-

jection is implemented in Omega [Pug91], whereas C3’s algorithm only detects exactness

when the exact projection is a polyhedron : A projection of a polyhedron along a variable

is exact on an integer set if the existence of an integer point in the polyhedron after the

elimination of the variable implies the existence of a corresponding integer point in the

initial polyhedron.

The Omega test uses the dark shadow method, which is an extension of Fourier-

Motzkin method ; hence its complexity is exponential. However, in practice, for dependence

tests, its time complexity is polynomial [Pug91]. The C3 implementation, using three suf-

ficient conditions defined in [AI91] and in [Pug92], performs the exactness test with lower

complexity, while retaining a good percentage of exact responses in experimental results :

the exactness rate of the dependence test developed in PIPS for the PerfectClub bench-

mark is 97, 95% (see [Yan93], page 70).

It is obvious that application of this domain is interesting. The open question is then

how can we take advantages of this domain in some specific case and go back to less

expensive domains in other cases ? This could be done by facilitating the switching of

domains. Our approach is to find the common interface among these domains.

However, we have seen in chapter 3, section 1.4, page 34, differences between interfaces

for the Omega library and polyhedra. Also, we consider that in Omega, the structure which

represents either a relation R, or a set S, that is used to model a transformer (chapter 2,

section 4.2 page 14), should belong to a higher level than the polyhedral domain. Therefore



1. THE NEED FOR A GENERIC INTERFACE 59

it is necessary to define different generic levels to accommodate all existing interfaces.

1.7 Sixth Issue : Finite Union of Polyhedra

Arnauld Leservot, in his dissertation, has used the domain of lists of polyhedra [Les96].

Starting from the fact that all Presburger formulae can be represented in Disjunctive

Normal Form (DNF) or Conjunctive Normal Form (CNF), an element of the domain can

have two representations based on convex polyhedra.

The set of lists of polyhedra, with its operations like union, difference, inclusion, equa-

lity between two elements, emptiness test as well as conversion from one form to another,

forms an abstract domain, which has been implemented in PIPS for the computation of

Array Data Flow Graphs [Les96]. It is only used in PIPS for exact convex array region

computation [CI96], and its operator signatures are unfortunately not compatible with

polyhedral ones. For example, the satisfiability test does not use homogeneous names for

functions : the disjunction of constraint systems has the function boolean dj empty p, whe-

reas a constraint system has the function boolean sc feasibility p and boolean sc empty p

has a different semantic 16.

As mentioned before, this interface is not taken into account for HQ. This abstract

domain is less powerful than the Presburger formulae since it cannot manipulate infinite

sets. Moreover, no experimental results comparing the performances between the Omega

library and the implementation for lists of polyhedra 17 are available.

1.8 Conclusion

We have presented our motivations for a common generic interface, which could be used

in static analyzers. Then, we have briefly compared six interfaces. We did not consider the

interface of the interval and BDDs domains here, since those two domains are used in a

different way (see chapter 3, section 2).

As we have seen, there exist many problems towards a common interface, even if

we study only the polyhedral domain with its existing polyhedra implementations (sec-

tion 1.2), or with its closest domains, the octagons (section 1.4) and the Presburger for-

mulae (section 1.6). These problems are :

– different signatures ;

– different levels of operators ;

– exception handlers.

In the next section, we present our approach to analyze in greater details and then

to deal with these problems. The Parma library PPL also proposed a general-purpose

interface and implemented it. However, in our point of view, it is not satisfying (see our

16It simply verifies whether the given constraint system is the constant SC EMPTY or not. See C3 for

details of these operators
17Which can be found in the package union of the C3 library.



60 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

related work discussion in section 3.2). Therefore, the construction of a prototype of a

new interface seems to be required if we want to move forward towards our goal. APRON,

another approach with a prototype developed by Bertrand Jeannet, which is also presented

in our related work, section 3, is based on our approach.

2 HQ Interface

2.1 Introduction

Our full proposition consists of two parts : a prototype for a common interface, and

practical issue-related documents that reveal different approaches in existing implementa-

tions.

The first part directly addresses the interface with imperative signatures, which should

describe what we need, how to present, introduce and expose it as clearly as we could.

We discuss the name of operators, what they do, why we might need several versions of

some operator, when we need to apply approximation, whether we should have a list of

arguments instead of only one argument, the level of this function, etc.

The second part, which is as important as the first part, is where we discuss implemen-

tation issues such as how we handle exceptions, how we manage the memory, etc. In fact,

there are many ways to deal with this kind of problems, so finally we just have to pick one

that is the most appropriate. For example, from the initial HQ’s signatures, we can use

the JNI (Java Native Interface) tool to generates its C signatures. However, this approach

is not satisfying since the generated code is not easy to understand, so we can consider

building a set of rules for this conversion. Other problems such as memory management,

destructive functions, destructive arguments are described in order to be decided later.

Given the nature of the proposition, in this section we choose to present only the parts

that we consider important. Full material can be found on [Que05b]’s web site.

2.2 Prototype

Our interface prototype, called HQ, is designed by taking into account four existing

APIs : C3, New POLKA, PPL and Octagon. The first three are polyhedral and the last

one is octagonal. However, since an octagon is in fact a special case of a polyhedron, we

can consider the four APIs as polyhedral. We also take into account the requirements

needed for Omega library, the list of polyhedra implementation section 1.7.

The idea behind this interface is to build a library to manipulate sets. Every polyhedron

represents a set of points ; so does every octagon, every Presburger formula and every

interval. Since all these sets of sets form an abstract domain, which is more abstract than

some others, we can provide the most abstract and basic manipulations, while hiding

problems concerning differences among those abstract domains.

HQ is defined using javadoc utility, which permits an easy view of the API, even though

the C language is favored by most of the projects. Our first intention was to generate a



2. HQ INTERFACE 61

HQ Polyhedra Octagons Unions Omega Intervals BDDs

HQSet Polyhedron Octagon Union Pres. formula Interval BDD

HQSysCon ConSys NA ConSys Pres. formula NA NA

HQConstraint Constraint Oct elem Constraint Constraint NA NA

HQSysGen GenSys NA GenSys NA NA NA

HQGenerator Generator NA Generator NA NA NA

HQVariable Variable Var t Variable Variable ID Variable Variable

HQExpression Expression tab Expression Relation Expression Expression

HQDimension Dimension Number Dimension Variable ID Variable ID NA

Tab. 4.1 – Comparison of abstract objects

C version of HQ using another tool (JNI stands for Java Native Interface). However it

soon becomes inappropriate : generated signatures are not human readable since there is

always a Java context-related object in the signatures, as well as a long JNI prefix, which

is not necessary nor user-friendly. We notice here that while a set of translation rules can

be designed in order to automatically produce the equivalent C signatures, we have not

created these rules yet.

As a consequence, HQ’s documentation [Que05b] only serves to identify incompatibili-

ties : the name of operators, the arguments of the operators, which operators are missing,

where to put operators, i.e. levels of the API, etc.

Since written in Java, an object-oriented language, some of the implementation details

are hidden, such as exception management, which is intended to simplify the interface

problem. In fact, we divide it into two parts, one for the imperative signature, the other for

fragma 18 decisions. Therefore, along with the API, another type of document is provided

in order to deal with those problems.

We mostly focus on the incompatibilities among existing libraries. In our documen-

tation [Que05b], the operators of the HQ set are discussed along with its corresponding

operators available in the four libraries. However, in the following sections, we only study

some important operators such as the satisfiability, projection, minimization and convex

hull operators. For each operator in HQ, the names of the equivalent operator in C3, New

POLKA, Octagon and PPL if it exists are provided.

2.3 Main Concepts

Notice : We understand that this section can be confusing for we do not try to give

complete definitions of all the concepts used in the HQ context. We will try to explain

HQ’s definitions to their related counterpart of other domains whenever it is possible, but

it is not our main objective here. Instead, we will update the HQ documentation in its

next releases.

18Fragmented issues which are not structured, concerning concrete implementations.



62 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

HQ Classes : HQ is designed using Java with classes representing abstract objects. Six

abstract domains’ equivalent objects to HQ’s classes are summarized in table 4.1, knowing

that non-relational domains break most of transformer analyses. The NA stands for not

available.

The HQSet class represents abstract sets. An instance of the HQSet class, henceforth

called HQSet for short, is equivalent to a polyhedron, an octagon, a set of Presburger

formulae, or a list of polyhedra, i.e. a union. Each HQSet represents a set of points that

belongs to a multi-dimensional space. Each dimension space can be represented by different

names or different numbers. Those dimensions are associated to variables ; thus every

dimension is sometimes considered as a variable, depending on the context. Each dimension

is represented by an instance of the HQVariable class. The space and the mapping between

dimensions and variables are abstracted by the HQBasis class.

We have decided to define the HQBasis class for many reasons, but the most important

one is that it permits a flexible dimension name management. As such, when program

variables are passed from the analyzer to its abstract domain engine, that is to say our

HQ implementation, their names are forwarded, too. This helps not only the debugging

at the engine’s level but also at the analyzer’s level, since the origin of every variable is

known. Precisely, the HQBasis class is similar to C3’s base object, which permits an easy

debugging since variable names as strings are given by the analyzer PIPS instead of fixed

numbers, as in other libraries.

The HQConstraint class represents an abstract constraint. Every abstract constraint is

affine and equivalent to a polyhedral constraint, or an octagonal constraint, or a Presburger

formula, with the comparative connectors such as <, ≤, >, ≥ and = 19.

Equivalent to an affine expression is a HQExpression, which is in fact a HQConstraint

but without any comparative connector.

Since a polyhedron can be represented by a constraint system or a generating system,

we consider that an octagon or a set of Presburger formulae can be properly represented

by an instance of the HQSysCon or/and HQSysGen class, where each HQSysCon ins-

tance consists of several HQConstraint instances, and each HQSysGen instance consists

of generating elements of type HQGenerator.

Scoping : The HQSet class only sees the following classes : HQSet, HQSysCon, HQSys-

Gen, HQBasis, HQVariable, HQExpression. Therefore, its relations with HQConstraint

and HQGenerator must be exploited through getHQSysCon() and getHQSysGen(). This

accessibility has the advantage to reduce the connexion between HQSet and HQCons-

traint. Note here that in the octagon library, we have octagons and constraints (binary

and linear) manipulation, but not vectors manipulation.

19For Presburger formulae, we also have the existential ∃ and universal ∀ quantifiers.



2. HQ INTERFACE 63

Conventions : For the sake of simplicity, we have presented operators such as void

add dimension, which adds a new dimension to the constraint system, or void remove dimension,

which removes a dimension from the constraint system, with only one parameter. Howe-

ver, as discussed in our documentation [Que05b], several parameters support is suggested

since it improves the performance of these operators at algorithmic level, e.g. convex hull.

We propose in HQ interface some additional operators that can be considered redun-

dant such as re-map and sort for the HQBasis class. We also introduce the getSize()

operator, which is an abstract size of a HQSet. This size of a HQSet should provide heu-

ristically defined information about how long the principal operators might need to finish

their task. We suggest as well to unify the debugging functions, such as those in C3, where

we have boolean sc consistent p(Psysteme) or boolean sc weak consistent p(Psysteme) 20.

The HQ interface is proposed after having studied the other four interfaces ; as a result,

for adaptations, wrapping functions are suggested. However, as we have seen in section 1.5,

wrapping functions for Octagon are not yet possible since dimension permutation operators

are not available. The example with timeout management for POLYLIB (section 1.3) is

another example that shows how hard this work can be.

In the next section, we discuss some important operators in detail. For the complete

documentation of HQ, readers are referred to [Que05b].

2.4 Differences in Implementations

Due to the number of operators and their complexity, in this section, we take only

three operators in our interface and discuss them in details. We are interested in practical

problems that are listed in the conclusion part of section 1 and we try to clarify some

terminologies related to those operators.

There are two main categories of problems : the differences of signatures between

existing implementations for an operator, such as naming conventions, returned codes ;

and the availability of some implementations.

We begin with an easy operator that returns a boolean answer, for example the test

of emptiness of a HQSet, i.e. the satisfiability of the constraint system used to define it. It

is important to note that since we pretend HQ to be the common interface, we consider

its operators and objects the most abstract, therefore sometimes the terms chosen can be

confusing. It also helps to point out that all HQ’s concepts are strongly related to sets’

concepts.

2.4.1 The Emptiness Test

Description : The emptiness test, also known as feasibility or satisfiability test in case

of polyhedra, verifies if a HQSet represents an empty set or not. A HQSet over Dn is said

20These two operators verify whether the constraint system in question is valid or not, due to possible

programming errors.



64 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

to be not empty when it contains at least one element in Dn, or empty if it contains no

element.

The emptiness test of a rational polyhedron by means of its generating system is equal

to the satisfiability test of its constraint system, since we have the duality of the two repre-

sentations 21. A constraint system is said to be satisfiable or feasible, if all its constraints

are simultaneously satisfied or feasible ; on the contrary, if we detect a contradiction among

its constraints, it is said to be not satisfiable or infeasible.

Sometime this operator can be referred as, although it is not much in use yet, is bottom

test of an element. This is due to the fact that when we consider the lattice of the abstract

domain, we call the empty HQSet the bottom element of the lattice, and the HQSet that

spans all the space, the top element.

The emptiness test for a HQSet normally returns a boolean answer, whereas its seman-

tics is different for integer and rational elements. The complexity of available algorithms

is usually exponential. Indeed, it returns the answer not practically calculable when an

exception is raised, due to computing complexity. In this case we cannot prove whether

the HQSet is empty or not.

The emptiness test has only one integer implementation, JANUS [Sog02], adapted by

the author to be used in C3. Therefore, existing implementations for rational and integer

problem are :

– Only rational operators : New POLKA, PPL ;

– Integer when possible, otherwise use rational operator : C3.

About exception handlers, existing solutions using C language, with magnitude over-

flow and out-of-memory space are :

– CATCH/THROW mechanism : C3 ;

– Integer returned codes which indicate exceptions : PPL ;

– No exception handlers : New POLKA.

In the next section, we present our prototype signature for the emptiness test, which

is in fact based on status querying model. Readers are referred to the introduction in the

previous section for HQ specific definitions of objects and classes, or the HQ documentation

for further details.

Our Proposal : getStatus Being based on a status querying model for a compact API,

HQ considers the emptiness test of a HQSet as a query for the empty status of this HQSet.

Thus the getStatus operator, whose signature is printed in figure 4.2, permits testing the

emptiness of a HQSet, as well as other properties. Please notice that we can define any

property as constant without changing the signature of the operator.

In the following paragraphs, we will identify problems related to this operator. We do

not really have any solution to these problems.

21The Chernikova algorithm performing the dual conversion is rational, not integer



2. HQ INTERFACE 65

HQBoolean getStatus(HQSetInterface.HQSetStatus status)

/*

Valid status are CONSTANT_EMPTY, CONSTANT_UNIVERSE, UNDEFINED,

NOT_EMPTY, BOUNDED, BOUNDED_FROM_ABOVE, BOUNDED_FROM_BELOW,

CLOSED, MINIMIZED, NORMALIZED.

Status BOUNDED can have answer TRUE, FALSE, TOP, i.e. bounded from

above, or under a hyperplane, and BOTTOM, i.e. bounded from below,

or above a hyperplane.

Status CONSTANT_EMPTY, CONSTANT_UNIVERSE, UNDEFINED and CLOSED can

be TRUE, FALSE.

Since expensive calculations of NOT_EMPTY, or SATISFIABLE, test can

generate exceptions, we can get TOP or BOTTOM answer instead of TRUE

or FALSE.

*/

Fig. 4.2 – Signature of getStatus

Constants terms : getStatus operator permits testing properties defined by constants

such as CONSTANT EMPTY, CONSTANT UNIVERSE, UNDEFINED are introduced.

It is up to the user to define the meaning of those constants. In the polyhedral case, they

can respectively represent an empty set, e.g. with only the constraint 0 == 1, all the space

(Rn), with no constraint, and an undefined object.

The undefined object is special which is not available in PPL, Octagon and New

POLKA but only in C3. It can be very useful if we take into account the exception

mechanism 22.

A note for existing implementations : For the bounded from above or from below

status, we have seen the equivalent notions only in PPL. Besides the emptiness test int

ppl Polyhedron is empty(ppl const Polyhedron t ph), we have functions that are not avai-

lable in C3, such as int ppl Polyhedron is bounded

(ppl const Polyhedron t ph), int ppl Polyhedron bounds from above(ppl const Polyhedron t

ph), or int ppl Polyhedron bounds from below(ppl const Polyhedron t ph) 23.

PPL uses the notation get relation with , which permits specifying many relations such

as inclusion, equality, disjoint, strictly or not, etc. This notation is not used in the other

libraries. In New POLKA, the notation versus is used. This notation is however in our

opinion not intuitive enough.

22The empty constraint has a semantic meaning, whereas the undefined constraint system is simply used

as a programming trick. For example, the undefined constraint system can be used to indicate the case

where an exception occurred.
23These three functions verify whether the polyhedron is bounded or not.



66 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

Clarity of terminology in use : We also have other examples about the clarity of

terminology in use. It is not clear how to define and use minimization, normalization,

simplification in existing implementations. Similarly, the closure operator in the octagon

library does not make much sense in the polyhedral domain. For more explanation, one is

referred to [APR05], where the term canonicalization is also introduced.

In Octagon, we have bool oct is empty(oct t* m), tbool oct is empty lazy(oct t* m), that

test the emptiness of the octagon in question. bool oct is universe(oct t* m) tests whether

the octagon is the constant universe or not. bool oct is closed(oct t* m), is a low level

function that tests if the octagon is closed or not, meanwhile all the polyhedra are closed

(see chapter 3, section 1.3, page 30 for the octagonal domain).

In New POLKA, we have bool poly is empty (const poly t* po) and tbool poly is empty lazy

(const poly t* po) that test the emptiness of the polyhedron, bool poly is universe (const

poly t* po) that tests if the polyhedron is the constant universe.

Here, bool is the standard boolean type with two values, true and false, whereas tbool

stands for the triple true, false and top. The top element serves for exceptional cases, i.e.

do not know.

Incompatibilities : Citing incompatibilities among similar libraries is a complicated

task, not to mention dealing with those. However, since it is important we will try to

discuss what we have found here. We will mention operators that are very library specific

so the reader is suggested to dive into the code sources, or to simply skip this part.

The implementation of the emptiness test is non-trivial for practical reasons. We have

in C3 the boolean sc empty p() and boolean sc rn p() functions quickly test whether the

constraint system is the constant sc empty or sc universe 24, whereas the full rational

and integer tests, which implement several algorithms such as Fourier-Motzkin, Simplex

and cutting plane methods (see chapter 5 for these methods), are also available. These

functions are : boolean sc feasibility ofl ctrl(Psysteme sc), boolean sc rational feasibil

ity ofl ctrl(Psysteme sc), boolean sc integer feasibility ofl ctrl(Psysteme sc). Then, inside

these functions, heuristics are implemented for the selection of algorithms, which are based

on the number of the constraints of the polyhedron in question.

It is a little different in the other three libraries : there are no integer or rational

signatures, but two versions of the emptiness test, a full test and a quick one. In Octagon,

we have bool oct is empty(oct t* m), tbool oct is empty lazy(oct t* m) ; in New POLKA, we

have bool poly is empty (const poly t* po), tbool poly is empty lazy (const poly t* po). The

lazy version is used in order to delay the closure computation, which is rather expensive.

The similar technique is also applied in PPL with the and minimized version.

Which value to return at the end of a function’s execution also raises a compatibility

problem. For example, New POLKA uses the triple true, false and dontknow in case of

exceptions. This links to its chosen policy for exception handling ; meanwhile C3 uses true

24In C3, the term Rn, the whole space, is used instead of the constant universe.



2. HQ INTERFACE 67

for semantic true and false for dontknow 25. We notice here that sc empty p is seman-

tically different from not sc not empty p because of exceptional cases. It then needs a

is not empty test, knowing that not is empty is different from is not empty. We can also

use is known not empty and is known empty.

We remark that each implementation has its own naming convention ; for example in

C3, is xxx p is different from is xxx where the suffix p is used for boolean test, p stands

for predicate ; in New POLKA, suffix t is used for type, etc.

In the same way, the mechanism handling exceptions changes the operator’s signature :

some have exception handlers, e.g. C3 ; some do not, e.g. New POLKA. The PPL library

in its C interface proposes the standard returned codes of integer type, which tells the

status of the operation : result or exception code. Otherwise, we can deal with internal

errors, i.e. at lower level than the interface, while hiding exception-related issues from the

interface’s signatures.

When dealing with multiple algorithms for one operator, beside the interface problems,

i.e the signature defines how we choose one, we expect to have some algorithms destroy the

inputs by side effects, while others do not. For example, there are several algorithms for

solving the emptiness test, among which the Simplex and the Fourier-Motzkin methods.

The former builds a hash table and then works on this table without modifying the given

input which, in this case, is a constraint system, whereas the latter performs transforma-

tions of the corresponding constraint system, hence modifies its input. For this reason,

we may have destructive and/or non-destructive functions. If we make a copy of each in-

put, which helps the debugging process inside the library 26, the copying will penalize the

overall speed performance.

Then the question of exposing or not the destructive functions (PPL uses the name

recycle) directly impacts the interface, as well as the memory management by reference

counters. In HQ, we have decided to use the destructive function alongside with the stan-

dard one.

As discussed, even the simplest operator raises lots of problems for a common interface,

because many decisions in implementation have to be made, in different ways. And worse,

these problems are not specific to this very operator but also other operators. We will now

discuss two more operators while supposing that the reader have studied them both.

2.4.2 Projection

Existing implementations for the projection operator and its sibling, the add dimension

operator, also have many incompatibilities.

In C3, a space is represented by a structure called base. Each dimension of this

space is then specified by a variable holding a string as name. A base can be associa-

25The NOT EMPTY term is chosen for unknown answer, so the approximation step is hidden inside the

operator.
26For example, we can print out the constraint system if an exception is raised.



68 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

ted with a polyhedron whenever it makes sense. To remove a dimension from a polyhe-

dron, we remove it from the base and from the corresponding constraint system. To add

a new dimension to the polyhedron, we simply add it to the base, by the function void

base add dimension(Pbase b, Variable v).

In PPL, Octagon, and New POLKA we have two versions. The first one adds a new

dimension to the polyhedron and the variable corresponding to this dimension is not

constrained. The second one with the suffix and project sets the variable value to zero.

Internally, dimensions are represented by numbers instead of string.

New POLKA, besides the two above versions, offers the ability to add several dimen-

sions at once.

As a consequence, for this operator, the signatures are different. In fact, we can easily

implement in C3 the and project version by calling the projection operator after having

added the new dimension, or we can add several dimensions in C3’s, PPL’s, Octagon’s

implementations by calling several times the same function that only adds one dimension.

It is clearly just a matter of choice.

In the very same way, the New POLKA, Octagon and PPL libraries propose to remove

several dimensions at once with destructive option (Octagon), or with higher dimensions

option (PPL, New POLKA). Sometimes the projection along a list of dimensions depends

on the order of the dimensions ; therefore this version may be algorithmically useful 27.

We emphasize here that the version that permits several arguments at once is useful. We

have an example of the convex hull operator that can be found in page 69.

Similar to the emptiness test, there are several versions of the projection operator in

C3, implementing algorithms of different complexities.

2.4.3 Minimization

We now consider the minimization operator, which basically suffers from the very

same incompatibilities as the operators described in the two previous sections. Instead of

repeating ourselves here, we present only one minimization specific incompatibility.

In practice, given the cost of the minimization operator, all the three polyhedral im-

plementations give the developer the choice as when to apply this computation. Whereas

the octagon’s minimization is hidden and integrated in its algorithms. The consequence is

then that the polyhedral operators can have the suffix and minimize, or not at all, which

raises a compatibility problem.

We have discussed three operators as concrete examples. The next section discusses

the availability of some operators.

27However, we do not have any result concerning this issue.



2. HQ INTERFACE 69

2.5 Missing Operators

In this section, we list the operators that are available in some implementations but

not in other implementations, as well as some recently proposed operators. In general we

do not know why they are not available, except some special cases. We explain why some

operators are important so that we suggest to implement them.

Since C3, New POLKA and Octagon are libraries that are developed closely and used

alongside with their analyzers, some operators which are not yet needed are not imple-

mented. PPL library however proposes a very complete interface, which is designed for

general purposes. For example, the operators corresponding to the int is disjoint from 28

test, int expand dimension and int fold dimensions operators 29 are available only in PPL.

For debugging purposes, only PPL and C3 offer functions for the consistency check

int is OK operator, which is necessary. The mapping function that swaps dimensions is

not available in Octagon. Also, polyhedral common objects such as the constraint and

generating systems are not available in Octagon. Only in Octagon do we have low level

access functions to its elements, which are octagonal constraints ; although there are no

generating systems, we can always compute them in theory.

Not available in C3’s interface are the operators with and minimized, or lazy versions,

which perform the minimization inside the main operator. This is important at the algo-

rithmic level since the minimization itself is an expensive operation which strongly depends

on the size of its input. Let us consider an example by comparing the two approaches with

the intersection operator : the first one computes the intersection of two given polyhedra

to obtain a new polyhedron, then applies the minimization on this polyhedron ; the second

one applies the minimization on each of the two polyhedra, then computes the intersection

of two minimized polyhedra. In the first case, if the result is a very large polyhedron, the

minimization may need a very long time to execute, or exceptions may appear. The second

case gives a more stable running time for average size inputs since they can be minimized

faster.

At the same time, the absence of a version supporting a list of arguments for operators

such as the projection or the convex hull in C3, PPL and Octagon can penalize the

performance of their implementation. For efficiency reasons, this is necessary since the

computation of convex hulls is as follows : Consider three constraint systems A,B and C.

If we compute the convex hull of A and B to obtain a constraint system D, in order to pass

it and C to the same operator, we have to compute two more conversions to generating

systems, which is not necessary because we can indeed merge several generating systems

together into the final one, and then convert it to constraint system form. Moreover, since

it is an expensive operator, we can have several possible approximations, thus we have to

decide how to choose a specific version, for example, with an additional argument.

It is worse for with the widening operator, where a standard version is proposed in

28Test whether the polyhedron is disjoint from another.
29Grouping and separating similar dimensions of the polyhedron.



70 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

[Hal79], and another version is proposed later in [CH78]. These two versions are seman-

tically different. In the PPL library, we have two other versions whose names are used in

the signature of their function.

Moreover, we prefer having access to the numbers of equations and the numbers of

inequalities by getNbInequalities and getNbEquations operators as in C3 instead of having

access only to the numbers of constraints as in PPL and New POLKA, since experience

shows that heuristics can be based both on the numbers of equations or/and the numbers

of inequalities (see chapter 6).

We also propose new operators such as getAbstractSize or getAbstractWeight for the

HQSet objects, which should be used to predict the running time of main operators on

these objects. We also need to unify the printing functions, as well as the format conversion

functions between different abstract domains and between different implementations of the

same domain. New operators such as weak update (see section 3), elapsed time operator

(see [Min05, Min01b] and [tea02f, BRZH02]) should be available in our interface.

2.6 Other Problems

In section 2.4, we have studied the problems directly related to some important ope-

rators, which can be categorized into two parts :

– Signature-related problems between implementations of each abstract operator ;

– Availability of some implementations.

In section 2.5, we have discussed the availability of some operators. In this section,

we discuss other problems that are domain-related, signature-related or implementation-

related.

2.6.1 Domain-related Problems

As we have seen, the decision of implementing the HQBasis class or not raises many

incompatibilities among the four interfaces ; for instance, for generating system manage-

ment, problems such as : when do we compute the HQSysGen of a HQSet if it is included

in, do we have full support for access to constraints like in C3 and PPL, or just low level

functions like in Octagon or matrix-based functions like in New POLKA?

As an example, let us consider this problem : to get the number of inequalities of a

HQSet in constraint system form, should we implement a method of the HQSet class

such as getNbIneq(), or should we choose to implement it as a property named nbIneq,

of the constraint system HQSysCon, which itself is a property of the HQSet class, which

finally is HQSet− > HQSysCon− > nbIneq ?

If we used the first approach as currently do the four libraries, that is to say we expose

the getNbIneq() function, which returns the number of inequalities inside the HQSet, in

the HQ interface, we somehow expose the nature of the HQSet class. In our interface, we

decided not to use the function because we want the HQSet to be as abstract as possible.



2. HQ INTERFACE 71

Another problem is that, when we call this function, we do not know whether the

HQSet is minimized or not. Some transformations of the HQSet can result in different

values of its number of inequalities. Therefore, for every operator, we need to pay attention

to its detailed semantics.

As we have discussed in section 1.4, problems concerning transfer functions are also

not trivial. We need to justify our decisions for many other problems such as accessibility

scope for objects like vectors, constraints, generators, constraint systems, generating sys-

tems, matrices, undefined objects, multiple arguments for the union, projection operators,

object versus list of objects for constraints, generators, sets and expressions, signature in

imperative mode with several effects, i.e. using returned code in PPL.

About the PPL library, for the sake of simplicity we do not consider the concept

Not-Necessary-Closed, denoted NNC [BRZH02].

2.6.2 Signature-related Problems

By the design of HQ, we also deal with, though not directly, problems of approxima-

tions. For each operator, we may have several implementations among which the approxi-

mate ones ; thus we need a parameter for tuning between their precision and speed.

We have to deal with the differences among float, rational, real and integer computa-

tions ; robustness, i.e. how to deal with exceptions ; thread-safety, i.e. problems of when

using threading ; how to choose abstract domains using the common interface ; or how to

switch between the available abstract domains.

The proposed common interface for C3, New POLKA, PPL and Octagon requires

full support for every operator, thus operators being not ready are expected to generate

exceptions when they are called. Furthermore, each library can implement and use its own

specific operators, but we do not encourage this behavior.

2.6.3 Implementation-related Problems

Exception handlers in the four libraries are different, since PPL uses C + +, and the

others use C or Ocaml. Even with the C language, we have totally different ways of

handling exceptions. Sub-libraries used in the four libraries are also different : we have for

example the GNU multi-precision with floating point and integer versions. The control of

memory space used by a Max Object Size is different.

For debugging purposes, variable names (strings) are preferable to numerical dimen-

sion, i.e. 0→ (n−1) or 1→ n, but their use in some libraries is not supported. Furthermore,

when the objects, which are passed to the abstract domain engine by the analyzer, are lost

by side effects, we cannot debug them inside the engine, i.e. the abstract domain library,

itself 30. If every operator made backups of those objects, it would reduce the overall per-

formance. If not, since exceptions are unpredictably raised, we might not be able to restore

30This occasionally happens in C3 when out-of-memory space or overflow exceptions are raised.



72 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

the objects for debugging. We then suggest the use of two versions for every operator that

modifies its inputs. The debugging version should make copies of the inputs, so that in

case of exceptions, it can restore the original ones.

As we have seen in section 1.2, POLYLIB’s implementation for timeout management

was refused. However, it is important since our examples in chapter 6 demonstrate that

most of the polyhedral operators can be blocking. Each operator has its own complexity,

hence a different value of timeout. It is then required to use an additional argument for

every operator or a timeout field of values. We propose to use only one parameter p to

define the timeout value, under user control, and a field of heuristic coefficients, since it

is simple and flexible enough. For example, the emptiness test could require a timeout

value of 2p, the union operator 5p, the projection 3p, and so on. Notice that the values of

heuristic parameters need to be defined throughout experiments.

In HQ, we decided to support the automatic selection by default and overridden selec-

tion by user, for algorithm selection, i.e. which algorithm to use among several algorithms.

We also decide to interface explicitly the integer and rational algorithms. The minimi-

zed/lazy versions are made automatically without any additional user input. Memory

management issues such as version recycle, reference counter and control of used memory

space are explicit.

The problems raised by differences of 32-bit, 64-bit, 128-bit and gmp (GNU multi-

precision) computation are not dealt with in our interface, but at compilation time 31. In

HQ, we use an abstract type HQValue for numerical values, which hides these problems.

Thus, this is an open problem. The approach that uses two arithmetics at the same time,

implemented in LRS library section 3, page 45, is not taken into account. We do not discuss

the approach using product of abstract domains in this work, as well as recent approaches

to speed up polyhedral operators such as Cartesian factorization, or dedicated servers for

expensive operations that permit execution of several algorithms in parallel.

2.7 Conclusion

We have analyzed in details some important abstract operators, and proposed an inter-

face called HQ. It reveals many compatibility problems among the four existing interfaces

used in static analyzers. Compatibility problems have several origins :

– Signature related problems between implementations of each abstract operator ;

– Availability of some implementations ;

– Different abstract domains, different semantics ;

– Implementation related problems.

Our work aims at unifying those interfaces so that existing libraries can be reused

efficiently. This requires some adaptations since simple wrapping is not enough.

31In chapter 6, we study the arithmetic differences in more details with the polyhedral domain.



3. RELATED WORK 73

The most visible application of our work is that an analyzer can use, through a wrap-

ping API, the polyhedral domain, which is more precise, and the octagonal domain, which

is less expensive. Thus we can adapt the behavior of the analyzer in static analyses and

transformation of programs. Then, the impacts of using different abstract domains can

be observed. One of the perspectives of this common interface is to be able to automati-

cally change from one domain to another in an intelligent way, in order to obtain the best

compromise between precision and speed.

Given the nature of our analyses, contents of the sections are not balanced since we

cannot repeat common problems. As we will see in the next section, the beginning of the

APRON project, as well as the workshops VMCAI 2005 and NSAD 2005, do not have

great impact on our HQ interface, since the workshops did not focus on the problem, and

the APRON project has a different point of view to ours.

3 Related Work

We will briefly discuss two projects that we found closely related to our HQ prototype,

the APRON project, which was started with my work, and the Parma project, where

one of its objectives was to build a polyhedral interface that is said to be as complete as

possible.

3.1 APRON project

The introduction of this project is mostly retrieved from the proposal of the project,

which can be found at the project website [APR05].

3.1.1 Introduction

Five research teams from Ecole des Mines de Paris, Ecole Normale Supérieure de Paris,

Ecole Polytechnique, Verimag, IRISA, all active in abstract interpretation research, are

dealing with problems limiting the effectiveness of current static analyses used to statically

check safety and security properties, and to identify and locate origins of failures [APR05]

(see chapter 3).

It is said that the current accuracy must be improved to reduce areas of uncertainty,

which may reach more than 98 percent of an application analyzed by commercially avai-

lable automatic tools. A typical analysis normally last a whole night and requires more

than 4GB of main memory. The main targets for APRON analyzers are control applica-

tions with large numerical components, using floating point numbers, counters and arrays,

that are intractable by finite state-based methods. These applications will be real-life ap-

plications, in the 100 to 500 KLOC range, with thousands of modules. Adaptative abstract

interpreters are required to deliver the accuracy and the effectiveness these applications

demand.



74 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

Existing APIs of those engines are not compatible 32. APRON project tries to answer

the following questions : How can floating point operations with rounding or non-linear

expressions be mathematically modelized ? How can we automatically control the trade-

off between accuracy and speed by switching abstract domains by tuning the number

of control points, by adding auxiliary variables to memorize part of the execution trace,

by increasing the number of contexts for procedure analysis ? How to design a generic

analyzer performing interdependent analyses ? How can new abstract domains defined

and implemented by one team be readily used by another one ? Can we define abstract

interpretation case benchmarks and abstract domain benchmarks ?

A generic analyzer performing interdependent analyses, using any available abstract

domain, with experimental results is the final target. However, the APRON project is in

its very first phase. The generic analyzer is divided into several layers, which are only

defined at the lowest level, 0.

3.1.2 Our Contribution

Since this project’s objectives overlap with our work, we have contributed to its star-

ting up with our participation, namely in detecting incompatibilities of available libraries,

in analyzing the existing problems, in proposing a functional API which was briefly pre-

sented in this chapter, and in providing experimental results for the polyhedral domain,

in chapter 6.

Our HQ interface was discussed at APRON meetings where new propositions and

modifications are presented to obtain common decisions. From these decisions, a common

interface is then prototyped.

We believe that it is important to analyze the differences between our approach and

APRON by pointing out the main decisions made by APRON team [APR05]. We strongly

suggest the reader to have a look at APRON on its web site at http ://apron.cri.ensmp.fr.

The next section summarizes these decisions which are highly technical.

3.1.3 Main Decisions

The objectives of a common interface is to identify the fundamental functionalities

that an abstract domain used in static analyzers must supply, then to design a concrete

API with data types, functional signatures and their semantic definitions, and finally its

implementation. This interface should be generic and must satisfy the need of APRON’s

members.

In the context of APRON, since performance is important, simplicity and minimality

can be sacrificed. Furthermore, the needed modifications to the existing implementations

should be minimal, thus the common interface might not be optimized. Bertrand Jeannet

32see our presentation [Que04], which is in French



3. RELATED WORK 75

has proposed a common interface and implemented a prototype which can be found at

APRON’s site [APR05].

Levels and Problems Two levels have been identified. The lowest layer, level 0, consists

of implementations of different engines such as C3, New POLKA, PPL, Octagon, OMEGA,

CUDD, etc (see chapter 3 for these libraries). At this level, overflow and timeout exception

are dealt with. Memory management, thread-safety and performance are also considered

at this level, as well as debugging functions such as printing functions which depend on

the implementations.

Only at this level can we have abstract domain specific operators which are not shared

with other domains. The interface for this level is minimal, except the case where algorith-

mic advantages can be achieved. Different implementations can be combined to produce a

new library. Thus the Cartesian product implementation and dimension change approach

[Mer05] can be integrated here.

The genericity versus comfortable use question has been raised, i.e., whether the in-

terface should support or not functions with multiple arguments, e.g. convex hull of a list

of constraint systems. It was decided that performance-related issues, which depend on

the used domain, are treated at level 0, while comfortability-related issues are treated at

level 1. However, it is difficult since some algorithms such as minimization, projection or

convex hull require optimizations at level 1. It was decided that dimension management,

implemented in C3, is to be dealt with at level 1.

Problems at higher levels are dealt with in the static analyzers. For example, the

question of precision and arithmetics for 8, 16, 32, 64, 128 bits and gmp (GNU Multi

Precision) computing is dealt with at some level higher than 1, because it depends much

on the techniques used by analyzers. Numeric types specified by Value in C3 or pkint in

New POLKA are defined at compile time.

Structure Manager It was decided that the interface does not permit to choose an

implementation among several implementations or algorithms. It was also decided that

exceptions are handled at level 0 but not by the interface. Instead, a special structure

called manager is designed.

This has an impact on the interface : exception handlers and several versions of an

operator, including approximations, are hidden from the interface.

Since multi-algorithms are supported, we need a mechanism to choose different algo-

rithms for an operator. We can specify a default algorithm, and then the fastest to the

most precise algorithm are enumerated. As the number of available algorithms is different

between domains, the enumeration can be surjective 33. The selection of an algorithm is

executed by means of the manager. The default one can depend on the domain or the

33For example, if we have five polyhedral algorithms and only two octagonal algorithms for the projection

operator, then the enumeration is surjective (five to two) in the octagonal case.



76 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

operator in question, which means that the initialization is not generic. The timeout value

has to be differently defined by the manager for each operator.

The manager is used for many purposes and it contains several flags. For example,

when an operator returns a polyhedron, in order to know if the result is exact or not, we

can test the flag that is designed for this purpose.

Other Decisions The language of reference is the C language. Dimensions are typed and

numerated from 0 to n− 1. Any dimension should be accessible by level 1 operators. Note

that only C3 and PPL libraries have the dimension permutation functions. Thread-safety

and timeout exception are supported. The exception handlers consist of not implemented,

invalid argument, overflow, timeout and out of space, with interruptions by a catch and

throw mechanism for overflow, timeout, out of space exceptions.

Other decisions are : prefix for each implementation ; functional or/and imperative

signatures at level 1, with recycle/destructive version ; no reference counter which is hid-

den if implemented ; all implementations must cover the interface but may have their

own extensions ; improvements such as factorization are hidden from the common inter-

face ; constructor, destructor, debugging functions are required ; using a system of varargs

instead of a list or a table of arguments.

3.1.4 Open Problems

As we have seen, this work is in progress. The functions for conversion among domains

between implementations need to be defined 34. Since there are more than two formats,

an universal format is suggested so that it can be converted to other format and vice

versa, to reduce the number of needed conversions. Nonetheless, this approach influences

the performance in some cases.

Concerning the signatures, there are decisions to make about function names, return

codes, exception handlers or argument types. These decisions are dealt with in the proto-

type developed by Bertrand Jeannet. This prototype will be used to adapt New POLKA’s

interface, and then experimentations with the new version of New POLKA are planned.

A lot of work remains to be done to construct a common interface. Not treated in

APRON are products of domains, dynamic adaptation for higher precision, or switching

domain. In fact, a great deal of problems mentioned in our HQ interface also are problems

for APRON. Since this is a collective work, the main question will be how to persuade the

others, not only APRON members but also the static analyses community, to adopt our

technology ?

34In fact, these functions can be considered as some generic operators like the minimization, normaliza-

tion or canonization operators.



3. RELATED WORK 77

3.1.5 Different Contexts of HQ and APRON

While sharing the same ultimate goal, there are several differences between our ap-

proach and APRON’s approach. Most importantly, APRON’s members prefer to minimize

the number of changes required to adopt the new interface, and we are free of that obli-

gation. The most observable difference is the way that we design the new interface and

present the problems.

In HQ, we divide our approach into two different parts for clarity, and to simplify the

problems. The first part focuses only on the interface, using a high level language like Java,

with an object-oriented approach, thus hiding as many as possible implementation issues.

The second part, alongside this interface, presents the problems not directly related to the

interface, such as how we handle exceptions, how we convert from the javadoc-generated

interface to other languages such as C, Ocaml, etc.

In APRON, however, one immediately goes into details, by attacking the is bottom

operator ! Then a black box called manager is designed in order to keep information of

algorithm selection, exception flags, etc. An advantage of this approach is that we can

analyze the problems in more details.

Another driving point is our PIPS-oriented approach, since the author works in PIPS

development group. The APRON approach is on the other hand a layered approach that

needs to take into account other analyzers, because its members also are ASTRÉE and

NBAC developers. In figure 4.3, on the left hand side, we see APRON approach with several

levels among which, the APRON project works on level 1. Level 0 concerns the abstract

domains’ implementations, which are in fact the existing libraries. On the right hand side,

we have HQ approach and the objective to be able to use these available libraries.

Omega

Presburger

Polyhedral

PPL

PIPS

HQ API

Polyhedral

New POLKA

BDD

C3
Polyhedral

Octagon

BDD

Interval

Ellipsoid

NBAC ASTREE PIPS

Level 1

Level 0: APRON

Abstract domains

Fig. 4.3 – HQ and APRON approaches

In our opinion, our approach with HQ prototype focuses more on the robustness issue,

i.e. exception handling, than APRON does. In fact these two approaches complement each

other, at some levels.



78 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION

We think that APRON’s prototyped solution is a little too specific, because many

of its solutions are based on previous decisions that were made by APRON’s members.

For instance, the structure manager deals with too much information including exception

handlers, while we would prefer a simpler, yet standard way that uses returned codes to

indicate exceptions.

We conclude this comparison by stating the fact that our HQ interface was built in

order to serve the APRON’s project, which itself will build the common interface that will

be accepted and implemented by APRON’s members.

3.2 Parma Project

Our study told us that the Parma library’s interface is the richest one compared to

the other three polyhedral libraries C3, New POLKA and Octagons 35. This means to

us, in order to build a common interface, we need to pay special attention to this very

library. Can we simply replace our current library with this library ? Or should we take it

interface as a starting point for our common interface ? In order to answer these questions,

we needed to study it in details. And we have had our answers.

Implemented in C + +, it is designed to be a general-purpose library, with a strong

support for any static analyzer. Therefore, its objectives overlap with our work. However,

we consider that its current interface is not totally satisfying.

Firstly, the interface of the Parma library PPL is not frozen until its official 1.0 release
36, therefore it can be changed.

Secondly, PPL has a different approach to ours on multi-algorithm support in operator

signatures, which is critical to us. PPL’s important algorithms such as projection, minimi-

zation and convex hull are all based on the Chernikova algorithm, i.e. dual conversion-based

like in New POLKA, therefore interesting implementations using constraint system mani-

pulation algorithms in C3 are not available. These algorithms are interesting due to the

fact that some algorithms have very low complexity and can be used as approximations.

As will be presented in chapter 6, static analyses using polyhedral abstract domain are

really expensive, easy approximations are fundamental.

Thirdly, since PPL is developed in C++, issues like exception handlers for C language

are not considered. And timeout exceptions are not yet supported.

Finally, since PPL library is designed as a polyhedral library, newly introduced libraries

such as the octagon library with its interface, are not yet taken into account.

4 Conclusion

In this chapter, we have presented our approach to deal with compatibility problems

in the context of static analyzers. The incompatibility of existing proving engines, i.e.

35See section 3, page 47 for the PPL library introduction.
36At the time of this writing, we have the 0.7 release.



4. CONCLUSION 79

existing abstract domain libraries, stop us from effectively using them (see chapter 3 for

these libraries).

Our proposition for a common interface for abstract set manipulation engines, illus-

trated in section 2, helped to identify the problems, and presents our very first solutions.

We understand that even though we have tried to simplify some issues, it is still very

complicated to present this work in an efficient way.

Then, we have compared our HQ approach and the APRON approach at the end of

section 3. We have mentioned that the HQ interface was presented in APRON meetings,

and helped starting deeper discussions on the subject.

Recent developments37 show that current polyhedral libraries such as POLYLIB, PPL

and APRON, as well as polyhedra-related libraries such as Octagon library, are being

worked on their interfaces. Likewise, new abstract domains are introduced, e.g. in [Fer05b],

which may have an important impact on our common interface. For the time being, the

very first common interface is defined by the APRON project.

Some complex problems such as product of domains or the Presburger domain are not

dealt with. At first, the implementation of the common interface will help the three static

analyzers described in chapter 3 to profit from those abstract domains. Then, given the

compatibility among the libraries, other analyzers using abstract interpretation can use

them, too.

We intend to continue working on the HQ interface, where the compatibility problems

are documented 38, and some adaptations from the APRON’s prototype are also encou-

raged. In the next chapter, we will study the interface of the polyhedral domain, the

underlying algorithms and related problems.

37At the VMCAI 2005 and NSAD 2005 workshops.
38APRON’s prototype does not supply this kind of documentation.



80 CHAPITRE 4. TOWARDS A MULTI-DOMAIN INTERFACE FOR ABSTRACT INTERPRETATION



Chapitre 5

Comparative section for polyhedral operators

Chapter 2 has introduced the basic concepts of static program analysis, whereas chap-

ter 3 has presented available abstract domains used in static program analysis, including

the polyhedral domain. It has been shown that there exists a class of either general-purpose

or domain-specific libraries.

In this chapter, we will focus on the polyhedral libraries. We will discuss which imple-

mentations were used for each operator, which algorithms have been chosen and why, what

are the principal differences among them, in order to suggest a better use of those works in

the context of program analysis and transformation. Given the nature of implementations,

this chapter is highly technical.

We will try to cover as much as possible the description of each operator, but for a

better understanding, the reader is referred to the documentations of those libraries. The

list of these libraries and general convex polyhedra definitions can be found in chapter 3,

section 1.2, page 25.

Our contribution to improve some of these operators will be presented in this chapter

(section 3.2.3, page 91, section 6.2.3, page 106).

1 Polyhedral Operators and Open Issues

1.1 Polyhedral Operators

Using convex polyhedra for the manipulation of numerical information is a key idea

which is employed in several systems for the analysis and verification of hardware and soft-

ware components. Unfortunately, polyhedral interface being composed of many operators,

its design is not universal and strongly depends on the need of developers. However, in

existing polyhedral libraries, we can find a common part for these operators, even though

they may have slightly different names. We present in this chapter only the most important

operators.

A convex polyhedron can be over Rn, Qn or Zn, depending on the implementation, so in

this chapter, we use Dn if we do not want to specify the domain. Given the incompatibilities

among several polyhedral interfaces, our polyhedral operator naming is based on the work

of the APRON project [APR05].

81



82 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

1.2 Open Issues

As mentioned in chapter 2, section 3.2, page 10, abstract interpretation is a method of

formalizing the approximation relation between the concrete semantics and the abstract

semantics.

Convex polyhedra are used to represent the semantics of a program as an abstract

semantics, but not only we have two representations, constraint systems and generating

systems, each representation can have redundancy problem. For one polyhedron, we can

have redundant constraints, rays, lines or points. The minimization operator that deals

with redundancy is an expensive operation, thus we cannot apply it everywhere. In prac-

tice, sometimes the physical memory space requirement can be huge.

Since the representations of polyhedra are practically not normalizable, different imple-

mentations are not interchangeable. Problems of incompatibilities like format conversion

make reuse of code and sharing experiences not obvious.

Physical representations can be implemented differently. For example, C3 [tea90] in-

tegrates some dimension naming scheme, meanwhile others use a fixed enumerated space

dimension, from 0 to n (e.g. New POLKA [Jea02b], Octagon [Min05] and PPL [tea02f]).

Handling of constant terms is also implemented differently.

As the complexity of polyhedral operations is high in terms of execution time and

memory space, exceptions are to be dealt with. The overflow exception, when the com-

putation raises too large a number, is handled by most existing implementations, though

not thoroughly. Unfortunately, the timeout exception is not systematically considered.

PPL [tea02f], written in C++, deals with overflow exceptions using C++ exception

handlers. C3 library [tea90], written in C, uses a set of macros and exception handlers

using long-jumps, previously implemented in POLYLIB [Loe02], and provides a way to

detect and handle this kind of exception. The LRS library [Avi02] implements its own

mechanism that detects overflow exceptions, but like other libraries such as New POLKA

[Jea02b], CDD [Fuk02], it suggests using GNU Multi precision algorithms, or built-in C

calculation for fast execution. This way, no overflow detection is needed, although strange

behaviors can be observed when using this version. No overflow detection is implemented

in New POLKA and CDD.

Timeout exceptions become vital when the running time of large scale applications is

important. However, from the well-known POLYLIB to the recent development of PPL,

there are no timeout handlers. In general, overflow exceptions come before timeout excep-

tions, when the problem size is not very large. Otherwise, when an elementary operation

takes one or two minutes without overflow, the total performance can be disastrous, kno-

wing that hundred thousands calls of the same operator can be expected on a typical

session of program analysis and transformation.

In C3 library, timeout exceptions are integrated beside overflow exceptions, but as it

uses the POLYLIB library for some of its operators, the implementation is not straight-



1. POLYHEDRAL OPERATORS AND OPEN ISSUES 83

forward.

Regarding C implementations, the mechanism for exception is using long-jumps. So

thread-safety becomes a problem, which although not being yet a requirement for existing

implementations, can prohibit the integration of these tools.

For different contexts of use, the computational engine of (polyhedral) libraries are

sub-libraries with different precision : libraries dealing with integer, rational or floating

point algorithms ; computation for 32-bit, 64-bit, 128-bit or GNU multi-precision numbers,

not to mention the different versions used in some libraries, or their variants. Fortunately,

most polyhedral libraries support the C language, or are written in C++.

The impact of those differences on program analysis is not yet systematically analy-

zed. Hence only by experience developers remark the changes using different precisions

of computation. For example, PIPS developers prefer not using the GNU multi-precision

before precision becomes an issue, because the complexity for 64-bit computation already

costs much time. As a result, individual decisions made in different contexts can also limit

integration of existing tools.

Many impact related questions are interesting. For example, which precision shall we

obtain if we use 64-bit over 32-bit computations, or what do we lose if we are 64-bit,

instead of multi-precision ? In term of program analysis and transformation, if we lose

almost nothing from moving more expensive computation like GNU multi-precision to 64-

bit arithmetic, we should evidently be 64-bit. If it is a great lost, e.g. we actually cannot

eliminate a dead code because 64-bit is not precise enough, then we certainly should try

the GNU multi-precision.

While the difference in results of program analysis is somehow not obvious to describe,

comparison of the numbers of exceptions for example can be a simple and good approach.

This also explains our point of view in our analyses that we do not pay too much attention

for the algorithmic precision differences. For example, we compare a library using floating

point algorithm against another library with integer computation. It makes sense because

we only study their final result on a large scale to see how much precision we can lose.

The main question is then the issue of precision versus the approximation. The ac-

tual answer is divided into two categories : tuning among the abstract domains, where

more precise domains go along with exceptions, or using the same domain while applying

approximation techniques like the widening operator, or based on Galois connection (see

[CC91] or [CC92] for a comparison of these two approaches).

Beside the availability of implementations, we also need to mention the absence of

some important algorithms, most of the time integer arithmetic algorithms. Depending

on the need or sometimes because of algorithmic difficulties, developers do not implement

such algorithms.

That said, whenever an important improvement is found, the others should be able

to profit easily. On the other hand, many libraries are built from analyzing pre-existing

libraries (e.g. POLYLIB [Loe02], New POLKA [Jea02b] and PPL [tea02f]), sometimes it is



84 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

hard to know which one is more efficient for a given task. Any claim of improvement then

needs to be evaluated. To our knowledge, it does not exist yet a mechanism for this kind

of evaluation, so our contribution is to introduce a polyhedral benchmark in chapter 6.

Given lacks of some important algorithms, approximate analyses are used along with

approximate algorithms. However, utility of exactness is not yet fully studied. In some

cases, it is shown that exact algorithms are not necessary. For example, an empirical

study on dependence analysis and array reference in [SLY90] shows that the coefficients of

array reference pairs usually are 1 or −1, which means a data dependence exists if and only

if there are real solutions to the systems derived from their subscript expressions. Among

4105 pairs of two-dimensional array references, 97% (3997 pairs) verify this condition.

Thus, the faster real version of the satisfiability test is enough, instead of the integer one.

On the contrary, the exactitude of algorithms can help avoiding computations of empty

polyhedra that are not detected by real algorithms.

Recent developments, such as factorization applied to large scale analyses in order to

improve actual algorithms (e.g. [HMPV03]), are interesting but difficult to exploit. For

example, continuous developments and changes in PPL library (since version 0.3) make it

harder to implement the Cartesian factorization [HMPV03].

Backup algorithms applying approximations are important for each operator but they

are not thoroughly studied. In case of magnitude overflow or insufficient memory space,

correct approximate operators should be available to continue the analysis.

In the same way, each project has its own debugging techniques, and supports them at

different levels. Thus, to help the re-utilization of equivalent works, co-operation among

groups of researchers should take place.

In order to deal with the above problems, by analyzing existing tools, problems and

the need, before going to the section dedicated to our discussions and suggestions on

algorithms, heuristics, debugging techniques, exception handlers, etc., we limit ourselves

to a list of important operators.

We organize this chapter in an operator by operator way in order to fully describe

operator-related problems, thus it is maybe sometimes redundant. Each operator has its

particular issues, but we have tried to keep sections as balanced as possible. We have

tried to describe our points of view on difficulties towards an integration of related work

throughout the sections.

Based on this chapter, on our proposition of a common interface for polyhedral opera-

tors (chapter 4) and on our system of benchmark with experimental results (chapter 6),

we have established a framework for analyzing polyhedral implementations.



2. DUAL CONVERSION 85

2 Dual Conversion

2.1 Introduction

The decomposition of polyhedra, described in chapter 3, section 1.2, page 25, says

that a polyhedron can be represented in such two manners 1, called H-representation (i.e.

constraint system) and V-representation (i.e. generating system). The Dual Conversion

or Double Description Conversion operation consists of converting a polyhedral represen-

tation or constraint system to its dual form and vice versa.

It is important because, for some operators, it is much more efficient to use one re-

presentation than the other. For example, the convex hull of two polyhedra using the

generating system representation, or the intersection using constraints.

[Sch86], in page 120, mentions the vertex enumeration problem that computes V from

H, and the facet enumeration problem that computes H from V . These two problems are

essentially equivalent under point/hyper-plane duality, thus any algorithm for the vertex

enumeration problem can be used for the facet enumeration problem.

This operator, though not being an interesting operator itself for use in program ana-

lysis, is key for a class of existing polyhedral libraries like C3 ([tea90]), New POLKA

([Jea02b]), POLYLIB ([Loe02]) and PPL ([tea02f]). It can be applied directly in useful

operators such as the feasibility test, the projection along one dimension, the minimiza-

tion and the convex hull of polyhedra.

2.2 Available Algorithms

To understand the differences among these algorithms, and to check if we could improve

anything, we decided to take a survey about all available algorithms, their history and

implementations.

The most used algorithm for the dual conversion is the Chernikova algorithm that

finds an irredundant set of vertices and rays of a polyhedron, defined by a mixed system

of linear equations and inequalities ([Che64, Che65, Che68]). This algorithm is a variant

of Fourier-Motzkin algorithm ([MRTT53]).

It is then optimized by Le Verge, in the detection of redundant elements [VDW94].

This technique adds a new dimension to the polyhedron in question to obtain a cone with

the vertex at the origin. A cone is represented by a vertex (at the origin) and a set of rays

and lines. The polyhedron is then viewed as the intersection of the cone and a hyper-plane.

This technique simplifies the implementation of the algorithm, while it does not change

the generality of the method.

There also exist some other algorithms which can be used for solving the same problem

([MR80, Chv83]). Some algorithms such as Chernikovad return both representations in

minimized form (i.e. redundant removal included) ; some others do not. Being an operation

1Also known as double description.



86 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

of exponential complexity, execution of these algorithms can result in overflow exceptions,

or unacceptable running time.

Given the duality of the dual conversion, which means one conversion is linear time

reducible to the other, we can restrict our discussion to finding the generating system,

also known as the vertex enumeration problem. Yet a more appropriate definition of the

problem is to require the minimality of the generating system, which is in general unique

up to positive scaling when we assume the regularity condition that the cone is pointed,

i.e. the origin 0 is an extremal point of the polyhedron. Geometrically, the columns of a

minimal generating system are in a one to one correspondence with the extremal rays of

the polyhedron. Thus the problem is also known as the extremal ray enumeration problem.

The extremal ray enumeration problem has been studied, directly or indirectly, by

many researchers in mathematics, operations research, and computational geometry etc.

Despite that, no efficient algorithm for the general problem is known.

In essence, there are only two main classes of algorithms for the problem : pivoting and

incremental algorithms. The pivoting algorithms implement the idea of the simplex like

in linear programming, where we start from a vertex, go to another adjacent vertex, then

by some way travel all the set of vertices. The gift-wrapping in [CK70], Lexicographical

Reverse Search in [AF92] belong to this class.

The incremental algorithms compute the vertex description by intersecting the defining

half-spaces sequentially. An initial simplex is constructed from a subset of n + 1 half-

spaces and its vertices. Additional half-spaces are introduced sequentially and the vertex

description are updated at each stage. Essentially such an update amounts to identifying

and removing all vertices that are not contained in the new half-space, introducing new

vertices for all intersections between edges and the bounding hyper-plane of the new half-

space, and generating the new edges between these new vertices.

The first incremental algorithm, known as double description method, is presented

by Motzkin and al. ([MRTT53]), then it is rediscovered and refined by Seidel’s beneath

and beyond method ([Sei81, Sei87, Ede87]), Clarkson and Shor’s randomized algorithm

and Chazelle’s derandomized algorithm. The method known as Chernikova’s algorithm

([Che64, Che65, Che68]) is basically the same method.

Optimizations in Particular Cases - Better algorithms can be found for the case of

two and three dimensions, where O(n log n) time in fact suffices (instead of O(n log n +

nd/2) for example). But as the dimension of the space increases (beyond three), certain

assumptions that were valid in lower dimensions break down. For example, any n−vertex

polygon in two dimensions has exactly n edges. Nonetheless, the relationship between the

numbers of faces and vertices is more complicated even in three dimensions. A cube has 8

vertices and 6 faces, while an octahedron has 8 faces and 6 vertices.

In planar space R2, the lower bound is O(n log n) just like the sorting problem (see

[vLa90]). If we know that the number of edges of the polyhedron is small, then Jarvis’



2. DUAL CONVERSION 87

March [Jar73] is appropriate. If the points of the polyhedron are already sorted, Graham’s

Scan, [Gra72], can be applied directly. For three dimensions, either the generalized Divide

and Conquer of Preparata and Hong ([PS85]) or Chazelle’s algorithm [Cha93] can be

chosen, or randomized algorithms [Cla88a, Cla88b, CS89], all with expected running time

O(n log n).

Nonetheless, some of the above algorithms are not suitable for the implementation

of general dual conversion problems. Moreover, algorithms in higher dimensions are said

to be efficient enough for R2 and R3, therefore above algorithms are not implemented

in existing polyhedral libraries. It would be somehow useful to be able to validate this

assumption by experimentation in real cases.

In practice, the Chernikova’s algorithm (or Fourier-Motzkin’s Double Description me-

thod) are implemented with different techniques like Le Verge’s optimization [Ver92] or

CDD’s [FP95]. Lexicographical Reverse Search [AF92, AF96] and the Quick Hull [BDH96]

are also important implementations.

Approximation Algorithms are useful for applications that require rapid solutions

even at the expense of accuracy. There are two way to approximate the result : conservative

and liberal. The former computes the set that is included in the true result. The latter

outputs an approximate set that is a superset of the true result.

Parallel algorithms are introduced in order to improve the performance of double

description computation. For example, it is known that the convex hull of n points in

Rd can be constructed in O(log n) time using existing O(n log n + n⌊d/2⌋) algorithms

([AGR94]). But it is surprisingly not yet employed in existing implementations.

Decomposition of polyhedra in high dimensions permits computation of polyhedra in

lower dimension, which is interesting since the running time is exponential to the dimension

[Mer05].

2.3 Practical Problems

Implementation differences often lead to incompatibilities in internal representations

of database structures, which raises a problem of format conversion, computational ca-

pability, where libraries of different precision are used (i.e. rational, floating point and

integer ; 32-bit, 64-bit and gmp libraries), and exception management, where different pro-

gramming languages are used, etc. In this case, dual conversion is implemented in CDD

(section 3, page 44), in LRS (section 3, page 45), in New POLKA (section 3, page 47), in

POLYLIB (section 3, page 46) and PPL (section 3, page 47) : no library is fully compatible

with one another.

As we have seen in chapter 3 page 44, the CDD is rational, while the others are

integer. It makes the reuse and performance comparison of these algorithms much more



88 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

difficult. Moreover, not all libraries support thread-safety computation. Indeed, in the

context of program analysis, the result can be affected by computational precision, such

as 32-bit, 64-bit and gmp computation. In chapter 6, section 2.8 our analyses on some

64 − bit polyhedral databases reveal the percentages of the coefficients that are greater

than 32− bit capacity. However, these numbers do not tell exactly the difference between

the above computational precisions.

We have talked about approximation when exact computation is not possible, which

means no result because of exceptions. We use the term backup algorithm to indicate

another algorithm that will more likely give a result, albeit less precise. Unfortunately, we

do not have one for the dual conversion, yet.

3 Satisfiability

3.1 Introduction

The Satisfiability test, also known as feasibility, or emptiness test, verifies if a polyhe-

dron is empty or not. A polyhedron over Dn is said to be not empty when it contains at

least one element in Dn, or empty if it contains no element.

The emptiness test of a polyhedron by means of its generating system is equal to

the test of satisfiability of its constraint system since we have the duality of the two

representations. The satisfiability test : a constraint system is said to be satisfiable, or

feasible, if all its constraints are simultaneously satisfied, or feasible. On the contrary, if we

detect a contradiction among its constraints, it is said to be not satisfiable (or infeasible).

In exceptional cases, when we cannot prove that the system is feasible or infeasible,

we say that the system is non practically calculable. There exists a number of methods

to perform this feasibility test, for example the Simplex method described in [Sch86]

(page 129), as well as using the dual form (conversion from the constraint system to the

generating system reveals the satisfiability).

Sometime this operator can also be referred as, although it is not much in use yet, is

bottom test of an element. This is due to the fact that when we consider the lattice of

convex polyhedra, we call the empty polyhedron the bottom element of the lattice, and

the universe polyhedron that spans all the space, the top element (see chapter 4 for some

naming explanation).

3.2 Available Algorithms

We are interested in available libraries implementing this operator, that is to say

C3 ([tea90]), CONVEX ([Fra02]), JANUS ([Sog02]), OMEGA ([tea02e]), PIP ([Fea02]),

New POLKA ([Jea02b]), POLYLIB ([Loe02]), PPL ([tea02f]) and PORTA ([CL02]). Even

though OMEGA library is not really polyhedral, its implementation of this operator might

be interesting, because it can be used to solve our problem. Available algorithms can be



3. SATISFIABILITY 89

divided into three categories : the Fourier Motzkin, the Simplex method, and the double

description method.

In general, these algorithms are all rational or real. However, as an integer answer

means more precision in program analysis and transformation, integer treatments in some

stages of existing methods are implemented, including two approaches. The first one scans

the solution domain to check if it is integer, whereas the second approach tries integer

checks at every step of the algorithm. Following the second approach, in C3 [tea90], the

Fourier Motzkin algorithm is modified so that it searches for rational answers, and for

integer answers if only possible (i.e. the algorithm is integer/rational). JANUS, an imple-

mentation that combines both approaches, using the cutting plane method described in

[Sch86] (page 129), proposes an integer algorithm that is relatively efficient [Sog96].

The double description method, while being rational, is implemented in most of the

important polyhedral libraries : New POLKA, POLYLIB and PPL. For POLYLIB, since

the generating system is always computed and kept in memory, we should take into account

the dual conversion, i.e. the double description method, in the test of emptiness.

Which one among these algorithms is the most relevant to use in our context of static

program analysis and transformation ? In order to anticipate the performance of these

algorithms, in this section, we discuss some important points by analyzing the algorithms.

Finally, these discussions will be justified by experiments, in chapter 6.

3.2.1 Fourier - Motzkin

The well-known Gaussian method for solving a system of linear equations by suc-

cessively eliminating variables has its variant for linear inequalities. It was described by

Fourier[1827], Dines [1918] and Motzkin[1936], so it is called the Fourier - Motzkin eli-

mination method. The idea of the method can be well illustrated by application to the

following problem : Given a matrix A and a vector b, test if Ax ≤ b has a solution, and if

so find one.

Let A be a matrix of dimension m× n, b a vector of m components b = (b1, . . . , bn)T ,

then x = (ξ1, . . . , ξn)T . As we may multiply each inequality by a positive scalar number,

we can assume that all the entries in the first column of matrix A is 0 or ±1. So the

problem is to solve :











ξ1 + aix
′ ≤ bi, (i = 1, . . . ,m′)

−ξ1 + aix
′ ≤ bi, (i = m′ + 1, . . . ,m′′)

aix
′ ≤ bi, (i = m′′ + 1, . . . ,m)

where x′ = (ξ2, . . . , ξn)T and (a1, . . . , am) are the rows of A with the first column entry

deleted.

We have :



90 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

max
m′+1≤j≤m′′

(ajx
′ − bj) ≤ ξ1 ≤ min

1≤i≤m′

(bi − aix
′) (5.1)

The unknown variable ξ1 can be eliminated by combining all the left side of 5.1 with

those of the right side. By repeating this procedure, we can successively eliminate the first

n− 1 components of x, and end up with an equivalent problem in one unknown, which is

trivial. The question of satisfiability is then solved.

Since this method is not polynomial but exponential in general case, we need to im-

plement a timeout mechanism inside this method to control the running time. In practice,

it seems to work well with systems of less than 10 inequalities (with this size, the sparsity

is not high, see [Yan93], page 93). We note that there is an important connection between

the projection operator and this method : each step of elimination is a projection along

one variable.

3.2.2 Simplex

DEFINITION 3.1 If A is a matrix of m×n dimension, b is a vector m components and

c is a vector of n components, then the problem of finding a vector x = (x1, . . . , xn) that

satisfies Ax ≤ b and maximize f = cx is a problem of linear programming. The problem is

then written :

{max cx|Ax ≤ b} (5.2)

The possible solutions are all those that satisfy all the constraints in the problem.

The optimal solutions are those possible solutions that have the maximum value of f . The

linear function f = cx is called objective function or economical function.

A problem is linear if these two conditions are satisfied :

1. The objective function f is linear.

2. The constraints are linear :
∑

aijxj ≤ bi

As we have mentioned, a generating system is a representation (though not unique) of

a convex polyhedron, with extremal points, extremal rays and lines. The original idea of

Simplex method is, when an initial solution is known, to visit all extremal points along

extremal rays or lines, searching for the optimal solution. At each step, if the optimal

solution is not found yet, the algorithm pivots to another extremal point.

The satisfiability test applies the Simplex method in a modified way : consider an

intermediate problem that has a trivial initial solution ; the solution of the satisfiability

test can be derived from the optimal solution found for the intermediate problem.

Since Function f = cx and the constraints are linear, we can suppose that x ≥ 0

without lost of generality 2. Thus the general problem of 5.2 can be written :

2Let yi = −xi if xi < 0, otherwise let yi = xi and rewrite the problem using yi.



3. SATISFIABILITY 91

{max cx|x ≥ 0, Ax ≤ b} (5.3)

We can write Ax ≤ b as A1x ≤ b1, A2x ≥ b2, b1 ≥ 0 and b2 > 0.

Consider the intermediate problem constructed as follows :

{max 1(A2x− x̃) | x, x̃ ≥ 0, A1x ≤ b1, A2x− x̃ ≤ b2} (5.4)

where x̃ is a new variable vector, 1 is a vector unit denoting an all-one row vector. Then

the ensemble x = 0 and x̃ = 0 defines a solution of the new problem 5.4. Therefore, we can

use Simplex method described above to solve this problem, having this initial solution. If

the maximum value of 5.4 is 1b, say with a optimal solution x∗, x̃∗, then x∗ is a solution

of 5.2.

In practice, when the problem becomes large, we observe that some implementation

is sensitive to the order of the constraints, in term of execution time and of overflow

exception. The running time problem suggests that a timeout mechanism is always needed.

3.2.3 JANUS

JANUS is an algorithm that was designed and developed by Jean-Claude Sogno at

INRIA, which can be used as an integer solver for satisfiability problems, in Zn. The work

is well illustrated in the paper [Sog96]. Nonetheless, there are two problems that we would

like to address.

First, the original JANUS was implemented with integer coefficients stored in 32 bits.

This really was a limit to our cases ; in our experiments, a wide range of large systems

containing large numbers cannot be treated, especially when these numbers accumulate

after some computational iterations.

Second, there is no head-to-head comparison between equivalent methods to show

the effectiveness of the method, except a comparison between JANUS and OMEGA test

[tea02e] concerning the “nightmare” problem [Sog96].

Given promissing result in our early testing, we have decided to overcome the first

problem, by implementing an other version that uses 64-bit computations in JANUS,

while keeping the 32 bits enabled. From now on, we will call this version JANUS Value,

or just JANUS for short. The second problem will be solved by a polyhedral benchmark.

Experiences show that Fourier-Motzkin is not adequate for large constraint systems

because of the large number of inequalities combinations, and that Simplex is not appro-

priate for small systems since it requires building and manipulating large tables. We will

now have a look at the strategy of JANUS.



92 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

The basic algorithm. The problem consists in proving the existence or not of an integer

solution that satisfies a set of linear constraints with all integer coefficients :

{Ax ≤ b : x ∈ Zn} (5.5)

The strategy is composed of two phases :

1. Reduce the formulation as follows :

– eliminate all equalities ;

– eliminate as many variables as possible by selective Fourier-Motzkin method ;

– introduce constrained variables.

2. Apply a (dual) cutting-plane algorithm.

We will not discuss all these steps but only some of them that we find interesting. We

would like to point out that to reduce the risk of having intermidate values that are too

large to handle, any simple procedure such as devide by greatest common divisors (GCD),

must be carried out as soon as possible.

Selective Fourier-Motzkin elimination. By projecting one variables by one, the

method of Fourier-Motzkin ([Sch86], page 155) can explode because of inequality combi-

nations. In this method, when projecting one variable such that its sign is positive in m

inequalities and negative in n inequalities, we can end up with m×n new constraints. The

heuristic used in JANUS assures the non-increasing number of generated inequalities :

elimination takes place only if the variable to be projected appears less than two positive

(or negative) coefficients. We can try the elimination in the case of two coefficients of same

sign of the variable, but this heuristic is simple and works well in practice, knowing that

after experiments, we can justify whether the strategy chosen is appropriate or not.

Introducing constrained variables with dummy elimination. Suppose an inequa-

lity includes a free variable whose coefficient has a unitary value (±1), for instance x1 :

x1 + ai2x2 + ... + aijxj + ... + ainxn ≤ bi

Introducing an integer slack (dummy) variable yi ≥ 0, we can replace it by an equality

and solve for x1 :

yi + x1 + ai2x2 + ... + aijxj + ... + ainxn = bi

x1 = [bi − yi − ai2x2 − ...− aijxj − ...− ainxn]

The system remains all integer, with one fewer inequality.



3. SATISFIABILITY 93

Single free variable cutting technique. (see [Sch86], page 339) Suppose an inequality

includes a single free variable and its coefficient is not unitary, for instance x1 :

ar1x1 +
n
∑

j=2

arjyj ≤ br (5.6)

Then, the following inequality, referred to as a “cut” inequality, is satisfied :

(ar1/|ar1|)x1 +

n
∑

j=2

⌊arj/|ar1|⌋yj ≤ ⌊br/|ar1|⌋ (5.7)

Since the coefficient of variable x1 is unitary, we can add the “redundant” constraint

5.7 to the current system and apply a “dummy elimination”. Inequality 5.6 is thus trans-

formed :

−|ar1|w1 +

n
∑

j=2

(arj − |ar1|⌊arj/|ar1|⌋)yj ≤ br − |ar1|⌊br/|ar1|⌋ (5.8)

Let us note two points, useful for the final step :

1. The right hand side of the new inequality 5.8 is not negative.

2. The number of inequalities is temporarily unchanged, however it will decrease in the

final step in case constrained variable w1 is involved in a pivoting operation, due to

the “cut” feature of w1.

Constrained Echelon Matrix. In order to apply the previous steps, JANUS chooses

to modify the system through unimodular transformations on free variables. The process

is repeated until one of the following cases occurs :

– No free variable remains ;

– Every right hand side is not negative.

Our satisfiability problem is formulated as follows :

Ax ≤ b ∈ Zr
+ (5.9)

Simplex. In the Simplex method, we can have several strategies, the one in JANUS is

to choose the inequality with the most negative right hand side, and the column with

the most possible pivots. In fact, if every right hand side is non negative, the existence

of a solution is trivial since 0 is a solution. However, if free variables remain, we cannot

conclude and keep introducing constrained variables. As we do not need to compute the

objective function, we choose the coefficients equal to zero. The pivoting rule is to choose

the negative coefficient of an inequality with a negative right hand side, satisfying :



94 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

1. The inequality with the most negative “right hand side” ;

2. The column with the most possible pivots.

3.2.4 Dual Conversion

There is also the algorithm using dual conversion in order to detect the satisfiability

of a polyhedron, which is presented in section 2, page 85.

3.3 Practical Problems

In a theoretical view, we showed that Fourier-Motzkin is appropriate for constraint

systems of small sizes and constraint systems, because of its great upper bound in memory

space (O(2n) in term of number of constraints), while Simplex with its manipulation of

a large table can be more adaptable for larger constraint systems. We can only compare

these two methods with the dual conversion method by experiments, since their algorithms

are very different.

In practice, the number of inequalities of a constraint system is by far the major

problem for algorithms. JANUS attempts to reduce the number of inequalities, by some

pre-processing. However, the used techniques are not applicable to all classes of systems :

they need to satisfy some conditions. Thus, as presented in chapter 6, JANUS encounters

problems with large systems (chapter 6, section 3). Yet, with a loop preventing implemen-

tation, JANUS can execute without timeout mechanism, whereas it is necessary for the

other methods.

Furthermore, JANUS only finds integer solutions ; that means it provides a better

precision than Fourier-Motzkin and Simplex : our experiments in chapter 6 reveal the

difference between integer and rational algorithms (chapter 6, section 3). Though integer

algorithm is more precise when integer solutions are required, it is in general more expen-

sive than rational one. Note here again that important libraries such as the POLYLIB,

New POLKA, and PPL implement only rational algorithms.

In order to use other libraries, format conversion is required and we have to take

into account the format conversion time. Moreover, not every implementation supports

the same set of arithmetics. In our case, original JANUS is implemented with C built-in

algorithmics, which forbids the integration of more generic arithmetics, such as the GNU

multi-precision, without an entire remake.

Our contribution to JANUS is its rewriting with a generic interface to enable the 64-bit

computations that show great benefits in practice : studies on precision lost are presented

with the comparison between JANUS 32-bit and 64-bit in chapter 6.

In case of exceptions, we do not have any backup algorithm which can assure a better

running time, since this operator only returns a Boolean answer. However, but we can

propose an equivalent operator which implements a different algorithm. For example, if

the Simplex method raises an exception, we change to Fourier-Motzkin method.



4. PROJECTION 95

4 Projection

4.1 Introduction

The Projection operation along one dimension using constraint system, uses the Fourier-

Motzkin’s algorithm to eliminate the variable corresponding to that dimension by compu-

ting the convex hull of the projections of all the rational points that belong to the initial

polyhedron. The result is a convex polyhedron that may contain elements that are not

the projection of an integer point. We can use some necessary and sufficient conditions for

testing the integer exactness of the elimination of one variable [AI91, Pug92].

If we use a generating system, we can simply remove the coefficients concerning the

dimension, on condition that the dimension to be projected on is completely independent

of the other dimensions.

The projection operator is important to reduce the number of analyzed variables, to eli-

minate uninteresting variables. There are different algorithms implementing this operator,

dealing with the H-representation and/or V -representation of the polyhedra.

4.2 Available Algorithms

Projection using Fourier-Motzkin elimination. In C3 [tea90], the Fourier-Motzkin

elimination algorithm is implemented, which operates directly on the constraint systems.

A description of the algorithm has been given in section 3.2.1 page 89. Libraries such as

New POLKA and PPL, which use mostly generating systems, implement dual conversion

for the projection operator.

Projection using Dual Conversion. All the variables in the basis of the space di-

mension are linearly independent, given a polyhedron P in Dn with basis {e1, ..., en}, we

have :

P = {x|P (x), x ∈ D,x = a1e1 + ... + anen}

Let W = w1, ...wk be a subset of the basis, then the projection of P from Dn to W is

the projection x′ of all elements x in P from Dn to W such that :

x′ = projectionW (x)

=
∑k

i=1 < x,wi > wi

Given definition 3.2 (chapter 3, page 26), the dual conversion permits an easy imple-

mentation of projection operators, thanks to theorem 4.1 :

THEOREM 4.1

P ′ = projectionW (P )

= projectionW (v1, . . . , vα) + projectionW (r1, . . . , rβ) + projectionW (l1, . . . , rγ)



96 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

In order to project the polyhedron P along one dimension, in the form of a generating

system, we can directly remove the coefficients corresponding to that dimension, and its

elements (points, rays or lines).

Since the dual conversion using Chernikova’s algorithm only deals with rational so-

lutions, the projection implemented in most of existing libraries is not integer, whereas

the modified Fourier-Motzkin elimination method implemented in C3 supplies a preferable

integer/rational precision : exact integer one when possible.

In pratice we observe that Fourier-Motzkin algorithm can produce a very large size

polyhedron, which requires a minimization with redundancy removal, and in some cases,

it has an unacceptable running time, especially when the input size is large enough. On

the contrary, the projection using the dual conversion can reduce the size of the resulting

polyhedron in its form of vertices, rays and lines. However, a generating system with

reduced size does not always imply that the size of its constraint system is reduced, too.

A comparison between these two algorithms has unfortunately not been yet conducted.

Besides, in PIPS [IJT90], where large size problems are often encountered, the advantage

of the reduced size using dual conversion projection is not yet exploited. Instead, a process

of size controlling and timeout mechanism is implemented.

Finally, it is still an open question whether one can determine a suitable order of projec-

tions when we need to project a list of variables while caring about size explosion. Actually,

these projections are handled without care of orders, even though extracted examples show

that sometimes we can prevent exceptions by changing the order of projections.

4.3 Practical Problems

Projection operators encounter explosion in memory space, magnitude overflows and

unacceptable running time, with both the Fourier Motzkin elimination method and the

double description method. Serious consideration must be made to avoid these problems

in our context of use.

When an exception is not avoidable, approximations are needed. Unfortunately existing

polyhedral implementations do not provide any solution. In general, to deal with exception

returned by polyhedral computation, programmers have to approximate in a very limited

way, depending on the context. For example, when a projection fails, a common way is to

remove all the constraints that have a non-zero coefficient in the dimension to be projected.

Of course, we can as well remove only the positive ones, or just the negative ones. This

solution is simple and rapid, but not flexible. Sometimes we lose all the information (i.e.

when the variable appears in all the constraints of the system). Finally, in order to include

these algorithms in a library, we have to justify these choices experimentally.

Existing polyhedral libraries that handle projections are New POLKA ([Jea02b]), PPL

([tea02f]), C3 ([tea90]), OMEGA ([tea02e]). Other libraries, such as POLYLIB ([Loe02])

CONVEX ([Fra02]), PORTA ([CL02]) do not implement any projection operator.

As mentioned above, dual conversion is used in New POLKA [Jea02b] and PPL [tea02f],



5. MINIMIZATION 97

whereas direct manipulation of constraints is chosen in C3 [tea90]. Actually, New POLKA

and PPL implement their own version of the dual conversion, with rational precision,

whereas C3’s implementation is integer/rational precision. This approach permits an easy

integration of other implementations for dual conversion such as LRS ([Avi02]), CDD

([Fuk02]), which may provide a better overall performance.

Incompatibilities among libraries implementing projection operators make experimen-

tal comparisons more difficult. For example, CDD uses floating point arithmetics, which

gives faster computation but very low precision, while the others uses integer arithmetics,

thus their running time is higher.

Interestingly, for object-oriented reasons, C3’s interface exposes only constraint sys-

tems and hides generating systems, so most of its operators use algorithms dealing with

constraints (except dual conversion for example). Hence, the implementation of a projec-

tion operator using dual conversion, while been used by New POLKA and PPL long ago,

is not available in C3.

Because the double description method assures the minimal form of its results, the

impact on analysis size could be considerable. Nonetheless, as the dual conversion is an

expensive operation itself, the running time and possibility of exceptions are to be studied.

We compare the impact of these two approaches in our experiments, chapter 6, section 6.

The projection operator can return exceptions with both algorithms. Using Fourier-

Motzkin algorithm when the variable to be projected appears in many inequalities with

opposite sign coefficients, the combination of inequalities generates many new constraints.

On the contrary, the dual conversion itself is an expensive operation (section 2, page 85).

5 Minimization

5.1 Introduction

Minimization addresses redundancy in polyhedral representations : redundant constraints

in constraint systems and redundant rays, lines or points in generating system. Besides

detecting redundancy, it tries as well to reduce coefficients of the polyhedral representa-

tions.

The most important part of the minimization is redundancy removal. However, for

different purposes, three types of minimization on polyhedral representations have been

established. For an ordered space dimension, only a canonicalization can assure the uni-

queness of the two presentations of a polyhedron. Note that this uniqueness is relative,

since each polyhedron can have several possible representations. This operation is quite

expensive, because of redundancy removal, lexicographical sort, etc. Hence, instead of ca-

nonicalization, minimization is implemented, where it on one hand attempts to remove

the redundant constraints, or the redundant vertices, rays and lines, and on the other

hand, normalize coefficients (i.e. divided by greatest common divisor).

It sometimes happens that a representation that occupies the least physical memory



98 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

space is not necessarily in its minimized or canonicalized form. In New POLKA library

([Jea02b]) a version of minimization that reduces the physical size of representation is

applied. We call it a reduction minimization.

In practice, because of minimization’s complexity, several degrees of minimization can

be applied. For example, a simple minimization deals only with the coefficient problem,

or removal of some obvious constraints such as x <= 1 when we already have x <= 0.

Often, one needs to consider when a minimization is needed (i.e. we do not have to apply

the minimization all the time). A common example that illustrates well this idea is that

one might want to apply a minimization before an equality test between two polyhedra,

but for a satisfiability test, the minimization is indeed not necessary.

5.2 Available Algorithms

There are two main algorithms for minimization ; one uses the dual conversion based

on Chernikova’s algorithm (e.g. New POLKA [Jea02b], PPL [tea02f]), while the other acts

on constraints. The first one is based on a property of the double description method,

such that the generating system converted from its constraint system is minimized, so if

we convert it back, we have a minimized constraint system.

The second one checks if a constraint is redundant with the rest of the system, one

by one. In this case, depending on the complexity of a particular situation, different levels

of minimization can be applied. Though it is confusing to have such implementations for

minimization operator, experiences show that it is profitable, especially when exceptions

occur. Furthermore, as the dual conversion is expensive, we sometimes need to approximate

the minimization.

5.3 Practical Problems

Problems concerning the minimization in practice is of reality, namely exceptions of

magnitude overflows, of memory space and of unacceptable running time. It becomes di-

sastrous when polyhedra of large size appear in analyses. In an example of PIPS execution

on applu.f in SPEC CFP 95 benchmark ([tea02g]) calculating inter-procedural transfor-

mers, preconditions and array regions (see chapter 2, section 4), a constraint system with

214920 inequalities is passed to the minimization operator, and constraint systems five

times larger than that occur after some iterations (the example can be found in chapter 6,

section 1.2). The analysis is then blocked for several hours, before memory space problems

occur. Thus, a mechanism that permits flexible application of minimization is of interest.

However, with existing algorithms, we can see it is not evident.

Backup algorithms for the minimization operator should be designed to deal with

exceptions. Actually, a common way to proceed is to do nothing, just return the non-

minimized concerned polyhedron. Otherwise, a size controlling mechanism should take

place, in order to predict the size of returned polyhedra and the running time of the



6. CONVEX HULL 99

operator.

Like the other operators, the existing implementations of minimization share incompa-

tibilities regarding computational precision, and differences between integer and rational

precision. Improvement such as decomposition of polyhedra can be integrated into mini-

mization algorithms, when the size of polyhedra is important.

The aforementioned approaches of minimization permit an interesting comparison in

performance, as well as tests of regression (i.e. comparison if there is a bug in an imple-

mentation) that we study in chapter 6.

6 Convex hull

6.1 Introduction

The Union of two (or more) convex polyhedra is not necessarily convex, therefore the

polyhedral domain using union operator does not comply with a lattice’s requirement (e.g.

uniqueness of element is missing). The smallest convex over-approximation of the union of

two polyhedra A and B is their Convex Hull, denoted A⊔B. Thus, it may contain points

that do not belong to the original polyhedra. Nonetheless, we can verify the exactness of

the convex hull compared to their union.

This operator has unfortunately a high complexity. In fact, convex hull computation

is one of the most time consuming operation in the polyhedral domain. In this section we

will discuss several work, including ours, in order to improve this computation. That is

why we give a formal definition of the convex hull of two polyhedra.

DEFINITION 6.1 Let Y and Z be two polyhedra. The convex hull of these two poly-

hedra is a polyhedron denoted Y ⊔ Z that satisfies :

∀x ∈ Y ⊔ Z, then ∃λ ∈ [0, 1],∃y ∈ Y,∃z ∈ Z such that : x = λy + (1− λ)z

6.2 Available Algorithms

The method to compute the dual conversion of a polyhedron can be used to find the

convex hull of polyhedra. From the V -representation, generating systems can be merged

and sorted into one generating system. Then the result can be convert to constraint system

form if needed. All the algorithms presented in section 2, page 85, can be used for this

operator, but some algorithms do not return minimized results .

Main general-purpose libraries that include a convex hull of two polyhedra are PO-

LYLIB ([Loe02]), New POLKA ([Jea02b]), PPL ([tea02f]) and C3 ([IJT90]). They all

implement the Chernikova’s algorithm for this operator. It is interesting to notice that

actual implementations only deal with two polyhedra, so convex hull of more than two

polyhedra have to be applied via several calls of convex hull for two polyhedra. It raises

a problem of efficiency, knowing that most of above libraries have constraint systems as

input.



100 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

Consider now three constraint systems A,B and C. If we compute the convex hull of

A and B to obtain a constraint system D, in order to pass it and C to the same operator,

we have to compute two more duals, which is not necessary because we can indeed merge

several generating systems together into the final one, and then convert it to constraint

system form.

There are many efforts in order to improve the strategy for calculating the convex

hull ; however they are all based on Chernikova’s algorithm, thus only minor modifications

took place. The first C-implementation for the algorithm by POLYLIB is reused in C3, or

re-implemented in New POLKA. A C++ version is developed in PPL library.

In the C3 polyhedral library, there are two versions of the convex hull operator :

a simple call to POLYLIB’s function and a partial factorization version. This partial

factorization tries to detect a common part of two inputs, therefore sometimes reducing

the size of the polyhedra passed to Chernikova’s algorithm.

For the same purpose, an extension for version 0.3 of PPL library integrates the poly-

hedral Cartesian product in order to speed up the computation by finding a good decom-

position of polyhedra ([HMPV03]). In the next two sections, we study these approaches

in more details.

6.2.1 Decomposition defined by Corinne Ancourt and Fabien Coelho

In this section, we describe the decomposition of polyhedra defined by two PIPS mem-

bers. This technique is used in C3, in order to improve the convex hull calculation. Un-

fortunately it was not fully documented, so we only explain the main ideas here without

proof 3.

When programs are analyzed, the same constraints appear again and again. The in-

tuition behind this decomposition of two constraint systems P1 and P2 is to capitalize on

P , the set of constraints shared by P1 and P2 before computing the convex hull of P1 and

P2 in Qn. When the sizes are reduced, the computation is faster. Moreover, exceptions for

overflows or out-of-memory space are fewer.

Let P1 = P ∩X1 and P2 = P ∩X2. Then hopefully, P1 ⊔ P2 = P ∩ (X1 ⊔X2), where

⊔ denotes the convex hull operator. This holds if the constraint matrix for P , X1 and X2

can be put in block form :







X1 0

X2 0

0 P






(5.10)

The proof is based on theorem 6.1 defining the generating system of a polyhedron with

a block-decomposed constraint matrix :

3We now have an official proof in [Iri05]



6. CONVEX HULL 101

XP =

(

X 0

0 P

)

If

gs

(

X

0

)

=

((

xvi

0

)

,

(

xrj

0

)

,

(

xlk

0

))

and

gs

(

0

P

)

=

((

0

pvl

)

,

(

0

prm

)

,

(

0

pln

))

where gs stands for generating system, then the generating system of XP is :

gs(XP ) = ((xvi + pvl), (xrj) ∪ (prm), (xlk) ∪ (pln)) (5.11)

Note that the number of vertices increases much faster than the numbers of rays and

lines.

This block form can be obtained by matrix transformation. P is broken down into P ′

and P ′′. If a constraint c in P and a constraint in X1 or X2 have both a non-zero coefficient

in the same dimension, c belongs to P ′′. Thus, P ′ contains the constraints in P that do

not belong to P ′′.

In fact, this depends on the chosen basis, for example :

P1 = {(x, y)|x + y = 2, x− y = 0, x + y ≤ 10}

P2 = {(x, y)|x + y = 2, x− y = 0, x + y ≥ 10}

P = {(x, y)|x + y = 2, x− y = 0}

P ′′ = {(x, y)|x + y = 2, x− y = 0}, P ′ = {(x, y)}

If we change basis and use u = x + y and v = x− y, then P ′ is constrained by :

P = {(x, y)|x − y = 0}

As a result, for simplicity, we consider that P , X1 and X2 satisfy 5.10. In figure 5.1, we

have another example that shows the 4 points A,B,C and D representing the vertices of

the generating system in 5.11. Each point can be computed using the generating system,

for example : C =

(

xv1

0q

)

+

(

0

pv1

)

. Thus, the rectangle ABCD represents the convex

hull XP .



102 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

xv2 1xl

x

xv xl1 1

x

x

x x

x

pv2

1plx

pl

pv1

1

0 )+(pv )1
1

0xv(

����������������x x

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

x
x

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

P

B
x

D

X

C

A

Fig. 5.1 – Example of the decomposition of two polyhedra

The proof of the distributivity,

(P ∩X1) ⊔ (P ∩X2) = P ∩ (X1 ⊔X2)

is performed in showing that :

gs((P ∩X1) ⊔ (P ∩X2)) = gs(P ∩ (X1 ⊔X2))

using the fact that both X1 and X2 meet the condition of the previous theorem with

respect to P .

The decomposition algorithm by Ancourt and Coelho computes firstly C, the set of

constraints common to P1 and P2 : cs(C) = cs(P1)∩ cs(P2) where cs stands for constraint

system. This is a syntactic operation, whose result depends on the sets of constraints used

for P1 and P2 and on the basis. The rational is that program analysis should not generate

very different constraints.

DEFINITION 6.2 Then cs(P ) is defined recursively as the maximal fixed point of :

cs(P ) =























c ∈ cs(C)|

∀k1 ∈ cs(P1)− cs(P ),

∀k2 ∈ cs(P2)− cs(P ),

∀i ∈ [1, n],

ci = 0 ∨ (k1i = 0 ∧ k2i = 0)























We need to find the maximum set of constraints cs(P ) which are independent from the

others. This process is valid because the above recursive definition gives us monotonously



6. CONVEX HULL 103

decreasing iterations starting from C, thus its fixed point exists. In the worst case, the

result is the empty set ∅ which is a solution.

THEOREM 6.1 Let A and B be two polyhedra of Dn. If their constraint matrices can

be put in block form :

(

A 0

0 B

)

x ≤

(

a

b

)

then the generating system of A ∩ B is defined from the generating system of A and

B :

gs(A ∩B) = ({avi + bvl}, {arj} ∪ {brm}, {alk} ∪ {bln})

PROOF. If z ∈ A ∩B we have :

z ∈ A : z =
∑

i

µi

(

avi

0

)

+
∑

j

dj

(

arj

0

)

+
∑

k

ck

(

alk

0

)

+
∑

b

f

(

0

eb

)

where eb is the basis vector of B. Lower coefficients can be zeroed with f and eb’s

vector.

z ∈ B : z =
∑

l

νl

(

0

bvl

)

+
∑

m

gm

(

0

brm

)

+
∑

n

hn

(

0

bln

)

+
∑

a

f ′k

(

ea

0

)

where ea is the basis vector of A. Lower coefficients can be zeroed with f ′ and ea’s

vector.

The terms in f and f ′ can be computed thanks to the block decomposition and to the

above two definitions of z.

Hence :

z =
∑

i µi

(

avi

0

)

+
∑

l νl

(

0

bvl

)

+
∑

j dj

(

arj

0

)

+
∑

m gm

(

0

brm

)

+

∑

k ck

(

alk

0

)

+
∑

n hn

(

0

bln

)

This almost fits the definition of a generating system for A ∩ B, but
∑

i µi
∑

l νl = 2

instead of 1.

The next step is to show :

∑

i

µi

(

avi

0

)

+
∑

l

νl

(

0

bvl

)

=
∑

i

∑

l

µiνl

(

avi

bvl

)



104 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

and
∑

i

∑

l µiνl = 1. Indeed :

∑

i

∑

l µiνl

(

avi

bvl

)

=
∑

i

∑

l µiνl

((

avi

0

)

+

(

0

bvl

))

=
∑

i µi

(

avi

0

)

∑

l νl +
∑

l νl

(

0

bvl

)

∑

i µi

=
∑

i µi

(

avi

0

)

+
∑

l νl

(

0

bvl

)

since
∑

i µi = 1 and
∑

l νl = 1.

In the same way :
∑

i

∑

l µiνl =
∑

i µi
∑

l νl =
∑

i µi = 1. �

THEOREM 6.2 Let P1 and P2 be two polyhedra whose constraint matrices can be

converted to block form as :

(

X1 0

O P

)

and

(

X2 0

O P

)

then P ∩ (X1 ⊔X2) = (P ∩X1)⊔ (P ∩X2). Note here that, without lost of generality,

we have hidden the fact that the constraints are actually in form Ax ≤ b.

PROOF. By definition of convex hull we have :

gs(X1 ⊔X2) = ((x1v ∪ x2v), x1r ∪ x2r, x1l ∪ x2l)

gs(P ∩X1) = (

(

x1vi

pvl

)

,

(

x1r

0

)

∪

(

0

pr

)

,

(

x1l

0

)

∪

(

0

pl

)

)

gs(P ∩ (X1 ⊔X2)) = (

(

x1vi

pvl

)

∪

(

x2vi

pvl

)

,

(

x1r

0

)

∪

(

x2r

0

)

∪

(

0

pr

)

,

(

x1l

0

)

∪

(

x2l

0

)

∪

(

0

pl

)

)

= gs((P ∩X1) ⊔ (P ∩X2))

�



6. CONVEX HULL 105

In C3, the implementation of this algorithm has shown a better performance of the

convex hull operator. Thanks to our benchmarks, it is justified in chapter 6, section 7.

6.2.2 Cartesian Factorization by Nicolas Halbwachs and al.

Nicolas Halbwachs and al. in [HMPV03] propose to detect when a polyhedron is a

Cartesian product of polyhedra of lower dimensions, i.e., when groups of variables are

unrelated to each other. Whereas the partial factorization mentioned above is only applied

for the convex hull operator, the Cartesian factorization can be used in other operators as

well.

We present here the definition of Cartesian factorization of polyhedra, and the pro-

blem concerning the convex hull operator. For more detail on other operators, readers are

referred to the paper [HMPV03].

DEFINITION 6.3 Let I be a subset of the index set {1 . . . n}. We denote P ↓ I the

projection of the polyhedron P on variables with indices in I (i.e. the result in Z |I| of the

existential quantification of all the variables with indices outside I).

Let (I1, I2, . . . Il) be a partition of {1 . . . n}. We say that a polyhedron P can be facto-

rized according to (I1, I2, . . . Il) if and only if :

P = P ↓ I1 × P ↓ I2 × . . .× P ↓ Il

We also note p = (p1, p2, . . . pl) for each element p ∈ P , where p1 ∈ P ↓ I1, p2 ∈ P ↓

I2, . . . pl ∈ P ↓ Il. We say a element p consists of many components of some dimensions.

DEFINITION 6.4 A matrix A is block-diagonalizable according to a partition (I1, I2, . . . Il)

if for each of its rows Ai there is one ki ∈ 1 . . . l such that ∀j = 1 . . . n,Aj
i 6= 0⇒ j ∈ Iki

.

We have then, for any polyhedron P , there is a greatest partition (I1, I2, . . . Il) accor-

ding to which P can be factorized. Moreover, if (A,B) is the constraint description of

a polyhedron P , and if A is block-diagonalizable according to a partition (I1, I2, . . . Il),

then P can be factorized according to (I1, I2, . . . Il). This gives an easy way to factorize

a polyhedron, and to get the constraint description of its factors (i.e. polyhedra of lo-

wer dimensions) : each constraint becomes a constraint of the factor Pki
. Finally, for any

pair P1, P2 of polyhedra, there is a greatest common partition according to which both

polyhedra can be factorized (possible the trivial partition with l = 1).

The convex hull of two factorized polyhedra can be either less factorized, as factorized

or more factorized than the operands. A proposition is introduced for the computation of

the convex hull operator, with multiple factorizations.



106 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

PROPOSITION 6.1 Let P = P1 × . . . × Pl and P ′ = P ′1 × . . . × P ′l be two polyhedra

factorized according to the same partition. Let λ be a fresh variable and let us consider

the polyhedra (Qk)k=1...l defined by :

Qk = (Pk ∩ {λ = 0}) ∨ (P ′k ∩ {λ = 1}

where ∩ and ⊔ denote the intersection and convex hull operator. Then, the parti-

tion of P ⊔ P ′ is obtained from (I1, I2, . . . Il) by merging Ik and Ik′ whenever either λ is

lower-bounded by a non constant expression in Qk and upper-bounded by a non constant

expression in Qk′ , or conversely.

Let (J1, J2, . . . Jh) be the resulting partition, each Jm being an union of some Ik, then :

P ∨ P ′ = R1 × . . .×Rh, where Rm = ∃λ,×Ik⊆JmQk.

Based on this proposition, implementation for convex hull as well as other polyhedral

operators has been integrated in an extension for PPL library. Unfortunately, only version

0.3 is extended, due to changes made to more recent versions of the PPL library.

6.2.3 Decomposition by Inclusion Test

Inspired by the work in [HMPV03], we 4 have worked on another solution, which will

be presented in this section.

Sufficient Condition for the Decomposition of Two Polyhedra

LEMMA 6.1 Let Y and Z be two polyhedra that can be factorized according to the

same partition (I1, I2), so that we can write : Y = Y1 × Y2 and Z = Z1 × Z2, knowing

that Y1 and Z1 have the same dimensions (variables), and similarly for Y2 and Z2. Then

we have :

(Y1 × Y2) ⊔ (Z1 × Z2) ⊆ (Y1 ⊔ Z1)× (Y2 ⊔ Z2) (5.12)

PROOF. Let us call X = (Y1 × Y2) ⊔ (Z1 × Z2), X1 = Y1 ⊔ Z1 and X2 = Y2 ⊔ Z2, we

need to prove that X ⊆ X1 ×X2.

By definition of convex hull, we have : ∀x ∈ X, then ∃λ ∈ [0, 1],∃x1 ∈ (Y1× Y2),∃x2 ∈

(Z1 × Z2) such that :

x = λx1 + (1− λ)x2

4François Irigoin and myself



6. CONVEX HULL 107

Since x1 ∈ (Y1 × Y2), ∃y1 ∈ Y1,∃y2 ∈ Y2 such that x1 = (y1, y2). Similarly we have :

∃z1 ∈ Z1 and ∃z2 ∈ Z2 such that x2 = (z1, z2). Hence :

x = λ(y1, y2) + (1− λ)(z1, z2)

= (λy1, λy2) + ((1 − λ)z1, (1− λ)z2)

= (λy1 + (1− λ)z1, λy2 + (1− λ)z2)

Thus, we can write ∀x ∈ X, then ∃λ ∈ [0, 1], y1 ∈ Y1, y2 ∈ Y2, z1 ∈ Z1 and z2 ∈ Z2 such

that :

x = (λy1 + (1− λ)z1, λy2 + (1− λ)z2)

Furthermore, by definition of factorization : ∀x′ ∈ X1 ×X2, then ∃x′1 ∈ X1, x
′
2 ∈ X2,

such that x′ = (x′1, x
′
2).

Thus, we have : ∀x′ ∈ X1 ×X2,∃µ ∈ [0, 1], y′1 ∈ Y1, y
′
2 ∈ Y2, ν ∈ [0, 1], z′1 ∈ Z1, z

′
2 ∈ Z2

such that :

x′ = (µy′1 + (1− µ)z′1, νy′2 + (1− ν)z′2)

We need to prove that for every point x belonging to X, it also belongs to X1 ×X2.

Indeed, ∀x ∈ X, if we choose µ = λ, ν = λ, y′1 = y1, y
′
2 = y2, z

′
1 = z1, z

′
2 = z2, we have

x′ ≡ x ∈ X1 ×X2 because :

x′ = (µy′1 + (1− µ)z′1, νy′2 + (1− ν)z′2)

= (λy1 + (1− λ)z1, λy2 + (1− λz2)

= x

This means X ⊆ X1 ×X2. �

This lemma can be used to define a new and hopefully fast algorithm to compute

the convex hull by Cartesian decomposition. It would be interesting to compare this new

approach with the algorithm of [HMPV03].

THEOREM 6.3 Let Y and Z be two polyhedra that can be factorized according to the

same partition (I1, I2) : Y = Y1 × Y2 and Z = Z1 × Z2, where Y1 and Z1 share the same

space dimensions, similarly for Y2 and Z2. We have :

(Y1 × Y2) ⊔ (Z1 × Z2) = (Y1 ⊔ Z1)× (Y2 ⊔ Z2) (5.13)

if :

((Z1 ⊆ Y1) ∨ (Y2 ⊆ Z2)) ∧ ((Y1 ⊆ Z1) ∨ (Z2 ⊆ Y2)) (5.14)

where ∨ and ∧ are the logical or and and operators.



108 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

PROOF. We need to prove that 5.14 is a sufficient condition for the decomposition of

two polyhedra 5.13. By distributivity, 5.14 can be rewritten as :

(Z1 = Y1) ∨ ((Y1 ⊂ Z1) ∧ (Y2 ⊂ Z2)) ∨ ((Z1 ⊂ Y1) ∧ (Z2 ⊂ Y2)) ∨ (Z2 = Y2) (5.15)

Let us call X = (Y1 × Y2) ⊔ (Z1 × Z2), X1 = Y1 ⊔ Z1 and X2 = Y2 ⊔ Z2. Thanks to

lemma 6.1, to show the sufficiency, we only need to prove that X1 ×X2 ⊆ X. This means

that every point x′ ∈ X1 ×X2 belongs to X.

We have ∀x′ ∈ X1×X2, then ∃µ ∈ [0, 1],∃ν ∈ [0, 1],∃y′1 ∈ Y1,∃y
′
2 ∈ Y2,∃z

′
1 ∈ Z1,∃z

′
2 ∈

Z2 such that :

x′ = (µy′1 + (1− µ)z′1, νy′2 + (1− ν)z′2)

The condition 5.15 is divided into four cases :

1. (Y1 = Z1) : If we choose λ = ν, y2 = y′2, z2 = z′2, y1 = z1 = µy′1 +(1−µ)z′1 ∈ Y1 = Z1,

we have :

x′ = (µy′1 + (1− µ)z′1, νy′2 + (1− ν)z′2)

= (y1, λy2 + (1− λ)z2)

= (λy1 + (1− λ)z1, λy2 + (1− λ)z2) ∈ X

2. (Z2 = Y2) : The same by symmetry.

3. ((Z1 ⊂ Y1) ∧ (Z2 ⊂ Y2)) : Let us take λ = 1, y1 = µy′1 + (1 − µ)z′1, y2 = νy′2 + (1 −

ν)z′2, z1 = z′1, z2 = z′2, then :

x′ = (µy′1 + (1− µ)z′1, νy′2 + (1− ν)z′2)

= (y1, y2)

= (λy1 + (1− λ)z1, λy2 + (1− λ)z2) ∈ X

4. ((Y1 ⊂ Z1) ∧ (Y2 ⊂ Z2)) : The same by symmetry.

�

LEMMA 6.2 Given two polyhedra Y and Z. If there exists a point y0 ∈ Y \ Z (i.e.

y0 ∈ Y and y0 6∈ Z), then there exists at least an extremal element (vertex, ray or line) of

Y that does not belong to Z.



6. CONVEX HULL 109

PROOF. Since y0 ∈ Y and definition 3.2 (chapter 3, page 26), there exists a generating

system of Y such that :

y0 =

α
∑

i=1

λivi +

β
∑

i=1

µiri +

γ
∑

i=1

νili

If all vi ∈ Z, ri ∈ Z and li ∈ Z, then y0 ∈ Z, which is a contradiction. Hence :

(∃vi 6∈ Z) ∨ (∃ri 6∈ Z) ∨ (∃li 6∈ Z)

�

Necessary Condition for the Decomposition of Two Polytopes

LEMMA 6.3 Given two polytopes Y and Z. If there exists a point y0 ∈ Y \ Z (i.e.

y0 ∈ Y and y0 6∈ Z), then there exists a vertex ve ∈ Y \ Z such that ve is not a convex

combination of other points in Y and Z.

PROOF. From lemma 6.2, since Y is a bounded polyhedron, there exists a vertex

ve ∈ Y \ Z.

Suppose that ve is a convex combination of other points in Y and Z, then it is a convex

combination of a generating system of Y and of a generating system of Z :

ve =
∑

i

λivi +
∑

j

µjzj (5.16)

where vi ∈ Y , zj ∈ Z, λi, µj ≥ 0, µk > 0 for some k and
∑

i λi +
∑

j µj = 1.

Then there exists a vertex v′e ∈ {vi | v
′
e 6= ve, v

′
e ∈ Y \ Z}. Otherwise we have ∀v′e ∈

{vi | v
′
e = ve, v

′
e ∈ Y \ Z} which leads to a contradiction because if we denote {vi | vi =

ve, vi ∈ Y \ Z} by {vi1} and {vi | vi 6∈ Y \ Z} by {vi2}, we have :

ve =
∑

i λivi +
∑

j µjzj

=
∑

i1 λi1ve +
∑

i2 λi2vi2 +
∑

j µjzj

where vi2 6∈ (Y \ Z) means vi2 ∈ Z,∀i2 (since vi2 ∈ Y, ∀i2). If
∑

i1 λi1 6= 1, then :

ve =
1

1−
∑

i1 λi1
(
∑

i2

λi2vi2 +
∑

j

µjzj)

thus ve ∈ Z since it is a convex combination of points in Z, which is a contradic-

tion. If
∑

i1 λi1 = 1, then
∑

i2 λi2 +
∑

j µj = 0, which implies µj = 0,∀j. This is also a

contradiction.



110 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

So ∃v′e 6= ve such that v′e ∈ Y \Z. If v′e is also a convex combination of other points in

Y and Z, then we substitute all future occurrences of ve by 5.16 in this new combination.

Since the number of vertices is bounded, we always end up with a vertex that is not a

convex combination of other points in Y and Z.

�

THEOREM 6.4 Let Y and Z be two polytopes that can be factorized according to the

same partition (I1, I2) : Y = Y1 × Y2 and Z = Z1 × Z2, where Y1 and Z1 share the same

space dimensions, similarly for Y2 and Z2. We have :

(Y1 × Y2) ⊔ (Z1 × Z2) = (Y1 ⊔ Z1)× (Y2 ⊔ Z2) (5.17)

if and only if :

((Z1 ⊆ Y1) ∨ (Y2 ⊆ Z2)) ∧ ((Y1 ⊆ Z1) ∨ (Z2 ⊆ Y2)) (5.18)

where ∨ and ∧ are the logical or and and operators.

PROOF. theorem 6.3 gives the sufficient part of this proof, since polytopes are bounded

polyhedra. We now prove the necessity : if X = X1 ×X2 then we have 5.18.

Suppose that Y1 6⊆ Z1, then ∃p0 ∈ Y1 \Z1. According to lemma 6.3, ∃pe a vertex of Y1

such that pe ∈ Y1 \ Z1 and pe is not a convex combination of other points of Y1 and Z1.

We have ∀x′ ∈ X1 ×X2 :

x′ = (µy′1 + (1− µ)z′1, νy′2 + (1− ν)z′2)

where µ ∈ [0, 1], y′1 ∈ Y1, y
′
2 ∈ Y2, ν ∈ [0, 1], z′1 ∈ Z1 and z′2 ∈ Z2. If we take µ = 1, ν = 0,

then x′ = (y′1, z
′
2).

Consider now y′1 = pe, µ = 1, ν = 0 and note that Y1, Z1 are independent from Y2, Z2

(by definition of factorization), so z′2 can span all Z2.

For all x ∈ X :

x = (λy1 + (1− λ)z1, λy2 + (1− λ)z2)

where λ ∈ [0, 1], y1 ∈ Y1, y2 ∈ Y2, z1 ∈ Z1 and z2 ∈ Z2. Since by hypothesis X =

X1 ×X2, this applies to (pe, z
′
2).

Thus there exists λ, y1 ∈ Y1 and z1 ∈ Z1 such that the chosen value pe of x′ corresponds

to pe = λy1 + (1− λ)z1.



6. CONVEX HULL 111

Follow lemma 6.3, pe is not a convex combination of other points in Y1 and Z1, hence :

pe = y1, λ = 1.

Therefore we have then z′2 = y2 where y2 ∈ Y2. This applies to all z′2 ∈ Z2, which

expresses that Z2 ⊆ Y2.

So far, we have shown that :

(X = X1 ×X2)⇒ ((Y1 6⊆ Z1)⇒ (Z2 ⊆ Y2))

which is :

(X = X1 ×X2)⇒ ((Y1 ⊆ Z1) ∨ (Z2 ⊆ Y2))

By symmetry, we also have :

(X = X1 ×X2)⇒ ((Y2 ⊆ Z2) ∨ (Z1 ⊆ Y1))

The necessity is proved. �

����������������������

Y

Y Z

3

30
1 1

2
YxYY= 1 2

a

Z 2

x

x
b

x

x x

x x

xa’

Fig. 5.2 – A counter-example

Unfortunately, theorem 6.4 cannot be extended directly to polyhedra. figure 5.2 pre-

sents a counter-example.

Y1 = {2}, Y2 = {2}, Z1 = [3,∞[, Z2 = [3,∞[. We have : Y1×Y2 = (2, 2), Z1 and Z2 are

two half lines on the axes, thus the condition 5.18 is not satisfied. However, Y1⊔Z1 = [2,∞[



112 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

and Y2 ⊔ Z2 = [2,∞[, and (Y1 × Y2) ⊔ (Z1 × Z2) = ([2,∞[, [2,∞[) which means we have

5.17.

When we compute (Y1 × Y2) ⊔ (Z1 × Z2), its closure is necessary because if we choose

a point a that belongs to (Y1 × Y2) ⊔ (Z1 × Z2), the closure assures that the point a′ on

the segment Y b becomes the point a.

6.3 Practical Problems

As mentioned before, the Chernikova’s algorithm is chosen in all polyhedral libraries for

the convex hull operator, thus any improvement or comparison concerns the decomposition

of polyhedra. In C3, partial factorization is used instead of direct calls to Chernikova’s

algorithm, thanks to its improved performance. Experiments conducted in [HMPV03,

Mer05] show encouraging results using Cartesian factorization, especially for polyhedra of

large size.

There are not yet algorithms for approximations, so in case of exceptions, an universe

polyhedron is returned, except in C3, where a common part of operands is computed and

returned as approximation.

Decomposition of polyhedra to speed up running time requires integration at low level,

thus the work is considerable : Depending on the internal representation of polyhedra, the

task can be more or less difficult ([Mer05], page 85 to 91). Moreover, the improvements

are recent and need to be evaluated in order to be implemented in polyhedral libraries.

The last issue concerning the convex hull is that, the output (i.e. the returned poly-

hedron) is often larger in size, in term of numbers of constraints. Hence, more exceptions

are raised, which penalize program analyses. Experimental evaluation is needed for re-use,

for regression test, etc. In case of exceptions, better approximations can be made using

the common part found by partial factorization, instead of simply returning the empty

polyhedron.

7 Intersection

The Intersection of two (or more) polyhedra is in fact the intersection of all their hyper-

planes (representing the equalities) and half-spaces (representing the inequalities), because

a polyhedron is a finite intersection of hyper-planes and half-spaces. The intersection of

two convex polyhedra is a convex polyhedron, given by the union of the constraints of its

operands.

In constraint system form, the intersection operator is performed by concatenating the

list of constraints. The result is a polyhedron, which can be minimized via the minimization

operator. In practice, for efficiency reasons, the expensive minimization is not always



8. DIFFERENCE 113

applied, thus the redundant constraints appear in polyhedra. They are removed only when

needed.

8 Difference

The Difference of two convex polyhedra A and B, denoted A\B, is the set of elements

of A that do not belong to B. It is equivalent to intersection of A with the inverse, or

complement of B, denoted B.

Since the inverse of B is an union of polyhedra, the difference of two polyhedra is an

union of polyhedra. Hence, polyhedra are not closed under the operation difference. Not

all available libraries implement the difference operator, because of this property.

To overcome this problem, two approaches are chosen : using polyhedra-derived do-

mains, such as lists of polyhedra, Presburger’s formulae, or octagons (see chapter 3), or

approximate the difference. An over-approximation is obtained by computing the convex

hull of the resulting polyhedron, whose exactness can be checked as for the union.

9 Widening and Narrowing

The Widening and Narrowing are two operators ; one enforces the termination of

the abstract interpretation process by upward-approximating polyhedra, while the other

improves the approximation by doing the reverse [CC77]. The first widening operator

described in Nicolas Halbwachs’s PhD thesis [Hal79], on two polyhedra P and Q, is to

keep all the constraints of P that are satisfied in Q. This operator requires as a precondition

that P ⊆ Q. In general, the widening operator is used in the approximation of fixed point.

There are now two proposed widening operators for the domain of polyhedra. The

first one mainly follows the Halbwachs’s specification. This operator also requires as a

precondition that P ⊆ Q.

The second widening operator is an instance of the specification provided in [BHRZ03].

This operator also requires as a precondition that P ⊆ Q and it is said to provide a result

which is at least as precise as the first one5.

When approximating a fix point computation using widening operators, a common

tactic to improve the precision of the final result is to delay the application of widening

operators. The usual approach is to fix a parameter k and only apply widening starting

from the k-th iteration. The implementation for this tactic is called widening with tokens

operator (also described in [BHRZ03]).

A token is a sort of wild-card allowing for the replacement of the widening application

by the exact upper bound computation : the token is used only when the widening would

5While it might be more precise on one application of the widening, it does not mean that the final

result is better



114 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

have resulted in an actual precision loss, as opposed to the potential precision loss of the

classical delay strategy. Thus, all widening operators can be supplied with an optional

argument, recording the number of available tokens, which is decremented when tokens

are consumed. The approximated fix point computation will start with a fixed number k

of tokens, which will be used if and only if needed. When there are no tokens left, the

widening is always applied.

In PIPS, in order to obtain a modular analyzer and to limit execution times, state trans-

formers are computed instead of state predicates (also known as pre- and post-conditions).

As a result, PIPS does not use the well-known widening/narrowing operators but computes

over-approximations of the transitive closures of loop transformers using finite differences

and summation ([Iri05]).

10 Other Operators

As important as the projection operator but of lower complexity, the operator adding

a new dimension (or several dimensions) to the vector space provides two distinctive op-

tions. The former embeds the polyhedron P into the new vector space and returns the

polyhedron Q defined by all and only the constraints defining P ; the variables correspon-

ding to the added dimensions are unconstrained. The latter projects the polyhedron P

into the new vector space and returns the polyhedron Q whose constraint system, besides

the constraints defining P , will include additional constraints on the added dimensions.

Namely, the corresponding variables are all specified to be equal to value zero.

In most existing libraries, the space dimension of a polyhedron P is simply the dimen-

sion n ∈ N of the corresponding vector space Dn. Sometime, for generic reasons, the space

dimension is considered as a set of dimension names, instead of a fixed number n ∈ R

(i.e. the C3 library, [IJT90]). The space dimensions of constraint systems and generating

systems are defined similarly. Thus, polyhedra are said to be dimension compatible if and

only if they have the same space dimension. As such, operations requiring space dimen-

sion compatibility (e.g. convex hull or intersection of two polyhedra) sometimes need to

map an operand’s space dimension to the other’s, or to interchange (switch) between two

dimensions of a space dimension.

An operator that adds m new dimensions to a polyhedron P ∈ Rn with n > 0, so

that dimensions n, n + 1, . . ., n + m− 1 of the result Q are exact copies of the i-th space

dimension of P , where i ∈ [O,n], is call expand dimension operator. On the contrary,

given a polyhedron P ∈ Rn with n > 0, the operator fold folds a set of dimensions

J = j0, . . . , jm−1, with m < n and j < n for each j ∈ J , into the dimension i < n,

where i /∈ J . The expanding and folding operators are proposed by D. GOPAN and al. in

[GDD+04].

For each function mapping φ : Rn 7→ Rm, we denote by φ(S) ⊆ Rm the image under φ



10. OTHER OPERATORS 115

of the set S ⊆ Rn. Similarly, we denote by φ−1(S′) ⊆ Rn the preimage under φ of S′ ⊆ Rm,

that is the largest set S ⊆ Rn such that φ(S) ⊆ S′. For a given variable xk and linear

expression
∑n−1

i=0 aixi + b, this variable and expression determine an affine transformation

φ that is to be used by two operators that compute the affine image and affine preimage

of a polyhedron P .

Sometimes we need operators that verify relations among polyhedra, for example to

test if a polyhedron P is disjoint from or included in another polyhedron Q. Besides, if c

is a constraint and Q is the set of points that satisfy c, we can test whether P is disjoint

from c (i.e. P ∩Q = ∅, or adding c to P yields an empty polyhedron), P strictly intersects

c (i.e. P ∩Q 6= ∅ and P ∩Q ⊂ P , or adding c to P yields a non-empty polyhedron strictly

smaller than P ) and P is included in c (i.e. P ⊆ Q or adding c to P leaves P unchanged).

The test of equality between two polyhedra is not a trivial operator, because the

polyhedral representations are not unique. A common way to verify the polyhedron P is

equal to the polyhedron Q is to check if one is included in the other, in both directions.

An interval in R is a pair of bounds, called lower and upper. Each bound can be either

closed and bounded, open and bounded, or open and unbounded. If the bound is bounded,

then it has a value in R. An n-dimensional box B in Dn is a sequence of n intervals in

R. The bounding box operator for a polyhedron P returns the smallest n-dimensional box

containing P .

Non-regression testing and memory space analyzing require more operators such as

debugging functions, etc. but we choose not to discuss them in this chapter. In the next

section, we study into detail each and every operator, where the first one is dual conversion

operator because it can be used by other operators.

Along with the presented operators, we have many other operators that are not really

interesting to go into details, such as printing functions, dimension swapping functions,

etc.

As we have known, the idea of an abstract domain like the polyhedral one is to model

instructions, objects, effects, etc. in program analyses. Important operators such as assi-

gnment, guard, etc. can be built from elementary operators described above, at least for

the polyhedral domain, so that they do not appear in our list of operators.

Nevertheless, in another abstract domain, i.e the octagons, these operators are intro-

duced because it cannot be built from other operators. We have verified by building the

assignment operator, based on other operators of the octagon library, and we found out

that the swapping function is missing. In fact, this is an example of incompatibilities that

might be avoidable (i.e. not an implementation specific problem), noting that abstract

domains often have common purposes.



116 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS

11 Conclusion

In this chapter, we have presented an operator by operator view of the common po-

lyhedral API, surveyed algorithms and existing implementations, and discussed problems

concerning each operator. Some propositions for improvement (e.g. the decomposition by

factorization, section 6.2.2) as well as properties (e.g. projection using double description

page 95) are introduced. Backup algorithms for approximations to deal with polyhedral

high complexity are also discussed. Problem of different operator names is clarified.

Precisely, in section 2, we have presented the available algorithms for the dual conver-

sion operator, an elementary operation that can be used in other operators such as pro-

jection, satisfiability, convex hull, etc.

Then, in section 3, we have detailed four algorithms that are implemented for the test

of satisfiability : the Fourier-Motzkin’s, the Simplex for rational test, that were already

available in C3 library, the JANUS for integer test that was ported to 64-bit by me, and

the algorithm based on dual conversion operator, implemented by me.

In section 4, we have introduced two main algorithms for the projection operator, one

uses the dual conversion, implemented by me, and the other uses the Fourier-Motzkin

elimination method.

Similar to the projection operator, the minimization operator, which has two main algo-

rithms, is presented in section 5. One directly manipulates the polyhedron’s H-representation

form, which was implemented by PIPS members, and the other one is based on dual

conversion that we have implemented ourselves 6.

The convex hull operator is exposed along with three recent improvements : the partial

factorization (section 6.2.1), the Cartesian factorization (section 6.2.2) and our decompo-

sition using inclusion test, inspired by the Cartesian factorization (section 6.2.3).

Finally, other operators such as the intersection, difference, widening, narrowing, etc.

were briefly described.

For each operator, differences among existing libraries at the interface level were ana-

lyzed, in order to study the possibility of an integration among nearly-equivalent works.

Being mostly an experimental work, practical issues such as incompatibilities among po-

lyhedral libraries are relevant.

The question of precision versus approximation is raised throughout this chapter, as

well as computational issues like 32-bit, 64-bit, 128-bit or GNU multi-precision modes.

Our contribution in order to improve some of these operators is also presented in this

chapter (section 3.2.3, page 91, section 6.2.3, page 106).

In chapter 6, we present our framework to analyze the performances of the mentioned

implementations. Then we introduce our experimental results. They are strongly related

to the content of this chapter.

6Since in PIPS, we do not encounter serious problem with the first algorithm, our implementation was

most likely a proof of concept so that we can compare the two’s performances



11. CONCLUSION 117



118 CHAPITRE 5. COMPARATIVE SECTION FOR POLYHEDRAL OPERATORS



Chapitre 6

Benchmarking existing libraries

In chapter 4, we have discussed encountered problems using existing abstract domains

and their libraries, and we have presented a potential solution for those problems. chapter 5

went into details about polyhedral domains, with discussions about differences in names,

a survey of algorithms and existing implementations, as well as problems concerning each

polyhedral operator.

In this chapter, we motivate our benchmarking effort with several examples to showing

the impact of exceptions and large operands on abstract interpretation result (section 1.1).

Then we introduce our POLYBENCH framework, which we designed to analyze automa-

tically the run-times and exceptions of the many available libraries presented in chapter 3

with respect to thousands of polyhedral operations traced from PIPS [IJT90, IJT91a]

static analyzer execution (section 1.2). We used our POLYBENCH tools to obtain expe-

rimental results about the cases used and about five different key polyhedral operators :

the integer and rational satisfiability (section 3), dual conversion (section 6), projection

(section 4), minimization (section 5) and convex hull (section 7).

1 Benchmarking

Before introducing our framework, we explain why it is important to have an auto-

matic benchmarking mechanism. Our examples originate from static analyses of standard

benchmarks, which are presented in section 1.2.

1.1 Motivation : Impact of exceptions on accuracy

The polyhedral interface consists of several operators namely satisfiability test, inclu-

sion test, projection, minimization, dual conversion, convex hull, intersection, difference

and widening/narrowing. To perform each operator, many algorithms have been implemen-

ted. They can be used on integer or on rational domains to prove properties of programs.

These algorithms often have a polynomial complexity but the worst-case exponential com-

plexity hits sometimes. Unfortunately, this worse-case exponential complexity can block

an analysis, especially when memory space and time are limited.

Adding information about a program should always result in more accurate analyses.

It is however not true when 32-bit or 64-bit integers are used. When information is added,

more overflows may occur in the linear algebra algorithms, then approximations must be

made, resulting in longer and less accurate analyses. We take an example of a simple

FORTRAN code, the polynomial in figure 6.1, and use PIPS to analyze this example.

119



120 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

I = 1, J = 0, K = 0

DO WHILE(K.LT.100)

K = K + J

J = J + I

I = I + 1

ENDDO

PRINT *, I, J, K

IF(X.GT.0.) THEN

READ *, J, K

PRINT *, I, J, K

ELSEIF(Y.GT.0.) THEN

READ *, I, K

PRINT *, I, J, K

ELSE

READ *, I, J

PRINT *, I, J, K

ENDIF

Fig. 6.1 – Example : Polynomial code

IF (X.GT.0.) THEN

READ *, J, K

PRINT *, I, J, K

ELSE

IF (Y.GT.0.) THEN

READ *, I, K

C first iteration:

C P(I,J,K) {2<=J}

C second iteration:

C P(I,J,K) {3<=J}

C third iteration:

C P(I,J,K) {6<=J, J<=300}

C fourth iteration:

C P(I,J,K) {}

PRINT *, I, J, K

ELSE

READ *, I, J

PRINT *, I, J, K

ENDIF

ENDIF

Fig. 6.2 – Evolution of preconditions for

Polynomial code over four iterations

The preconditions and transformers are computed to obtain information about each

variable I, J,K independently for the tests on uninitialized variables. A technique used in

PIPS in order to obtain more information is to compute several times the preconditions and

transformers using their previously computed results. It is illustrated by the evolutions

of transformers and preconditions in figure 6.2 and figure 6.3 where the results of four

iterations are displayed for one of the statement in figure 6.1 (see chapter 2, section 4 for

PIPS’s transformers and preconditions analyses).

In figure 6.3, we can see that the first transformer only contains information about the

variable I and its initial value : I#init ≤ I. The second transformer computed with the

first precondition gives information not only about the variable I, but also the variable

J : I#init ≤ I, I + J#init ≤ I#init + J . In the same way, the transformer computed

the fourth time seems richer of information than any previous one. However, if we look at

the figure 6.2, everything seems to be fine until the fourth loop : the information at the

third loop, 6 ≤ J, J ≤ 300, is lost at the fourth loop. It is because an overflow/magnitude

exception has occurred.

Let us take another example. With a hardware configuration PC 2.4GHz, 2GB RAM,

we analyze the program ocean.f with size of 4373 LOC from the PerfectClub benchmark.

We have 11916 calls to satisfiability test and 424 overflows ; 3521 calls last longer than

three seconds and the largest constraint system contains 906530 constraints. In fact, the

computation on polyhedra can be very expensive : the larger the size of analyses becomes,



1. BENCHMARKING 121

I = 1, J = 0, K = 0

C first iteration:

C T(I,J,K) {I#init<=I}

C second iteration:

C T(I,J,K) {I#init<=I, I+J#init<=I#init+J}

C third iteration:

C T(I,J,K) {I#init<=I, I+J#init<=I#init+J,

C 6I#init+3J+K#init<=6I+3J#init+K, I#init+J+K#init<=I+J#init+K}

C fourth iteration:

C T(I,J,K)

C {1379460I#init+895055J+454903K#init<=1379460I+895055J#init+454903

C K, 1063137I#init+639920J+364213K#init<=1063137I+639920J#init+

C 364213K, 6748I#init+1469J#init+479K<=6748I+1469J+479K#init,

C 1802I#init+899J+299K#init<=1802I+899J#init+299K,

C 287I#init+10J#init+7K<=287I+10J+7K#init,

C 41I#init+5J#init+2K<=41I+5J+2K#init,

C 10I#init+4J+K#init<=10I+4J#init+K,

C 2622I+2622J#init+263K<=2622I#init+2622J+263K#init,

C 28497I+28497J#init+109K#init<=28497I#init+28497J+109K,

C 30061I+30061J#init+673K<=30061I#init+30061J+673K#init}

DO WHILE (K.LT.100)

K = K+J

J = J+I

I = I+1

ENDDO

Fig. 6.3 – Example : Evolution of transformers for Polynomial code

the more problems appear. Our motivation is to quantify these problems.

Firstly, the operators manipulating the polyhedra at the lowest level should be the

most efficient as possible. Note that in a typical program analysis section, an analyzer can

call up to a hundred thousand elementary operations, or even more. Experiment shows

that the impact is significant. It is however difficult to tell whether the implementations

of these operators are efficient or not.

Secondly, heuristic-based approaches are thus needed to avoid infinite precision arith-

metic and to maintain an execution speed fast enough to process large real applications rea-

ching 100, 000 lines of code, with hundreds of variables linked by hundreds of constraints.

The problem of time and memory space must then be reduced as much as possible. Moreo-

ver, constraint coefficient magnitude is also a complexity issue. Sub-optimal or heuristic

solutions must be found when arithmetic overflows occur, in order to limit or control the

information loss. Heuristics can only be found and validated through experimentation.

Finally, the dynamic behavior of programs is often controlled by integers, Boolean va-



122 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

#DIMENSION (7) INEGALITES (906530) EGALITES (0)

VAR PHI2, PHI4, PHI3, PHI1, NX, NZ, NY

{

- 311573790 NY - 213825150 NZ - 207715860 NX <= -1570087530 ,

- 6479550 NZ - 12583230 NY - 6294420 NX <= -50720010 ,

- 207900990 NY - 213825150 NZ - 207715860 NX <= -1259069130 ,

- 207900990 NY - 220304700 NZ - 207715860 NX <= -1265548680 ,

- 12779580 NY - 6479550 NZ - 6294420 NX <= -50916360 ,

- 6300030 NY - 6479550 NZ - 6294420 NX <= -37957260 ,

...

}

Fig. 6.4 – Example : first fragment of a large constraint system which fails the normali-

zation operator

riables and character strings. They can all be mapped on integers whereas linear algebra

is mostly based on real and rational numbers, and linear algebra does not provide exact

set operators very often. Different implementations of set operators by linear algebra algo-

rithms can be exact, over- or under-approximation. Thus, accuracy and speed comparisons

should be made.

1.2 Large Operands

In this section, we introduce three examples that show the high complexity of static

program analyses using the polyhedral domain. These examples are extracted during PIPS

execution on two benchmarks, PerfectClub and SPEC95.

1.2.1 Normalization

From PIPS execution on SPEC95’s applu.f program, with computation of transformers,

preconditions and regions, we observed constraint systems of very large sizes. For example,

the printed out constraint system number 23499 which was passed to C3 normalization

operator, takes 52, 4 MB of disk space, with only 7 dimensions, no equation but a whooping

906530 inequalities. Figure 6.4 is the first fragment of the system.

We remark that the coefficients of this constraint system are quite large in the million

to the billion range. Linear combinations such as Fourier-Motzkin elimination are likely

to raise integer overflows with a 64-bit representation. When this system is passed to

other operators, it raises exceptions, thus block our analyses. The origin of the system is

identified as follows : from constraint systems of some hundred of constraints, operations

on those systems such as projection, normalization, convex hull, etc sometimes yield up

to constraint systems of thousand of constraints, mostly inequalities.



1. BENCHMARKING 123

#DIMENSION (7) INEGALITES (2372) EGALITES (0)

VAR PHI2, PHI4, PHI3, PHI1, NX, NZ, NY

{

- 183823200 NY - 6066165600 NZ - 183823200 NX <= -13414772448 ,

- 6066165600 NY - 6066165600 NX - 6066165600 NZ <= -48708826848 ,

- 5924160 NY - 195497280 NZ - 5924160 NX <= -432324288 ,

- 195497280 NY - 195497280 NX - 195497280 NZ <= -1569763008 ,

- 195497280 NZ - 5924160 NX - 11499840 NY <= -449051328 ,

- 201072960 NY - 195497280 NX - 195497280 NZ <= -1586490048 ,

- 195323040 NZ - 5749920 NX - 5749920 NY <= -430756128 ,

...

}

Fig. 6.5 – Example : first fragment of a large constraint system which fails the projection

operator

Moreover, when the satisfiability test cannot handle those constraint systems, we can-

not remove redundant constraints, thus those systems remain very large and increase from

operation to operation and we cannot obtain useful information.

1.2.2 Projection

The constraint system, whose first fragment is printed in figure 6.5, represents a case

that our projection operator cannot handle. It raises an exception in memory space by the

Fourier-Motzkin method, thus the execution of PIPS is not possible without approximation

on the program applu.f in SPEC95 benchmark.

We have analyzed this example by applying successively the projections along the

variable NY, NZ, NX, PHI1, PHI3, PHI4. The projection along NY or NZ or NX raises

immediately an out-of-memory space exception, whereas the projection along PHI2 or

PHI3 or PHI4 reduces greatly the size of the constraint system, so that projections along

the other variables become possible. Beside the order of the list of variables to project, the

Fourier-Motzkin elimination method used in the projection is also sensitive to the order

of the constraints in the constraint system. In this algorithm, the integer results can be

retained if we only project the variable along unitary coefficients (1 or −1) 1. However, we

did not have time to build a better projection algorithm.

1.2.3 Convex Hull

As mentioned above, the program ocean.f in the benchmark PerfectClub is a special

case, which PIPS has difficulty to deal with. The first phenomenon is observed by the very

1Implemented by Fabien Coelho, though we do not have any documentation.



124 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

expensive computation of convex hull operator in PIPS for the two constraint systems in

figure 6.6.

The number of generating vertices grows exponentially with the number of constraints

just as for an hypercube. The implementation of Chernikova algorithm available in PO-

LYLIB and used in C3 cannot handle the dual conversion of the first constraint system,

thus an exception “out of table space” is detected. Even after the partial factorization by

Corinne Ancourt and Fabien Coelho (see chapter 5, section 6.2.1) the polyhedra remains

too large.

1.3 Related Work

Much research has been concentrated on possible improvements to these algorithms,

based on a mathematical background (see chapter 3). A list of implementations concerning

these operators has been made, including some “complete” polyhedral libraries like the

POLYLIB [Loe02, Wil93], the New POLKA [Jea02b, Jea00], the LINEAR C3 [tea90,

ACI00], or just libraries that focus on some particular operators, like CDD [Fuk02], LRS

[Avi02] or JANUS [Sog02, Sog96]. For example, JANUS is a piece of software that deals

with the integer satisfiability problem, whereas the calculation of convex hull of two or

more polyhedra is maybe the most discussed polyhedral operator in the literature [Bay99].

However, our bibliographic study shows that it doesn’t exist yet a mechanism to eva-

luate effectively existing polyhedral libraries, especially in the domain of program analysis

and transformation for real-life examples. Published evaluations, e.g. [Sog96] and [Ba04],

are based on at most two hundreds instances, mostly theoretical, without analyses on

polyhedral characteristics, e.g. dimension space, numbers of constraints, etc., on numbers

of exceptions, cases where algorithms fail because of resource limits, etc. Apart from cla-

rifying whether CPU or memory efficiency or both are the intended measures of interest,

we offer problem-related analyses, such as polyhedral criteria and their origin, stability

comparisons, i.e. the ability of coping with difficult cases, incoherent results checking,

computing precision comparisons, etc. 2 Our comparisons cover not only the satisfiability

test and dual conversion operators but also other important polyhedral operators, such as

projection, minimization and convex hull operators.

An example of previous comparisons can be found in [Sog96], where JANUS is compa-

red with the Omega test [Pug91], whose results discover performance-related issues concer-

ning only one problem, the nightmare problem, due to overhead factors in the Omega tool.

There is also a set of tests provided by CDD [Fuk02] and LRS [Avi02], then used

by PPL developers in order to evaluate the PPL library’s performance [Ba04], compared

to other libraries. These evaluations are based on the vertex/facet enumeration problem

with a set of less than two hundred inputs, which are supported by the libraries PO-

LYLIB [Loe02, Wil93], New POLKA [Jea02b, Jea00], the LINEAR C3 [tea90, ACI00],

2Non-regression testing can be improved by making comparisons possible between implementations of

the same algorithm, since bugs are sometimes hard to detect in complex algorithms.



1. BENCHMARKING 125

#DIMENSION: (69) INEGALITES(72) EGALITES (13)

VAR N2M#new, LPN#new, LZN#new, N2P#new, N1H#new, N2#new, MEMSIZ#new,

NWH#new, NWEIG#new, LEIG#new, NW#new, NWQ#new, LZX#new, LPY#new,

LZY#new, LZO#new, NUMBER#new, NXXXIN#new, NXXXIN#init, NPTS#new,

NPTS#init, NSKIP#new, NSKIP#init, MTRN#new, MTRN#init, MSKIP#new,

MSKIP#init, ISIGN#new, ISIGN#init, NXLOG2#new, NXLOG2#init,

NFTVMT#new, NFTVMT#init, NXACAC#new, NXACAC#init, NXXOUT#new,

NXXOUT#init, KZN#new, KZN#init, KZO#new, KZO#init, K#new, K#init,

NUSHUF#new, NUSHUF#init, NXXCSR#new, NXXCSR#init, NXSCSC#new,

NXSCSC#init, NXPRNT#new, NXPRNT#init, ZETAPH:NCALL#new,

ZETAPH:NCALL#init, KPN#new, KPN#init, NXXRCS#new, NXXRCS#init,

TEMPHY:NCALL#new, TEMPHY:NCALL#init, LVECT#new, LVECT#init, LSKIP#new,

LSKIP#init, NVECT#new, NVECT#init, NVSKIP#new, NVSKIP#init,

NSTEPS#new, NSTEPS#init

{

- NSTEPS#new - TEMPHY:NCALL#init + NSTEPS#init + TEMPHY:NCALL#new <= 0 ,

- NSTEPS#new + NSTEPS#init <= -1 ,

...

}

#DIMENSION: (69) INEGALITES (0) EGALITES (26)

VAR N2M#new, LPN#new, LZN#new, N2P#new, N1H#new, N2#new, MEMSIZ#new,

NWH#new, NWEIG#new, LEIG#new, NW#new, NWQ#new, LZX#new, LPY#new,

LZY#new, LZO#new, NUMBER#new, NXXXIN#new, NXXXIN#init, NPTS#new,

NPTS#init, NSKIP#new, NSKIP#init, MTRN#new, MTRN#init, MSKIP#new,

MSKIP#init, ISIGN#new, ISIGN#init, NXLOG2#new, NXLOG2#init,

NFTVMT#new, NFTVMT#init, NXACAC#new, NXACAC#init, NXXOUT#new,

NXXOUT#init, KZN#new, KZN#init, KZO#new, KZO#init, K#new, K#init,

NUSHUF#new, NUSHUF#init, NXXCSR#new, NXXCSR#init, NXSCSC#new,

NXSCSC#init, NXPRNT#new, NXPRNT#init, ZETAPH:NCALL#new,

ZETAPH:NCALL#init, KPN#new, KPN#init, NXXRCS#new, NXXRCS#init,

TEMPHY:NCALL#new, TEMPHY:NCALL#init, LVECT#new, LVECT#init, LSKIP#new,

LSKIP#init, NVECT#new, NVECT#init, NVSKIP#new, NVSKIP#init,

NSTEPS#new, NSTEPS#init

{

- NXXXIN#new + NXXXIN#init == 0 ,

- NPTS#new + NPTS#init == 0 ,

...

}

Fig. 6.6 – Example : first fragments of two large constraint systems which fail the convex

hull operator



126 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

CDD [Fuk02] and LRS [Avi02]. Though these inputs supply varied complexity operations

for these programs, they are far from satisfying, given the differences among the applica-

tions. It is known that even with the same application, big variations may be observed for

different inputs. Thus we can only measure the performance of the application with the

biggest variety of inputs we can come up with. The results then can be used to choose the

library that gives us the best overall performance.

1.4 Building a Polyhedral Benchmarking System

All these applications motivate the construction of a large polyhedral benchmark which

enables us to analyze implementations experimentally. Our benchmark, named POLY-

BENCH, provides an easy and straightforward way to compare methods, with a great

quantity of operations encountered in program analysis and transformation.

Early experiments were carried out, focusing on the satisfiability test with only three

implementations : JANUS [Sog02, Sog96], Simplex and Fourier-Motzkin [tea90, ACI00].

They revealed important differences among these algorithms. Then, we extended our fra-

mework and added the projection, minimization, dual conversion and convex hull opera-

tors. The following section describes this benchmarking environment.



2. CONSTITUTION OF A POLYHEDRAL BENCHMARK - POLYBENCH 127

2 Constitution of a Polyhedral Benchmark - POLYBENCH

It is acknowledged that robustness and execution time are two important criteria for

elementary operations. But precisely, how do we define these two criteria ?

2.1 Benchmarking Conventions

An operator returns for a given operation an answer or an exception. When we compare

two implementations, we say that an implementation is more robust than the other if it

generates fewer exceptions. We also say that one is more efficient than the other if it returns

a valid answer sooner than the other does. Finally, we consider that one implementation

is more efficient than another if it raises an exception earlier, on condition that both

implementations return an exception with the given operands (see section 2.5 for our

implementation).

The robustness refers to the ability of dealing with exceptions, which can be quantified.

Exceptions can be either magnitude overflows, i.e. when a number exceeding the maximum

that can be stored in a memory word, or timeouts, i.e. no operation may last too long.

The timeout exception means that the operator implementation cannot solve the given

task in a pre-defined time.

In fact, memory managements implemented in available libraries are different : we have

virtual memory space for some algorithms and limited for others. Due to this difference,

we consider memory overflows, e.g. out-of-memory space, as magnitude overflows when it

happens before the timeout exceptions.

2.2 POLYBENCH Overview

In order to provide a tool comparing similar methods, we build up a polyhedral bench-

mark, made of a large number of polyhedral operations that we extract from the execution

of real-life program analyses and transformations.

In this section, we present our polyhedral benchmark framework, called POLYBENCH,

by commenting figure 6.7 step by step. PIPS [IJT90, IJT91a], which stands for “Pa-

ralléliseur Interprocédural de Programmes Scientifiques”, is an analyzer-transformer of

programs that uses polyhedral abstraction [IJT90, IJT91a]. A PIPS phase can perform

analyses and transformations on FORTRAN programs, such as Array Privatization, De-

pendence Testing, Memory Effects, Preconditions, Expression Optimizations, Forward Sub-

stitution, Parallelization, etc...

Standard benchmarks like the PerfectClub [BCK+89] and SPEC CFP 95 [tea02g],

henceforth called SPEC95 for short, have been chosen for polyhedral data generation as

PIPS’s input (1). For our benchmark, we have chosen the transformers and preconditions

since they are often used in other analyses, and array regions due to its high computational

demand (2). During PIPS execution on these benchmarks, polyhedra in form of constraint

systems are traced and stored in a large database of directory-structured files, divided by



128 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

polyhedral operators 3 (3). This database is compressed because it is quite large : over 20

GB. Then we apply some sampling for each sub-database in order to reduce the number

of constraint systems to be tested when needed (4). Since we want to measure implemen-

tations’ performance in general cases, these sampled databases should be representative.

However, we are sometimes interested in a biased database, for special purposes, therefore

we also use some criterion-based filters, for instance to retrieve only the larger polyhedra

(4) (see section 2.8).

Club

PERFECT SPEC

CFP95

PIPS
Analysis

Selection

Databases
Polyhedral
Full

Analysis
Operation

Polyhedral

Profiles
Analysis

Execution

Profiles

Execution

* Histograms

* Tables

JANUS

POLYLIB

PIP

Benchmarking

Engine

Sampled/Filtered
Polyhedral
Databases

(1)

(2)

(3)

(4)

(9)

(6)

(8)

(7)

− Dual conversion

− Test of satisfiability

(5)

− etc.

Fig. 6.7 – POLYBENCH’s schema

The databases contain operands for most available implementations of polyhedral ope-

rators, such as LINEAR C3 [tea90, ACI00], CDD [Fuk02], JANUS [Sog02], LRS [Avi02],

POLYLIB [Loe02, Wil93], PPL [tea02f, BRZH02] and New POLKA [Jea02b, Jea00]. The

implementations having different data structures are encapsulated by converters, which

we implemented for each library. We measure the performances of similar implementa-

tions (5, 6, 7), then display the comparisons in graphical form (9). We also analyze some

characteristics of those databases (8).

2.3 Execution Time Measurements

In order to measure the run time of varying implementations without too much code

modification, we use the time utility, available in UNIX-based operating systems. This

3Each operator has its own databases/directories.



2. CONSTITUTION OF A POLYHEDRAL BENCHMARK - POLYBENCH 129

brings portability to the framework, but has a consequence on the time resolution which

can be not very fine and depends on the hardware. It’s common for the internal processor

clock to have a resolution somewhere between hundredths and millionths of a second. In

our case, we have millionth of a second.

When the run time of one operator is small, e.g. the satisfiability test, we repeat the

operation many times, e.g. n times, to increase the accuracy of time measurement. This

also reduces uninteresting overheads such as input/output run time, since these factors are

divided by n, which is chosen as 100. However, given that run times of complex operators

such as convex hull are too long, we do not repeat these operations, i.e. n is 1.

2.4 Size Parameters

The execution times of these implementations are displayed with respect to polyhedral

size criteria, so that we can observe the relation between the performances and specific

sets of polyhedra. In fact, the chosen criteria for filters and statistical characteristics of

the databases are numbers related to dimensions, number of constraints (equations and

inequalities) and coefficients :

– number of dimensions, i.e. number of variables ;

– number of constraints, i.e. number of equations and inequalities ;

– the largest coefficient, i.e. magnitude ;

– density or sparsity, which is the polyhedron’s representative matrix’s density (see

[Yan93]) 4.

The above size parameters of constraint systems are determining factors for every

polyhedral operation. For practical reasons we have chosen the numbers of dimensions, of

constraints and density information. Other factors are expensive to compute, e.g. matrix’s

determination, and heuristics, which could take advantage of this information to select the

most appropriate algorithm, should not require CPU intensive decision procedures.

2.5 Implementation

The framework is fully automatic, in order to rebuild new results when necessary.

However, such procedures take quite a while. POLYBENCH consists of several shell scripts

and C programs which take advantage of C3 available parsing mechanism. We use GNU

make to generate POLYBENCH executable from the source.

For polyhedral inputs, we use the C3 sparse format, i.e. ASCII, for every implementa-

tion, thus an internal format conversion is needed for every new library. Examples of this

format can be found in section 1.2.

For each new library, we need to :

4In fact, we use the sparsity index :
Pn,m

i=1,j=1
aij/n, which is the sum of all coefficients aij divided by

the number of constraints n, and m is the number of variables. The computation is cheap and it contains

information about the density of non zero coefficients in the matrix representing the polyhedron.



130 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

– write a wrapper including the internal format conversion and compile it ;

– write a simple pb 2time batch and launch it with the polybench create 2time criteria data.sh

script ;

– write a simple pb hg batch and launch it with the polybench create histograms.sh

script.

Outputs are graphs, created by gnuplot with the histogram and datastring enabled

patches, and tables in ASCII, that illustrate differences in execution times and in numbers

of exceptions. Examples of wrappers and batches are available.

Head-to-head comparisons : We use head-to-head comparisons between two imple-

mentations. These comparisons are about execution times and numbers of exceptions. In

cases where one of the implementations generates an exception (timeout or overflow), we

do not compare their execution times, and exclude them from the total execution times.

Thus, the total execution times mentioned later in this chapter can be understood as

execution times for cases solvable by both implementations only. We also exclude the

input/output execution time in our tests.

POLYBENCH’s implementation for the automation of comparisons consists of several

UNIX shell scripts and C programs. It has been tested on platforms Debian Linux and Sun

Solaris. The database generation part is strongly related to PIPS and C3 infrastructure.

Nonetheless, once the polyhedral databases are created, the POLYBENCH can be used

with only a fragment of C3 code.

PIPS

PPL

Omega

Octagon

C3

PIP

JANUS

LRS

CDD

New POLKA

POLYLIB

POLYBENCH

Fig. 6.8 – Libraries tested with POLYBENCH

Figure 6.8 represents some possible applications of POLYBENCH. Polyhedral libraries

can use our POLYBENCH’s set of tests so that their performance can be evaluated.

2.6 Target Machines

Experiments have been carried out on a 2.4 GHz Pentium IV machine with 2 GB of

RAM, running Debian Operating System version 3.0, and on a 270 MHz UltraSparc IIi



2. CONSTITUTION OF A POLYHEDRAL BENCHMARK - POLYBENCH 131

with 128 MB of RAM, running Sun Operating System Edition 5.8 Generic 108528-10. The

gcc version used under Debian is 3.3.5, and under Solaris is 2.8.1.

As our experimentation have been carried out on two platforms, GNU Linux and Sun

Solaris 8, we have chosen the compilation options of gcc as following ; Under GNU Linux,

we use -g -Wall -W -pipe -march=pentium -malign-double ; under Solaris, we use -g -Wall

-W -pipe -msupersparc.

2.7 Presentation of Results

The histograms presented in this chapter use the following conventions :

– For one operation, i.e. one input with one or two constraint systems, an implemen-

tation is considered better than another one if its measured execution time is strictly

shorter ;

– Two implementations are considered equivalent if their execution times are not dis-

tinguishable. This is relative because it depends on time resolution ;

– The caption may contain the speed-up or slowdown between two implementations,

e.g. JANUS and C3 Simplex ;

– The vertical axis represents the number of operations/tests executed in the labeled

database, and the horizontal axis corresponds to the criterion considered, for instance

the operand dimension.

Some of implementations use integer computations such as JANUS and C3, the others

are using rational computation. Possible result differences are observed and analyzed in

our results.

An interesting question is related to the availability of several implementations for one

same task. What would we get if we run them all in parallel ? Would we get the best

performance ? This question is also answered by our benchmark.

Parallel Algorithm : If we simultaneously execute two algorithms and only take into

account their best run time, we will have a performance of a new algorithm that we call the

parallel algorithm, or just PA for short. Here, we can imagine that we have two independent

machines or processors with multiple cores or threads, each runs an algorithm, and we only

take the better result.

Moreover, if we consider that this parallel algorithm raises an exception only when

both algorithms fail, then its number of exceptions should also always be lower.

We consider the parallel algorithm for two algorithms A and B on a set of three tests

as an example to illustrate this idea : the first test, both A and B fail ; A fails the second

test and B fails the third. So the parallel algorithm only counts one exception, with the

first test, whereas A and B each counts two exceptions. Obviously, we can also define a

parallel algorithm for more than two algorithms.



132 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

2.8 Polyhedral Databases

Database description : As mentioned above in section 2, our polyhedral databases

are generated by tracing PIPS execution on public benchmarks, and stored in directory-

structured files. There is a possibility that we have a small redundancy in our polyhedral

databases. The chosen analyses are transformers, preconditions and must regions (see

chapter 2, section 4).

Two Types of databases : We have decided to use two different databases to study

the effect of different databases : one is biased, i.e. towards large size polyhedra, and the

other is periodically sampled since it contains many polyhedra. We have considered two

types of POLYBENCH databases, for each operator. For instance, with the satisfiability

test in table 6.1 :

– Sampled Database : constraint systems are periodically selected with probability at

intervals of 100, i.e., for every hundred constraint systems, we take only one, which

means we use only 1% to speed-up experiments and obtain average results. We have

chosen 1% for the sampling adapting to our experimentation : 1% is still quite large

for satisfiability databases that relatively assures accurate measurements. And even

with only 1%, the execution of the satisfiability test databases still last a week :

while the input/output, database compression/decompression, computations of po-

lyhedral characteristics, e.g. number of vertices, for each input using the Chernikova

algorithm, output comparisons and timeout exception cases, which are not counted

in our displayed total execution time as explained in section 2.5, already require

important execution times, our implementation of head-to-head comparisons some-

times requires several executions of the same implementation on the same databases,

which adds up to the total execution times. For example, JANUS versus Simplex and

JANUS versus Fourier-Motzkin need two executions of JANUS on our satisfiability

databases5. Since other databases are smaller, we use no sampling when possible ;

– Filtered Database : only large size constraint systems, large according to some size

criteria, are selected to analyze better the impact of exceptions. Thus this database

is biased on purpose. We have used the following criterion : ((dimensions > 80) ∨

(nb constraints > 50)∨ (density > 200) ∨ (magnitude > 800)). It presents the case

where the “size” of constraint systems is relatively large, which might lead to large

run times according to our experimentation on some extracted examples. We notice

here that, for some cases, these databases are very small or even empty, thus they

are only used for statistical purposes.

Incoherent Databases : In fact, the generation of POLYBENCH databases is not

trivial, since it was built during PIPS development. At the beginning, we extracted a da-

tabase from the original PIPS using the PerfectClub and SPEC95 benchmarks. At this

5This can be improved by implementation of a memorization scheme which belongs to our future work



2. CONSTITUTION OF A POLYHEDRAL BENCHMARK - POLYBENCH 133

PerfectClub SPEC95

Sampled Database (1%) 12668 16303

Filtered Database 1310 4676

Tab. 6.1 – Satisfiability Test : Numbers of constraint systems

PerfectClub SPEC95

Sampled Database (1%) 1789 2583

Filtered Database 3 5

Tab. 6.2 – Projection : Numbers of constraint systems - filtered databases useless

time, the implementation of operators such as convex hull, normalization and projection

was not armed with timeout mechanism, thus in case of trouble, PIPS executions lasted

very long or did not even terminate correctly. For example, PIPS execution on Perfect-

Club’s ocean.f was blocked several days on account of expensive convex hull computation,

then its database was generated with many polyhedra of large size. Later, the timeout

mechanism that helped reduce PIPS execution times for hard cases was implemented, and

the newly generated database contained many more polyhedra but of smaller size.

Moreover, the POLYBENCH framework at this time was experimental, thus only the

satisfiability operator was tested, and its databases was also used for other operators such

as projection, minimization. Due to changes made during PIPS development, we cannot

reproduce the original databases. To save time, we decided to use two different databases,

which are the initial filtered and the new sampled ones.

Chosen Criteria : We found that 1% sampling and the chosen filter criterion were

reasonable for the total execution times of all the necessary operations. Moreover, during

our early experiments, we have tested some other databases with different intervals and

criteria to compare their results, and found out that our choice were good enough to

obtain reliable results, with only one exception described in section 7. For instance, we

have basically the same conclusions with 10% and 1% sampling for satisfiability test. The

1% sampling and full projection databases also give similar results.

Note here that even with the 1% sampling rate, we still have a very large number of

constraint systems that relatively assures accurate measurement. Table 6.2, table 6.3 and

table 6.4 present the two types of databases for the projection, minimization and convex

hull operators. We remark that their sampled databases are smaller than satisfiability

test’s, and their filtered databases are useless.



134 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

PerfectClub SPEC95

Sampled Database (1%) 3894 4608

Filtered Database 11 12

Tab. 6.3 – Minimization : Numbers of constraint systems - filtered databases useless

PerfectClub SPEC95

Sampled Database (1%) 194 pairs 240 pairs

Filtered Database 0 0

Tab. 6.4 – Convex Hull : Numbers of constraint systems - empty filtered databases

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub (Sampling_100)

Fig. 6.9 – PerfectClub : dimension distribution of sampled database for satisfiability test

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  10  20  30  40  50  60  70  80  90  100 110 120 130 140 150 160 170 180 190

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

SPEC95 (Sampling_100)

Fig. 6.10 – SPEC95 : dimension distribution of sampled database for satisfiability test



2. CONSTITUTION OF A POLYHEDRAL BENCHMARK - POLYBENCH 135

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub (Filtering)

Fig. 6.11 – PerfectClub : dimension distribution of filtered database for satisfiability test

 0

 50

 100

 150

 200

 250

 300

 350

 0  10  20  30  40  50  60  70

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

SPEC95 (Filtering)

Fig. 6.12 – SPEC95 : dimension distribution of filtered database for satisfiability test



136 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

2.9 Distribution of Dimension Space

Analyzing the dimension-based histograms generated from all the databases, we remark

a relation between the database generated from the analyzed program, and the program

itself. Let us take the satisfiability test for example.

The program Ocean.f in the PerfectClub database : Observing the distribution based

on the numbers of variables of constraint systems in figure 6.9 we can see a peak corres-

ponding to dimension of 105, that shows the effect of ocean.f. Figure 6.10, figure 6.11 and

figure 6.12 show distribution of the other databases in PerfectClub and SPEC95, without

explanation of the peaks. The phenomenon is due to the complex structure of the ocean’s

main module with 807 lines of code, where a great number of constraint systems are to

be manipulated, and average sizes of these constraint systems are much larger than the

others because of the large number of global variables visible and modified at the main

level.

In our experimental sections, in order to reduce the number of graphs and tables in

this dissertation, we only present the results of PerfectClub or SPEC95, which are direct

comparisons of implementations and characteristics of databases, and do not consider

all the criteria. Any difference between results of the two benchmarks is revealed if it

does exist. The full set of experimental results can be found at POLYBENCH’s website

[Que05a].

2.10 Evaluation of POLYBENCH and Future Work

In this section, we talk about the advantages of our approach, its limitations and the

future of POLYBENCH. First of all, we summarize some advantages as follows :

– Methodology : Easy and straightforward comparison of performance and stability ;

– Quality of comparison : large databases from an existing static analyzer ;

– Presentation of results in graphical form and tables.

– Execution is fully automated ;

– Static program analysis related test sets ;

– POLYBENCH’s input format is human legible ;

– POLYBENCH supports variable names and thus provides variable origin tracking

in debugging.

Alongside the above advantages, limitations of our approach are also present :

– Work required for new implementation ;

– Comparisons can be inhomogeneous ;

– Missing memory usage comparisons ;

– Chosen criteria are not fully satisfying, i.e. heuristic-based approach is not appli-

cable ;

– Head-to-head comparisons require several executions of the same implementation,

since exception cases are excluded from execution time measurements ;



2. CONSTITUTION OF A POLYHEDRAL BENCHMARK - POLYBENCH 137

– PIPS-dependence : version development.

Since we intend to remove these limitations, here we discuss them in more details

before presenting the experimental part.

The diversity of algorithms and implementations yields the most important limit of

our framework. The diversity consists of availability of algorithms, algorithmic differences,

implementation differences, etc. As such, the comparisons sometimes are not homogeneous.

For example, many integer algorithms are not yet designed because of complexity, e.g.

the convex hull operator, or JANUS [Sog02] was originally implemented with C built-in

arithmetic, thus only 32-bit computation 6 is enabled, whereas most polyhedral implemen-

tations support 64-bit integer arithmetic. Some libraries implement GNU multi-precision,

e.g. New POLKA [Jea02b, Jea00], some others do not, e.g. C3 [tea90, ACI00]. Therefore,

although the 64-bit vs GNU multi-precision computing question seems to be more interes-

ting than the 32-bit vs 64-bit computing question in our point of view, the corresponding

implementations are not available.

In particular, CDD [Fuk02] implements C built-in floating point and GNU multi-

precision arithmetic, and it sometimes uses both at the same time though usually one uses

only one.

The second most important limit of our framework is that it does not support yet the

memory consumption comparisons, due to its already complicated structure. We intend

to implement this feature in the future.

In order to analyze a new algorithm or implementation, an internal representation

conversion from our format is required. This is not a simple work, errors or incompatibilities

may appear. The conversion time is included in comparisons, which is not trivial7. Some of

available implementations are not tested, due to problems of time and bugs. Furthermore,

in order to compare the results computed by different implementations, each result in its

own internal format must be converted to our format. This conversion is different from the

above-mentioned conversion, thus requires additional work. That is why, in case of New

POLKA, the output is not yet verified.

In our framework, representations of results are based on run times and polyhedral

criteria, such as number of dimensions, number of constraints, etc. Thus, for operators

that take several arguments, e.g. the convex hull operator, the representation is not trivial

since run times depend on all arguments. We can for instance take the criteria of the

largest argument, but we actually take the first polyhedron’s criteria, in the convex hull

evaluation.

Another limit of our framework is that, while a great number of tests is generated in

order to increase the exactitude of experiments, it requires days of experimentation. If we

deploy powerful computers, we can reduce the time, but then the time of each execution

may go under the time resolution which is based on quanta, thus comparisons becomes

6Ported to 64-bit by me.
7In C3 point of view, it should be included since it actually impacts the execution time.



138 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

imprecise.

On the contrary, if we use a small set of tests, deploying slow computer, we obtain

more precision in timing comparison. Thus a sampling mechanism is implemented in our

framework. For execution times that are too small, a repeating mechanism for time measu-

rement is implemented since it is the cheapest solution. We plan to implement an adaptive

schema in the future.

Our database creation schema depends strongly on PIPS’s infrastructure, in order

to put the evaluations in the program analysis and transformation context. Thus, these

databases may contain polyhedra that are not suitable in other context. We notice that

though there is redundancy in our databases, it is not considered a problem, since the

databases are constructed and used independently for each operator, and because it reflects

the reality of static analyzers. In fact, we can test a memorization scheme for this, as well

as for head-to-head comparisons to avoid several executions of the same implementation,

but we decide to implement them in the future due to their lower priority.



3. RESULTS FOR SATISFIABILITY TEST 139

3 Results for Satisfiability Test

From section 3.1 to section 3.5, we compare JANUS 8 64-bit, denoted JV64 for short,

with the three implementations found in C3 : Simplex 64-bit, denoted LS64, Fourier-

Motzkin 64-bit, denoted FM64, and the satisfiability test using the double description

method 64-bit, denoted FDD64 9.

Then in section 3.6, we compare two different versions of each implementation : JA-

NUS 64-bit versus JANUS 32-bit, denoted JV32 ; C3 Simplex 64-bit versus C3 Simplex

32-bit, denoted LS32 ; C3 Fourier-Motzkin 64-bit versus C3 Fourier-Motzkin 32-bit, deno-

ted FM32 ; and finally C3 satisfiability test using the double description method 64-bit,

denoted FDD64, versus C3 satisfiability test using the double description method 32-bit,

denoted FDD32. The polyhedral databases used here are the satisfiability test databases

(see section 2.8).

3.1 JANUS 64-bit versus C3 Simplex 64-bit

3.1.1 Random Sampling Database of PerfectClub

In figure 6.13, the histogram legends show three colors red, blue and green. The mea-

nings of these legends are : the red zones present the cases where JANUS 64-bit is faster

than C3 Simplex 64-bit ; the green zones correspond to the cases where C3 Simplex 64-bit

is faster than JANUS 64-bit ; the blue zones mean that our implementation cannot tell

which one is faster than the other, i.e. the run times cannot be compared because of the

time resolution used.

This histogram has two axes representing the numbers of variables in the constraint

systems, also known as the space dimensions of the corresponding polyhedra, and the

number of constraint systems available in PerfectClub polyhedral sampled database, for

the satisfiability test operator. We can see this information in the first line of the figure

header, as well the percentages : JANUS 64-bit is faster for 25 percent of all tests, C3

Simplex 64-bit is never faster. It also means that in 75 percent of cases we cannot compare

the execution times, due to the time resolution.

Furthermore, total accumulated run times for all tests are compared, from which the

global acceleration is derived and displayed in the second line of figure header : the total

run time of C3 Simplex 64-bit is divided by the total run time of JANUS 64-bit which

shows that JANUS 64-bit is approximately 22 times faster than C3 Simplex 64-bit on

average.

The same information is represented in figure 6.14 and figure 6.15, with respect to the

number of equations and number of inequalities respectively.

8JANUS was developed with 32-bit arithmetic. It was extended to 64-bit and added exception mana-

gement by me, see chapter 5, section 3.2.3, page 91.
9Developed by me, using Chernikova’s algorithm.



140 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): JV64 (25.00%) vs LS64 (0.00%)
 Acceleration(LS64/JV64): 22.37

JV64
LS64

Indistinguishable

Fig. 6.13 – PerfectClub : Dimension JANUS 64-bit vs C3 Simplex 64-bit in sampled

database

 0

 500

 1000

 1500

 2000

 2500

 0  10  20  30  40  50  60  70  80

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion nb_eq

PerfectClub(Sampling_100): JV64 (25.00%) vs LS64 (0.00%)
 Acceleration(LS64/JV64): 22.37

JV64
LS64

Indistinguishable

Fig. 6.14 – PerfectClub : Numbers of equations JANUS 64-bit vs C3 Simplex 64-bit in

sampled database

 0

 500

 1000

 1500

 2000

 2500

-20  0  20  40  60  80  100  120  140  160  180

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion nb_ineq

PerfectClub(Sampling_100): JV64 (25.00%) vs LS64 (0.00%)
 Acceleration(LS64/JV64): 22.37

JV64
LS64

Indistinguishable

Fig. 6.15 – PerfectClub : Numbers of inequalities JANUS 64-bit vs C3 Simplex 64-bit in

sampled database



3. RESULTS FOR SATISFIABILITY TEST 141

We can see that the histogram with dimension axis is more informative than the other

two. This remark holds for all the results, hence from now on we only present histograms

with respect to the dimension.

3.1.2 Biased Database of PerfectClub

Figure 6.16 represents the experimental results using a filtered database, which is a

biased database as explained in section 2.8, for JANUS 64-bit and C3 Simplex 64-bit.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Filtering): JV64 (84.00%) vs LS64 (3.00%)
 Acceleration(LS64/JV64): 15.00

JV64
LS64

Indistinguishable

Fig. 6.16 – PerfectClub : Dimension JANUS 64-bit vs C3 Simplex 64-bit in filtered data-

base

We notice that there are cases where JANUS 64-bit is slower, shown by the green zones,

but the conclusion for run times of these two algorithms is that JANUS 64-bit is faster

than C3 Simplex 64-bit, for both PerfectClub sampled database and filtered database.

The results of SPEC95 benchmark are not presented here because they are very similar

to PerfectClub.

3.1.3 Parallel Algorithm

We particularly notice that in the case of sampled databases, the performance of the

parallel algorithm10 is equivalent to JANUS’s, which is about 22 times faster than C3

Simplex in PerfectClub case and 73 times faster in SPEC95 case. For the filtered databases,

the parallel algorithm PA is as fast as JANUS, and about 15 times faster than C3 Simplex,

for PerfectClub benchmark ; JANUS is 30 times faster than C3 Simplex for the SPEC95

benchmark.

3.2 JANUS 64-bit versus C3 Fourier-Motzkin 64-bit

Here we compare JANUS 64-bit and C3 Fourier-Motzkin 64-bit : figure 6.17 and fi-

gure 6.18 represent the experimental results of PerfectClub sampled and filtered databases.

10See page 131 for the definition of our parallel algorithm.



142 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

We can observe that JANUS 64-bit is faster : 46 percent with sampled database and 32

percent with filtered database 11. For the SPEC95, we have 74 and 17 percent, respectively.

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): JV64 (32.00%) vs FM64 (0.00%)
 Acceleration(FM64/JV64): 45.54

JV64
FM64

Indistinguishable

Fig. 6.17 – PerfectClub : Dimension JANUS 64-bit vs C3 Fourier-Motzkin 64-bit in sam-

pled database

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Filtering): JV64 (88.00%) vs FM64 (1.00%)
 Acceleration(FM64/JV64): 31.75

JV64
FM64

Indistinguishable

Fig. 6.18 – PerfectClub : Dimension JANUS 64-bit vs C3 Fourier-Motzkin 64-bit in filtered

database

Parallel Algorithm : As in the previous section, section 3.1.3, we remark the equiva-

lent performance between the parallel algorithm PA and JANUS in the case of sampled

databases and filtered databases.

3.3 JANUS 64-bit versus C3 Double Description Method 64-bit

Performance comparison between JANUS 64-bit and Double Description Method 64-

bit is illustrated in figure 6.19 and figure 6.20. They represent the experimental results of

11Explications for this kind of graphs can be found at 3.1.



3. RESULTS FOR SATISFIABILITY TEST 143

PerfectClub sampled and filtered databases.

We remark a very poor performance of FDD64-bit compared to JANUS 64-bit : from

404 to 520 times slower. Exceptionally in SPEC95 sampled database results, JANUS 64-

bit outruns FDD 64-bit with a very large ratio of 5485. Therefore, we conclude that in

the satisfiability test, it is much faster avoiding the dual conversion using the Chernikova

algorithm. This conclusion is important since only C3 implements other methods than

the Chernikova algorithm. However, as we will see later in the next section, we need the

Chernikova algorithm in some cases.

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): JV64 (100.00%) vs FDD64 (0.00%)
 Acceleration(FDD64/JV64): 404.11

JV64
FDD64

Indistinguishable

Fig. 6.19 – PerfectClub : Dimension JANUS 64-bit vs C3 FDD 64-bit in sampled database

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Filtering): JV64 (100.00%) vs FDD64 (0.00%)
 Acceleration(FDD64/JV64): 519.84

JV64
FDD64

Indistinguishable

Fig. 6.20 – PerfectClub : Dimension JANUS 64-bit vs C3 FDD 64-bit in filtered database

The experimental results for SPEC95 are similar to those obtained with PerfectClub,

thus they are not displayed here.

Parallel Algorithm : Because we present the results here as JANUS 64-bit versus the

other three, we have a similarity to the previous sections : the equivalent performance



144 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

64-bit JANUS/PA LS/PA FM/PA FDD/PA

Sampled 1/1 22/1 46/1 404/1

Filtered 1/1 15/1 32/1 520/1

Tab. 6.5 – PerfectClub : Global execution times compared to the parallel algorithm PA,

64-bit

PerfectClub

timeout = 2 minutes #overflows #timeouts #operations

JANUS 64-bit 5 0 12668

C3 Simplex 64-bit 9 0 12668

C3 Fourier-Motzkin 0 2 12668

C3 Double Description 2 7 12668

Tab. 6.6 – PerfectClub : Numbers of exceptions in sampled database

between the parallel algorithm, denoted PA12, and JANUS using sampled databases and

filtered databases.

Table 6.5 summarizes the comparison of global execution times for satisfiability test,

64-bit. We remark that JANUS 64-bit outruns the other three and its performance is

equivalent to the parallel algorithm PA. Now we study the problem of exceptions in the

next section.

3.4 Overflow and Timeout Exceptions : 64-bit

Previous comparisons between JANUS 64-bit and C3’s three algorithms only concern

measured execution times, which is in fact not complete. In this section, we compare

the numbers of exceptions : overflow exceptions, which occur with numbers too large for

computation, and timeout exceptions, when execution time of a test is longer than two

minutes, which is arbitrarily considered not acceptable.

Sampled databases : Table 6.6 shows numbers of exceptions for JANUS 64-bit, C3

Simplex, Fourier-Motzkin and Double Description method, and the number of tests in

PerfectClub sampled database. One notices that JANUS is more robust than C3 Simplex :

5 to 9 overflows. It has no timeout exception, while C3 Fourier-Motzkin raises 2 timeout

exceptions and C3 Double Description method raises 2 overflows only and 7 timeout

exceptions that may block our analysis. We notice that Fourier Motzkin has no overflow

exception.

With SPEC95, sampled database, we have another result : JANUS 64-bit has more

exceptions than C3 Simplex (52 to 51), and more than C3 Fourier Motzkin method (52

12See page 131 for the definition of our parallel algorithm.



3. RESULTS FOR SATISFIABILITY TEST 145

SPEC95

timeout = 2 minutes #overflows #timeouts #operations

JANUS 64-bit 52 0 16303

C3 Simplex 64-bit 51 0 16303

C3 Fourier-Motzkin 1 14 16303

C3 Double Description method 717 0 16303

Tab. 6.7 – SPEC95 : Numbers of exceptions in sampled database

PerfectClub

timeout = 2 minutes #overflows #timeouts #operations

JANUS 64-bit 0 0 1310

C3 Simplex 64-bit 2 0 1310

C3 Fourier-Motzkin 0 0 1310

C3 Double Description 0 407 1310

Tab. 6.8 – PerfectClub : Numbers of exceptions in filtered database

to 1) table 6.7. We also observe that Fourier Motzkin method has 14 timeout exceptions,

and there are many overflow exceptions with the Double Description method : 717.

Fourier-Motzkin Additional Tests for Timeout Exceptions : Since the number of

timeout exceptions raised by the Fourier-Motzkin algorithm is rather small, 2 in table 6.6

and 14 in table 6.7, and from the fact that the inequalities combination in this algorithm

is explosive (see chapter 5, section 3.2.1), we have tested these constraint systems again

without the 2 minutes timeout activation. The result is that they all raised out-of-memory

space exceptions. This means that if the Fourier-Motzkin method takes more than two

minutes, it likely results in much longer execution time before an out-of-memory space

occurs.

Thus our conclusion for the sampled databases is that JANUS and Simplex are more

robust than the other two algorithms. Now we consider the filtered databases.

We need to remind the reader that tables related to filtered databases cannot be

compared to tables related to sampled databases.

Filtered databases : Table 6.8 shows that with PerfectClub filtered databases, JA-

NUS 64-bit, Fourier-Motzkin and Double Description method has no overflow exception,

whereas C3 Simplex has only two overflows. Only C3 Double Description method raises

as many as 407 timeout exceptions that may block our analysis.

It is however very different with SPEC95, filtered database , as shown in table 6.9 : C3

Simplex has 3714 overflow exceptions, 727 more than JANUS 64-bit. C3 Fourier Motzkin



146 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

SPEC95

timeout = 2 minutes #overflows #timeouts #operations

JANUS 64-bit 2987 0 4676

C3 Simplex 64-bit 3714 0 4676

C3 Fourier-Motzkin 8 626 4676

C3 Double Description 22 0 4676

Tab. 6.9 – SPEC95 : Numbers of exceptions in filtered database

Filtered databases PerfectClub SPEC95

ASCII file size 5596.73 2496.27

Average #Dimensions 46.97 10.28

Average #Equations 17.40 2.35

Average #Inequalities 38.89 52.56

Average #Constraints 56.30 54.91

Average #Sparsity index 3.90 3.86

Average #Vertices 1118.76 18.66

Average #Rays 69.10 14.07

Average #Lines 6.78 0.53

Tab. 6.10 – Average polyhedral size statistic of filtered database

method has only 8 overflows and 626 timeout exception. And the winner in this case is

surprisingly the C3 Double Description method, with only 22 overflows and no timeout

exception. To understand this difference, we decided to investigate these two filtered da-

tabases.

Polyhedral size statistics : For the filtered databases, we have seen different results

between PerfectClub and SPEC95 tests : the C3 Double Description method has many

timeout exceptions with PerfectClub tests but it has only 22 overflows and no timeout

exception, much better performance compared to the other three algorithms13.

Table 6.10 compares the two databases, where the differences in space dimensions,

numbers of vertices, rays and lines are important since the Double Description method is

related to these factors14. Therefore, the cause of the difference is the polyhedral charac-

teristics of the filtered databases.

Parallel Algorithm : The parallel algorithm could be useful if we wish to reduce the

number of exceptions. In fact, we have implemented in C3 some variations of the parallel

13We recall that the total measured execution times is another aspect, where JANUS is proved faster.
14The Double Description implementation in fact computes the vertices, rays and lines from given

constraint systems using Chernikova algorithm.



3. RESULTS FOR SATISFIABILITY TEST 147

PerfectClub

integer vs rational declared feasible #operations

JANUS 64-bit 0 12668

C3 Simplex 64-bit 5 12668

C3 Fourier-Motzkin 1 12668

C3 Double Description method 8 12668

Tab. 6.11 – PerfectClub : Numbers of not precise results in sampled database

algorithm which uses the three algorithms JANUS, Simplex and Fourier-Motzkin. For

example, we try the Fourier-Motzkin method when JANUS has an exception.

The implementation of POLYBENCH permits us to verify that in table 6.6, the five

overflow exceptions from JANUS and the exceptions from other three algorithms come

from different constraint systems. It means if we use the parallel algorithm using JANUS

and another algorithm, we can resolve all the tests. For instance, for this database, the

parallel algorithm of JANUS and Simplex has zero exception. For the SPEC95 sampled

database, JANUS and Simplex share the same 39 overflow exceptions, which represents

the number of exceptions that their parallel algorithm has. If we use the parallel algorithm

of the four algorithms, we have only one exception, instead of 52 exceptions with JANUS.

In the case of filtered databases, we can for example use the Fourier-Motzkin in table 6.8

and the Double Description method table 6.9 for the constraint systems that JANUS

cannot deal with.

3.5 Integer versus Rational : 64-bit

In above comparisons, we have ignored a fact that algorithms implemented for the

satisfiability test can be integer or rational. The integer algorithm tests if the constraint

system contains integer points or not, whereas the rational tests if the constraint system

contains rational points or not. The algorithm implemented in JANUS is integer where

C3 Simplex and Double Description method are rational. C3 Fourier-Motzkin is a rational

algorithm with an add-on test that in some cases can verify if the solution are rational or

integer. Thus, it is in fact an integer/rational algorithm. In our context, integer answer

means more precision than rational one, therefore in this section we compare the differences

between results of those algorithms.

Table 6.11 and table 6.12 show numbers of cases where C3 Simplex, Fourier-Motzkin

and Double Description method give the answer notempty while the constraint system

contains no integer point but only rational points, with sampled databases 15. We can see

that the percentage of not precise results is rather small. This suggests that the difference

is not significant.

15While less precise, it is not a problem for program analysis since the approach is conservative.



148 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

SPEC95

integer vs rational declared feasible #operations

JANUS 64-bit 0 16303

C3 Simplex 64-bit 4 16303

C3 Fourier-Motzkin 0 16303

C3 Double Description method 3 16303

Tab. 6.12 – SPEC95 : Numbers of not precise results in sampled database

3.6 Arithmetic Precision : 64-bit versus 32-bit

Here we compare the difference between 64-bit and 32-bit implementations of algo-

rithms for the satisfiability test. This comparison answers the question : which precision

should we adopt, 32-bit, 64-bit or GNU multi-precision ? This question is raised since we

do know that 32-bit computation can be faster and requires less memory space than 64-bit,

and much faster than GNU Multi Precision, but we do not know exactly how much of pre-

cision we lose because of computing overflows. Unfortunately we do not have a complete

set of implementations supporting GNU multi-precision, therefore comparisons between

64-bit and GNU multi-precision are not yet available.

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): JV64 (0.00%) vs JV32 (7.00%)
 Acceleration(JV32/JV64): 0.57

JV64
JV32

Indistinguishable

Fig. 6.21 – PerfectClub : Dimension JANUS 64-bit vs JANUS 32-bit in sampled database

Sampled databases : We compare the run times between two versions, 32-bit and 64-

bit, of each algorithm. Then we compare the numbers of exceptions between 32-bit and

64-bit versions of these implementations. In figure 6.21, figure 6.22 and figure 6.23, we can

see that the execution time ratios are between 0.57 and 0.84, thus the sacrifice in execution

time for using 64− bit (higher precision) instead of 32− bit is to be considered.

Table 6.13 shows that for PerfectClub sampled database, numbers of exceptions are

fewer using the higher precision as expected. We have similar results with SPEC95.



3. RESULTS FOR SATISFIABILITY TEST 149

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): LS64 (0.00%) vs LS32 (15.00%)
 Acceleration(LS32/LS64): 0.84

LS64
LS32

Indistinguishable

Fig. 6.22 – PerfectClub : Dimension C3 Simplex 64-bit vs 32-bit in sampled database

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): FM64 (0.00%) vs FM32 (13.00%)
 Acceleration(FM32/FM64): 0.83

FM64
FM32

Indistinguishable

Fig. 6.23 – PerfectClub : Dimension C3 Fourier-Motzkin 64-bit vs 32-bit in sampled

database

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): FDD64 (0.00%) vs FDD32 (99.00%)
 Acceleration(FDD32/FDD64): 0.51

FDD64
FDD32

Indistinguishable

Fig. 6.24 – PerfectClub : Dimension C3 Fourier-Motzkin 64-bit vs 32-bit in sampled

database



150 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

PerfectClub

timeout = 2 minutes #overflows #timeouts #operations

C3 JANUS 64-bit 5 0 12668

C3 JANUS 32-bit 8 0 12668

C3 Simplex 64-bit 9 0 12668

C3 Simplex 32-bit 59 0 12668

C3 Fourier-Motzkin 64-bit 0 2 12668

C3 Fourier-Motzkin 32-bit 1 2 12668

C3 Double Description 64-bit 2 7 12668

C3 Double Description 32-bit 18 7 12668

Tab. 6.13 – PerfectClub : Numbers of exceptions in sampled database

PerfectClub

timeout = 2 minutes #overflows #timeouts #operations

C3 JANUS 64-bit 0 0 1310

C3 JANUS 32-bit 0 0 1310

C3 Simplex 64-bit 2 0 1310

C3 Simplex 32-bit 92 0 1310

C3 Fourier-Motzkin 64-bit 0 0 1310

C3 Fourier-Motzkin 32-bit 0 0 1310

C3 Double Description 64-bit 0 407 1310

C3 Double Description 32-bit 50 371 1310

Tab. 6.14 – PerfectClub : Numbers of exceptions in filtered database

Filtered databases : If we only consider execution times, the filtered databases have si-

milar results, though not presented here, as the sampled databases. But since the constraint

systems are of larger sizes, we expect to have a different picture concerning the exceptions.

In fact, table 6.14 shows that C3 Simplex 64-bit has reduced from 92 exceptions to 2

exceptions compared to its version 32-bit. The Double Description method 32-bit raises

50 overflow exceptions among which 36 timeout exceptions, i.e. 407 − 371, are expected

using its 64-bit version.

Table 6.15 shows that using 32-bit instead of 64-bit results in many more overflow

exceptions. The Double Description method has the biggest difference : 939 to 22.

3.7 Conclusion

First of all, we notice that sometimes exceptions could heavily penalize the execution.

Let us take an example with an empty system of hundreds of constraints that raises an

overflow exception for a 32-bit implementation for the satisfiability test. This constraint



3. RESULTS FOR SATISFIABILITY TEST 151

SPEC95

timeout = 2 minutes #overflows #timeouts #operations

C3 JANUS 64-bit 3050 0 4676

C3 JANUS 32-bit 3109 0 4676

C3 Simplex 64-bit 3174 0 4676

C3 Simplex 32-bit 3972 0 4676

C3 Fourier-Motzkin 64-bit 8 625 4676

C3 Fourier-Motzkin 32-bit 181 495 4676

C3 Double Description 64-bit 22 0 4676

C3 Double Description 32-bit 939 0 4676

Tab. 6.15 – SPEC95 : Numbers of exceptions in filtered database

system may continue to expand in a sequence of much larger systems to be manipulated

in our analyses. If the 64-bit implementation can solve this constraint system, i.e. without

exception, then instead of manipulating systems of hundreds of constraints, we only have

to deal with an empty system with no constraint, which means much faster execution.

We can see that 64-bit computation is more accurate than 32-bit computation for at

most a half execution time slow-down. Experiences show that even with 64-bit compu-

tation, a very important number of overflow exceptions are encountered, thus 64-bit is

preferable.

In general, JANUS 64-bit has a better performance over C3 Simplex 64-bit, Fourier-

Motzkin 64-bit and Double Description Method 64-bit. However, the fact that C3 Fourier-

Motzkin 64-bit and Double Description method can solve a number of constraint systems

that JANUS 64-bit cannot (see section 3.4), raises a question : Is it worth to use them in

such rare cases ?

We remark that C3 Fourier-Motzkin and Double Description method have problem

mostly with timeout. Then one may consider them as an ultimate choice when we ab-

solutely want a definitive answer. However, we cannot assure the termination of these

algorithms, because memory space is limited.

For the Simplex algorithm, we can see that magnitude is the main problem, not the

explosion of system size as for Fourier-Motzkin algorithm. So a treatment of large numbers

might resolve the case. For example, we might try GNU multi-precision library instead of

64-bit computing.

The degenerated polyhedra is another problem for Simplex method, so pre-processing

phases are to be studied. We can also use approaches proposed in [Mer05], such as Car-

tesian factorization or dimension space mapping. For a large constraint system that none

of the above implementations can deal with, we do not know whether a polyhedron de-

composition can improve the situation or not ([Mer05], page 85 to 91, and chapter 5,

section 6.2.3).



152 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

The poor performance of the satisfiability test using Double Description method with

the sampled databases and PerfectClub filtered database suggests that New POLKA,

POLYLIB and PPL libraries that use this approach should meet difficulties when dealing

with large size constraint systems.

For the SPEC95 filtered database, unfortunately, we cannot build any heuristics to

take advantages of the Double Description method. We are aware of the size estimating

algorithm presented in CDD library [Fuk02], but it is not cheap enough to be used as

heuristics.

Finally, our experimental results have shown an unexpected fact : The most relevant

criterion is the number of dimensions but not the number of constraints. Criteria more

predictive than the dimension space have not been found. In most of cases, the dimension

space cannot provide good heuristics, i.e. we cannot provide a cut which separates the red

zones and the green zones in those histograms in order to achieve the best performance

out of two implementations.



4. RESULTS FOR PROJECTION 153

4 Results for Projection

4.1 C3 approach : Constraints versus Generators, 64-bit

In this section, we compare the 64-bit implementation that manipulates directly on

constraint systems, i.e., the Fourier-Motzkin elimination method, denoted P64, and the

implementation using the double description method for 64-bit, denoted PDD64, which

projects the polyhedron by converting its constraint system to a generating system and

then does the projection using this representation 16. The first one was already available in

C3, and the second one was implemented by me, in order to evaluate the two approaches.

Our comparisons only make sense when we have in hand the constraint systems but

not their corresponding generating systems at the same time. This is normally the case in

C3 library. For New POLKA library, the generating system of a polyhedron can be present

or not, depending on the context. POLYLIB library always keep the two representations

of the polyhedron in question, thus our comparison does not make sense except the fact

that we can check the equivalence of the outputs of different implementations.

The polyhedral databases used here are the projection sampled databases (see sec-

tion 2.8). In figure 6.25, the histogram legend shows three colors red, blue and green.

However, in this case, we only have the red zones which present the cases where constraint

manipulation P64 is faster than the double description method PDD64 17.

This histogram has two axes representing the number of variables in constraint sys-

tems and the number of constraint systems available in PerfectClub polyhedral sampled

database for the projection operator. We can see this information in the first line of the

figure header, as well the percentages : P64 is faster in all tests, PDD64 is never faster.

Furthermore, total accumulated run times of all tests are compared, from which the

global acceleration is derived and displayed in the second line of figure header : the total run

time of PDD64 divided by the total run time of P64 which shows that P64 is approximately

1253 times faster than PDD64.

As for satisfiability test in section 3, histograms with dimension axis are more infor-

mative than the others.

The conclusion about the run times of two algorithms is P64 is much faster than

PDD64, for PerfectClub sampled databases : 450 times faster. The same results are seen

for SPEC95 databases, but not displayed here.

The big difference in performance of P64 and PDD64 suggests that in case of perfor-

mance problems for Double-Description-method-based libraries such as New POLKA and

PPL 18, implementations using Fourier-Motzkin elimination method might be a solution.

16The conversion time is much more important, since the projection using generating system is very

simple.
17See 3.1 for more explication of these histograms.
18These two libraries does not always compute the generating system representation like the POLYLIB.

Since POLYLIB always keep the dual representations at the same time, it is not a problem.



154 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): P64 (100.00%) vs PDD64 (0.00%)
 Acceleration(PDD64/P64): 1253.22

P64
PDD64

Indistinguishable

Fig. 6.25 – PerfectClub : Dimension P64 vs PDD64 in sampled database

PerfectClub

timeout = 2 minutes #overflows #timeouts #operations

P64 0 0 1789

PDD64 19 15 1789

Tab. 6.16 – PerfectClub : Numbers of exceptions in sampled database

4.2 Overflow and Timeout Exceptions : 64-bit

In this section, we compare the numbers of exceptions : overflow exceptions, raised

when appears a number which is too large for computation, and timeout exceptions, when

the execution time of a test is longer than two minutes, which is arbitrarily considered not

acceptable.

Table 6.16 shows the numbers of exceptions for P64 and PDD64, and the number of

all tests in PerfectClub projection sampled database. P64 is more robust than PDD64,

because it has no overflow nor timeout, whereas PDD has 19 overflows and 15 timeout

exceptions that may block our analysis. For the SPEC95 projection sampled database with

2583 tests, we however do not have any exception.

4.3 Arithmetic Precision : 64-bit versus 32-bit

Figure 6.26 represents the same results of P64 and P32 comparisons with Perfect-

Club projection sampled database, which shows P32 is faster than P64, as for the other

databases19.

Figure 6.27 also represents the same results of PDD64 and PDD32 comparisons with

PerfectClub projection sampled database, which says that PDD32 is faster than PDD64,

as for the other databases. We notice as well that there are cases where the 64-bit version

19There are cases where P64 is faster, but we do not know why.



4. RESULTS FOR PROJECTION 155

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90  100  110  120  130

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): P64 (14.00%) vs P32 (15.00%)
 Acceleration(P32/P64): 0.96

P64
P32

Indistinguishable

Fig. 6.26 – PerfectClub : Dimension P64-bit vs P32-bit in sampled database

is faster.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): PDD64 (0.00%) vs PDD32 (100.00%)
 Acceleration(PDD32/PDD64): 0.52

PDD64
PDD32

Indistinguishable

Fig. 6.27 – PerfectClub : Dimension PDD64-bit vs PDD32-bit in sampled database

Now we compare the run times between two executables, 32-bit and 64-bit of each

algorithm. Then we compare the numbers of exceptions between 32-bit and 64-bit versions

of these implementations. In figure 6.26 and figure 6.27, we see some different ratios of run

times which vary from 0.45 to 0.98, thus the sacrifice in execution time for using 64− bit

(higher precision) instead of 32− bit is not very important.

Table 6.17 shows that for the set of PerfectClub sampled database and the PDD

implementation, numbers of exceptions are fewer using the higher precision. We notice

that the number of overflows in 32-bit computation is much higher than in 64-bit (66 to

19 exceptions), compared to the difference of timeout exceptions (15 to 14 exceptions).

Meanwhile, the direct constraint manipulation approach shows no difference in exceptions.



156 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

PerfectClub

timeout = 2 minutes #overflows #timeouts #operations

P64-bit 0 0 1789

C3 P32-bit 0 0 1789

PDD64-bit 19 15 1789

PDD32-bit 66 14 1789

Tab. 6.17 – PerfectClub : Numbers of exceptions in sampled database

4.4 Conclusion

Our conclusion for this part consists of two main points :

– Given the constraint system representation, P64 is better than PDD64 in term of

run time performance and number of exceptions ;

– The 64-bit is preferable to 32-bit computation for our projection databases.



5. RESULTS FOR MINIMIZATION 157

5 Results for Minimization

5.1 C3 approach : constraints versus generators, 64-bit

In this section, we compare the 64-bit implementation of the minimization operator

that manipulates directly the constraint systems, denoted N64, and the implementation

using the double description method for 64-bit, denoted NDD64, which minimizes the

polyhedron in question by converting its constraint system to generating system (see

chapter 5, section 5) 20. The first one was already available in C3, and the second one was

implemented by me, in order to compare the two approaches. The polyhedral databases

used here are the minimization sampled databases (see section 2.8).

As we have explained in chapter 5, the semantics of this minimization operator is

open enough. Thus the two above algorithms can result in constraint systems which are

physically quite different, but should represent two equivalent polyhedra. As a matter of

fact, this difference does not affect the meaning of our comparison, since we are interested in

an effective implementation of the abstract minimization operator with a correct semantics.

Our evaluation permits us checking the equivalence of the output of these two approaches.

In figure 6.28, the histogram shows three colors red, blue and green. The red zones

present the cases where constraint manipulation N64 is faster than double description

method NDD64, the green zones imply the cases where NDD64 is faster than N64, whereas

the blue zones mean that our implementation cannot tell which one is faster than the other,

i.e. the run time is about equal, because of the time resolution.

This histogram has two axes representing the number of variables in the constraint

system (also known as the dimension space of the polyhedron corresponding), and the

number of constraint systems available in PerfectClub polyhedral sampled database. We

can see this information in the first line of the figure header, as well the percentages : N64

is faster in 100 percent of all tests, NDD64 is never faster.

Furthermore, total accumulated run times of all tests are compared, from which the

global acceleration is derived and displayed in the second line of figure header : the total run

time of NDD64 divided by the total run time of N64 which shows that N64 is approximately

450 times faster than NDD64.

As for satisfiability test in section 3, histograms with dimension axis are more infor-

mative than the others.

The conclusion for run times of two algorithms is N64 is much faster than NDD64, for

PerfectClub sampled database : 450 times faster. The same results are seen for SPEC95.

The big difference in performance of N64 and NDD64 suggests that in case of per-

formance problems for Double-Description-method-based libraries such as New POLKA,

POLYLIB and PPL, implementations using direct manipulation on constraint systems can

be a solution.

20The dual conversion time is the minimization time.



158 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): N64 (100.00%) vs NDD64 (0.00%)
 Acceleration(NDD64/N64): 449.54

N64
NDD64

Indistinguishable

Fig. 6.28 – PerfectClub : Dimension N64 vs NDD64 in sampled database

PerfectClub

timeout = 2 minutes #overflows #timeouts #operations

N64-bit 0 0 3894

NDD64-bit 14 9 3894

Tab. 6.18 – PerfectClub : Numbers of exceptions in sampled database

5.2 Overflow and Timeout Exceptions : 64-bit

In this section, we compare the numbers of exceptions : overflow exception, when

appears a number which is too large for computation, and timeout exception, when the

execution time of a test is longer than two minutes, which is arbitrarily considered not

acceptable.

Table 6.18 shows numbers of exceptions for N64 and NDD64, and the number of all

tests in PerfectClub minimization sampled database. One remarks that N64 is more robust

than NDD64, because it has no overflow nor timeout, whereas NDD64 has 14 overflows and

9 timeout exceptions that may block our analysis. For the SPEC95 minimization sampled

database with 4608 tests, we however did not find any exception.

5.3 Arithmetic Precision : 64-bit versus 32-bit

Figure 6.29 represents the same result of N64 and N32 comparisons with PerfectClub

minimization sampled database, which is the N32 is faster than N64 , as for the other

databases21.

Figure 6.30 also represents the same result of NDD64 and NDD32 comparisons with

PerfectClub minimization sampled database. NDD32 is faster than NDD64, as for the

other databases.

21There are cases where N64 is faster, but we do not know why.



5. RESULTS FOR MINIMIZATION 159

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): N64 (13.00%) vs N32 (20.00%)
 Acceleration(N32/N64): 0.85

N64
N32

Indistinguishable

Fig. 6.29 – PerfectClub : Dimension N64-bit vs N32-bit in sampled database

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): NDD64 (0.00%) vs NDD32 (99.00%)
 Acceleration(NDD32/NDD64): 0.52

NDD64
NDD32

Indistinguishable

Fig. 6.30 – PerfectClub : Dimension NDD64-bit vs NDD32-bit in sampled database



160 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

PerfectClub

timeout = 2 minutes #overflows #timeouts #operations

N64-bit 0 0 3894

N32-bit 0 0 3894

NDD64-bit 14 9 3894

NDD32-bit 74 5 3894

Tab. 6.19 – PerfectClub : Numbers of exceptions in sampled database

We compare the run times between two executables, 32-bit and 64-bit of each algo-

rithm. Then we compare the numbers of exceptions between 32-bit and 64-bit versions of

these implementations. In figure 6.29 and figure 6.30, we count differences of run times

which varies from 0.84 to 1.07, thus the sacrifice in execution time for using 64−bit (higher

precision) instead of 32− bit is not very important.

Table 6.19 shows that for the set of PerfectClub sampled database and the NDD

implementation, numbers of exceptions are fewer using the higher precision. We notice

that the number of overflows in 32-bit computation is much higher than in 64-bit (74

to 14 exceptions), compared to the difference of timeout exceptions (9 to 5 exceptions).

Meanwhile, the direct constraint manipulation approach shows no difference in exceptions.

5.4 Conclusion

This conclusion consists of two main points :

– Given the constraint system representation, N64 is better than NDD64 in term of

run time performance and number of exceptions ;

– The 32-bit is preferable to 64-bit computation, for our minimization databases (for

the timeout exceptions and a slightly shorter run time).



6. RESULTS FOR DUAL CONVERSION 161

6 Results for Dual Conversion

We have several implementations for the dual conversion operator, which are mostly

based on the Chernikova algorithm (see chapter 5, section 2). The conversion is dual, thus

we focus only in converting a constraint system to its generating system. Since we do not

have databases for the dual conversion operator, we have chosen to use the convex hull

sampled databases, since this operator is strongly based on the dual conversion operator

(see section 2.8 for POLYBENCH’s polyhedral databases).

We experienced problems22 in adapting the LRS library (see chapter 3, section 3, page 45),

to the POLYBENCH framework, thus the results for LRS are not yet available. New

POLKA (see chapter 3, section 3, page 47) is not chosen since its convex hull imple-

mentation is strongly related to the dual conversion operator, as explained in chapter 5.

Therefore, in this section, we only present the comparison between two implementations :

C3 dual conversion that use POLYLIB implementation (see chapter 3, section 3, page 44)

and CDD (see chapter 3, section 3, page 44).

6.1 C3 Dual Conversion versus CDD, 64-bit

We now compare the implementation of Chernikova algorithm for 64-bit in C3, denoted

C3DD64, and the C-implementation using the double description method of the CDD

library for 64-bit, denoted CDD64 (see chapter 3, section 3, page 44). Here we ignore the

fact that CDD64 uses C-built-in double floating point or GNU multi-precision rational

library which are both faster than C3DD64’s integer computation.

In figure 6.32, the histogram shows only green zones 23 which mean that CDD64 is

always faster than C3DD64. In fact, CDD64 is faster in 100 percent of all tests. Finally,

total run times accumulated for all tests are compared : we have CDD64 is faster than

C3DD64 with a ratio of 0, 14 : 1, which means approximately 7 times faster, for the

SPEC95 convex hull sampled database.

The histogram in figure 6.31, shows green zones indicating the cases where CDD64

is faster than C3DD64 and red zones corresponding to the opposite cases. They are well

separated by the dimension 80, from which a time-run-based heuristic can be constructed

as follows : We use CDD64 for constraint systems with dimensions lower than 80 and

C3DD64 for those with higher dimensions. We however notice that CDD64 is faster in

98 percent of all tests, thus this heuristic does not seem to be necessary according to

the total run times accumulated. We have CDD64 is faster than C3DD64 with a ratio

of 0, 30 : 1, which means approximately 3 times faster, for the PerfectClub convex hull

sampled database.

The conclusion for run times of these two algorithms is that CDD64 is faster than

C3DD64, and we have a good example of a heuristics which can be based on the expe-

22The very poor performance of our LRS conversion suggests that bugs might be present.
23See 3.1 for more explication of these histograms.



162 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): C3DD64 (1.00%) vs CDD64 (98.00%)
 Acceleration(CDD64/C3DD64): 0.30

C3DD64
CDD64

Indistinguishable

Fig. 6.31 – PerfectClub : Dimension C3DD64 vs CDD64 in sampled database

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): C3DD64 (1.00%) vs CDD64 (98.00%)
 Acceleration(CDD64/C3DD64): 0.30

C3DD64
CDD64

Indistinguishable

Fig. 6.32 – SPEC95 : Dimension C3DD64 vs CDD64 in sampled database



6. RESULTS FOR DUAL CONVERSION 163

SPEC95

timeout = 2 minutes #overflows #timeouts #operations

C3DD64-bit 1 0 485

CDD64-bit 0* 0 485

Tab. 6.20 – SPEC95 : Numbers of exceptions in sampled database

rimental results. If we do not consider the exception problem, we can obtain the parallel

algorithm’s performance with this heuristics that is much easier to implement.

6.2 Overflow and Timeout Exceptions : 64-bit

We have to emphasize here once more, that CDD does not detect overflows (see chap-

ter 3, section 3, page 44). However, since POLYBENCH compares the resulting constraint

systems of the two implementations, we can deduce the numbers of exceptions raised : if

CDD64’s output is correct, compared to C3DD64’s output, then CDD64 has no overflow,

as shown in table 6.20. The numbers of exceptions come from C3DD64 and CDD64’s

executions on SPEC95 convex hull sampled database.

We notice that this example reveals a difference between the two implementations :

an overflow exception from C3DD64. However, the convex hull sampled databases only

contain fewer than 500 tests (PerfectClub’s 393 tests do not show any difference in numbers

of exceptions), thus we can conclude that the difference is not significant.

6.3 Arithmetic Precision : 64-bit versus 32-bit

Figure 6.33 illustrates the comparisons between C3DD64 and C3DD32 for PerfectClub

convex hull sampled database. C3DD32 is faster than C3DD64 for all tests with two times

faster for total run time.

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): C3DD64 (0.00%) vs C3DD32 (100.00%)
 Acceleration(C3DD32/C3DD64): 0.49

C3DD64
C3DD32

Indistinguishable

Fig. 6.33 – PerfectClub : Dimension C3DD64-bit vs C3DD32-bit in sampled database



164 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

PerfectClub

timeout = 2 minutes #overflows #timeouts #operations

C3DD64-bit 0 0 393

C3DD32-bit 0 0 393

CDD64-bit 0 0 393

CDD32-bit 0 0 393

Tab. 6.21 – PerfectClub : Numbers of exceptions in sampled database

As for the CDD implementation, we only have a little difference between CDD64 and

CDD32, as demonstrated by figure 6.34, for PerfectClub convex hull sampled database.

There are cases where CDD64 is faster, but we do not know why.

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70  80  90  100  110

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): CDD64 (15.00%) vs CDD32 (19.00%)
 Acceleration(CDD32/CDD64): 0.98

CDD64
CDD32

Indistinguishable

Fig. 6.34 – PerfectClub : Dimension CDD64-bit vs CDD32-bit in sampled database

Table 6.21 shows that the C3DD and CDD implementations yield no exceptions with

PerfectClub convex hull sampled database. There are as well no exceptions for 485 tests

in SPEC95 convex hull database.

6.4 Conclusion

Two points are noticeable :

– CDD64 (rational computing) is better than C3DD64 (integer computing) in term of

run time performance and number of exceptions ;

– The choice between 32-bit and 64-bit computation is not important for our convex

hull sampled databases.



7. RESULTS FOR CONVEX HULL 165

7 Results for Convex Hull

In this section, we compare three implementations for the convex hull operator. The

first implementation, called C3 ’s Partial Factorization, uses the POLYLIB implementation

and the partial factorization described in section 6.2.1, chapter 5. The second implemen-

tation is the POLYLIB convex hull function, and the third one is the New POLKA convex

hull function. (see chapter 3, section 3, page 46 and section 3, page 47 for descriptions of

POLYLIB and New POLKA libraries).

Convex hull sampled databases problem : The convex hull polyhedral databases

described in section 2.8 contain fewer tests than the other databases, thus sometimes small

database histograms like figure 6.35 do not make a good distribution. Exceptionally, the

comparisons between the partial factorization and New POLKA only counts three tests in

figure 6.36, hence their evaluation is meaningless 24. Therefore the full databases are used

instead, though it requires much longer execution times since convex hull is an expensive

operator.

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70  80  90  100

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

SPEC95(Sampling_100): C3C64 (58.00%) vs C3P64 (15.00%)
 Acceleration(C3P64/C3C64): 5.43

C3C64
C3P64

Indistinguishable

Fig. 6.35 – SPEC95 : Dimension C3C64 vs C3P64 in sampled database - too few tests

7.1 C3 Partial Factorization versus POLYLIB, 64-bit

We now compare C3 convex hull implementation using partial factorization for 64-bit,

denoted C3C64, and POLYLIB’s convex hull implementation for 64-bit, denoted C3P64,

in order to see whether the partial factorization, which can be seen as a pre-processing

step, improves the convex hull computation or not.

In figure 6.37, the histogram shows green zones meaning the cases where C3P64 is

faster than C3C64 and red zones meaning the opposite cases. The blue zones mean we

24In our method, if one of the two considered implementations raises an exception for a test, the run

times of the test will be ignored.



166 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

 0

 0.5

 1

 1.5

 2

 0

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): C3C64 (33.00%) vs PK64 (33.00%)
 Acceleration(PK64/C3C64): 1.00

C3C64
PK64

Indistinguishable

Fig. 6.36 – PerfectClub : Dimension C3C64 vs PK64 in sampled database - too few tests

cannot distinguish the difference because of the time resolution 25. We notice that C3C64

is faster in 67 percent of all tests, whereas C3P64 is faster in only 7 percent of all tests.

But, the total execution time ratio for this database indicates that C3P64 is faster than

C3C64 with a ratio of 0, 78 : 1, which means approximately 1, 25 times faster. This means

in some cases of PerfectClub databases, the partial factorization does not work very well.

On the contrary, figure 6.38 presents a much better performance of the partial factori-

zation C3C64, with SPEC95 databases. Indeed, C3C64 is faster in 63 percent of all tests,

whereas C3P64 is faster in only 7 percent of all tests, and most important, C3C64 is 5

times faster than C3P64 by the total accumulated run times.

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(No_Sampling): C3C64 (67.00%) vs C3P64 (7.00%)
 Acceleration(C3P64/C3C64): 0.78

C3C64
C3P64

Indistinguishable

Fig. 6.37 – PerfectClub : Dimension C3C64 vs C3P64 in full database

A Sampling Problem for PerfectClub Convex Hull Database : An interesting

remark on the results regarding our sampling implementation is that, in this unique case,

25See 3.1 for more explication of these histograms.



7. RESULTS FOR CONVEX HULL 167

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

SPEC95(No_Sampling): C3C64 (63.00%) vs C3P64 (7.00%)
 Acceleration(C3P64/C3C64): 5.08

C3C64
C3P64

Indistinguishable

Fig. 6.38 – SPEC95 : Dimension C3C64 vs C3P64 in full database

we have a small incoherence in conclusion for the PerfectClub sampled database and its full

database : figure 6.39 shows that C3C64 is about 3 times faster than C3P64, concerning

the total run time. It is in fact the contrary to the result obtained with the full database.

This means, in our sampling of interval 100 on the PerfectClub convex hull database,

where we randomly take 1 test from every 100 tests, a few tests that are not suitable for

the partial factorization have been eliminated. We have not investigated this problem yet.

 0

 1

 2

 3

 4

 5

 0  10  20  30  40  50  60  70

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(Sampling_100): C3C64 (70.00%) vs C3P64 (3.00%)
 Acceleration(C3P64/C3C64): 3.20

C3C64
C3P64

Indistinguishable

Fig. 6.39 – PerfectClub : Dimension C3C64 vs C3P64 in sampled database - too few tests

Our conclusion for timing performance of these two algorithms is that C3C64 is faster

than C3P64, with the convex hull full databases.

7.2 C3 Partial Factorization versus New POLKA, 64-bit

The comparison between C3 convex hull implementation using partial factorization for

64-bit, denoted C3C64, and New POLKA’s convex hull implementation for 64-bit, denoted

PK64, is not totally satisfying for three reasons.



168 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

Firstly, though it seems to us that our conversion to POLYBENCH’s format of New

POLKA is correct, the number of exceptions raised by New POLKA is too important.

When we reduce the maximal memory space allowed 26 in New POLKA with respect to

those defined in POLYLIB, hence in C3, we have far fewer exceptions.

Secondly, since New POLKA and POLYLIB both implement the same Chernikova

algorithm, and since our tests are one-test-at-a-time, the memory strategy implemented

in New POLKA has no effect and the performances are expected to be alike 27. We are

then interested in the Partial Factorization, which is in fact a pre-process step.

Thirdly, New POLKA’s initialization and POLYBENCH’s internal format conversion

seem to be too expensive.

In figure 6.40 and figure 6.41, we can see the same result that C3C64 is faster than

PK64 : C3C64 in 35 and 33 percent of all tests, whereas PK64 is faster in 22 and 21

percent of all tests ; C3C64 is approximately 1, 5 time faster than PK64 with respect to

the total execution time (1 : 1, 48 and 1 : 1, 43, respectively).

 0

 50

 100

 150

 200

 250

 300

 350

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(No_Sampling): C3C64 (35.00%) vs PK64 (22.00%)
 Acceleration(PK64/C3C64): 1.48

C3C64
PK64

Indistinguishable

Fig. 6.40 – PerfectClub : Dimension C3C64 vs PK64 in full database

We remark that for the SPEC95 convex hull database, in comparison with the previous

section, the number of tests is far fewer, which means that New POLKA’s implementation

raises many exceptions. We study this in the next section.

7.3 Overflow and Timeout Exceptions : 64-bit

The numbers of exceptions presented in table 6.22 come from C3C64, C3P64 and

PK64’s executions on SPEC95 convex hull database. We can clearly see that there are too

many timeout exceptions from New POLKA, and that the partial factorization not only

improves the execution time but also reduces (in this case eliminates) the overflow ex-

ceptions from POLYLIB’s original implementation of Chernikova algorithm. We obtained

similar results from PerfectClub’s 19683 tests.
26MAX NB RAYS from 20000 to 5000.
27It was verified in our early experiments but not yet in POLYBENCH.



7. RESULTS FOR CONVEX HULL 169

 0

 50

 100

 150

 200

 250

 300

 0  10  20

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

SPEC95(No_Sampling): C3C64 (33.00%) vs PK64 (21.00%)
 Acceleration(PK64/C3C64): 1.43

C3C64
PK64

Indistinguishable

Fig. 6.41 – SPEC95 : Dimension C3C64 vs PK64 in full database

SPEC95

timeout = 2 minutes #overflows #timeouts #operations

C3C64-bit 0 0 24151

C3P64-bit 512 0 24151

PK64-bit 0 1270 24151

Tab. 6.22 – SPEC95 : Numbers of exceptions in full database

7.4 Arithmetic Precision : 64-bit versus 32-bit

Since C3C64 is clearly the winner, in this section we only compare it with its 32-bit

version, denoted C3C32. Figure 6.42 illustrates these comparisons for PerfectClub convex

hull database. C3C32 is faster than C3C64 for 37 percent of all tests with three times

faster for total run time of all tests, whereas C3C64 is faster for only 8 percent of tests.

SPEC95 convex hull database gives us similar results.

Table 6.23 shows that for the set of SPEC95 convex hull database, the C3 partial

factorization implementations, there are a few differences (0 to 32 exceptions with 24151

tests). For the PerfectClub, there are no differences with 19683 tests. Our conclusion for

this part is that 64-bit computation is preferable to 32-bit computation.

SPEC95

timeout = 2 minutes #overflows #timeouts #operations

C3C64-bit 0 0 24151

C3C32-bit 32 0 24151

Tab. 6.23 – SPEC95 : Numbers of exceptions in full database



170 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70  80  90  100  110  120

Nu
mb

er 
of 

tes
ts 

(sy
ste

ms
 of

 co
ns

tra
int

s)

Criterion dimension

PerfectClub(No_Sampling): C3C64 (8.00%) vs C3C32 (37.00%)
 Acceleration(C3C32/C3C64): 0.33

C3C64
C3C32

Indistinguishable

Fig. 6.42 – PerfectClub : Dimension C3C64-bit vs C3C32-bit in full database

7.5 Conclusion

Four points are relevant :

– The Partial Factorization designed and implemented by Corinne Ancourt and Fabien

Coelho proves to be an improvement for implementations of Chernikova algorithm,

in term of run time performance and number of exceptions ;

– Existence of some tests that are not suitable for the Partial Factorization, therefore

the incoherence of PerfectClub sampled and full database (see the sampling problem

in page 166) ;

– 64-bit is preferable to 32-bit computation for this set of tests ;

– We plan to work on the conversion of New POLKA’s convex hull implementation

for POLYBENCH.



8. CONCLUSION 171

8 Conclusion

In this chapter, we have presented the first large scale and real life experimental eva-

luations of key polyhedral operators. These evaluations require a lot of work because of

the diversity of implementations and because of numerous missing implementations had

to be coded by the author.

Our benchmark system is quite different from other benchmarks in that, besides the

performance, the stability analyses, i.e., analyses of ability to cope with computational

problems, we have integrated polyhedral characteristics in our evaluations.

Moreover, since our set of tests is generated from PIPS [IJT90, IJT91a], an static

analyzer performing on standard benchmarks with large size applications (PerfectClub

and SPEC95 benchmarks), the results provide richer information than the bibliographical

experimental results.

Indeed, pre-existing evaluations are not satisfying for several reasons : our bibliographic

study has revealed the fact that, it doesn’t exist yet a mechanism to evaluate effectively

these works, especially in the domain of program analysis and transformation with real-life

examples. Conducted evaluations are based on at most one hundred problems, mostly theo-

retical, without analyses on quantity, on criteria, on exceptions (cases where algorithms

fail because of resource limits), etc...

An example of existing comparisons can be found in [Sog96], where JANUS is compared

with Omega test [Pug91], whose results have discovered only performance-related issues

concerning the nightmare problem, due to the fact that the OMEGA tool include many

overhead factors that cannot be reduced by the author of [Sog96].

There is also a set of tests provided by CDD [Fuk02] and LRS [Avi02], then used by

PPL developers28 in order to evaluate the PPL library’s performance, with respect to the

other libraries. These evaluations are based on the vertex/facet enumeration problem with

a set of less than two hundred hand-made inputs, which are supported by the libraries

POLYLIB [Loe02, Wil93], New POLKA [Jea02b, Jea00], the LINEAR C3 [tea90, ACI00],

CDD [Fuk02] and LRS [Avi02] (see chapter 3 for these libraries). Although these inputs

supply varying complexities for these libraries, they are far from satisfying, given the

differences among applications.

Apart from clarifying whether CPU or memory efficiency or both are the intended

measures of interest, our benchmark offer problem-related analyses (such as polyhedral

size parameters, their origin), stability comparisons, incoherent results checking, precision

of computing comparisons, etc... Those features are not available elsewhere.

The average execution time and the ability to deal with exceptions were of high inter-

est. Furthermore, these results gave us an idea of the impact of choices made at higher

levels, or the interaction in the sequence of operations. For instance, a suitable projection

approximation can reduce the polyhedral size of several satisfiability tests afterward.

28Available on PPL’s website.



172 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES

The results obtained in the satisfiability part have proved to be useful, where an

external algorithm, JANUS, was extended to 64-bit precision and integrated by me in our

analysis and transformation tool PIPS, because of its demonstrated better performance.

The dual conversion or double description approach is interesting since this operator

can be used to implement projection, minimization and, mostly, convex hull computa-

tion. We have implemented the satisfiability test, projection and minimization using this

approach, in order to compare with C3 approach.

The decomposition of polyhedra by Corinne Ancourt and Fabien Coelho (see chapter 5,

section 6.2.1), can be used in order to speed-up the computation as shown in the convex

hull part. This technique, or the strongly related one in [Mer05], can be applied for the

other operators, including the satisfiability test.

Our evaluations first confirm the excellence of JANUS compared to all other imple-

mentations and algorithms as suggested in [Sog96] for integer satisfiability.

They also contain new comparisons of implementations that were not considered before,

such as the Fourier-Motzkin method, the minimization operator implementation using the

direct constraint manipulation in C3 library, etc.

Then, they provide information on the connection between polyhedral problems, which

are inputs for polyhedral libraries, and static analyzer’s analyses on programs.

Furthermore, our framework studies the direct impact when using the 64-bit instead

of 32-bit computation in polyhedral libraries, which is not possible from previous work.

Our experimental results show unexpectedly that the best predictive criterion is the

number of dimensions and not the number of constraints. No criterion more predictive has

been found. In case no clear winner is obtained, new heuristics can be constructed from

polyhedral characteristics as described in the dual conversion operator part.

We have observed an unexpected sensibility for experimental data sets, for example in

the comparisons of number of exceptions between JANUS and C3 Simplex.

We also have seen the limit interest for hard cases, where the filtered databases provide

poor information, except for the satisfiability test.

Bug detection and non-regression testing can be used to detect, for example, the dif-

ference between integer and rational answer. Such differences have been detected between

JANUS and C3 Simplex, which is rarely present, using our benchmark.

Our system of benchmarking is of course not complete and there are many things left

to be done. For example, there are no experimental results related to backup algorithms

dealing with exceptions, and making approximations which are outlined in chapter 5.

We intend to add into our evaluations more operators and more libraries. Designs

and implementations of new algorithms such as approximate algorithms for polyhedral

operators or improvements using the decomposition of polyhedra are of interest.

Indeed, the Cartesian factorization proposed by [HMPV03], as well as the decomposi-

tion by inclusion test (chapter 5, section 6.2.3) are prime candidates for evaluation.

About the POLYBENCH framework, we need to improve the sampling as well as the



8. CONCLUSION 173

repeating rule for small execution time.

We also plan to add memory usage comparisons into our comparisons, and try out

other criteria in order to use heuristic-based approach.

A memorization scheme to avoid several executions of the same algorithm, as well as

the resume capability are to be implemented.



174 CHAPITRE 6. BENCHMARKING EXISTING LIBRARIES



Chapitre 7

Conclusion

Abstract domain libraries used in current analyzers are dealing with problems limiting

the effectiveness of checking statically safety and security properties of programs written

in different languages, and identifying and locating origins of failures. In this dissertation

we have studied the problems raised from the applications of static program analyzers in

the industrial context, and then described two approaches to those problems.

One of the two main goals of this dissertation is to help designing a common interface

for abstract domain libraries used in five static analyzers PIPS [IJT90, IJT91a], NBAC

[tea02d, Jea00], ASTRÉE [tea02a, BCC+03], the OMEGA framework [tea02e, Pug91]

and CHINA [tea02b, tea02f, BRZH02]. The other goal is to provide a case study with the

polyhedra-based libraries : benchmarking available polyhedral implementations. These two

goals aim at answering the two questions :

– There are several abstract domains, which one is appropriate in a given context ?

– For each abstract domain, how to decide which implementations are appropriate ?

For the first goal, our starting point is to analyze problems existing in a particular

analyzer, named PIPS [IJT90, IJT91a], when using abstract domain libraries, and then

extend to other analyzers such as ASTRÉE [tea02a, BCC+03] and NBAC [tea02d, Jea00].

For the second goal, benchmarking polyhedral libraries is interesting since this most

used abstract domain counts several different implementations. They are varying, with

several algorithmic discoveries that make them very robust, and complicated to the point

that without a benchmarking system, we cannot determine which one is the most efficient.

Benchmarking helps deciding when and where to use which (appropriate) implementations.

It also helps regression testing, bug detection, performance and stability evaluations, etc.

The problems are identified and handled at several levels in actual static program

analysis projects. They can be computing limits such as execution time and memory space,

or technology limits that harm the accuracy of analyses, such as algorithmic unavailability.

All static analyzers using abstract domains suffer from the very same problems, thus they

develop different techniques whose objectives are same as ours.

Nevertheless, our approaches are different and complete theirs : instead of develo-

ping new abstract domains to totally replace existing abstract domains (e.g. the work of

ASTRÉE group), we propose using both old and new ones, given that each one has its own

advantages and disadvantages ; and, given the poor pre-existing evaluations, we decide to

take a step further by constructing a complex framework for evaluations, then propose a

case study with polyhedra-based implementations.

The chapter 1 introduced the context of static analyses and identified the main pro-

175



176 CHAPITRE 7. CONCLUSION

blems for static analyzers. Then chapter 2 went into more details with basic concepts and

some examples, where some related books and articles that we deem important are cited.

The next chapters described our work, divided into two parts.

The first part, chapter 3 and chapter 4, deals with an adaptive abstract domain, which

in fact leads to the construction of a common interface. This interface tries to combine

and use efficiently existing abstract domains implementations.

The second part, chapter 5 and chapter 6, describes a framework permitting evaluations

of equivalent implementations for the polyhedral domain. This framework later can be used

with other abstract domains. We notice here that these two approaches, though both are

quite important, have yet been worked on before.

Common Interface : In respond to the first question mentioned above, we decide that

we can indeed use all the abstract domains since each one has its own advantages and

disadvantages at the same time.

We have analyzed existing interfaces of available implementations, in chapter 3, with

different degrees of interest : POLYLIB [Loe02, Wil93], New POLKA [Jea02b, Jea00], the

LINEAR C3 [tea90, ACI00], PPL [tea02f, BRZH02], OCTAGON [Min05, Min01b] and

OMEGA [tea02e, Pug91] libraries.

Our proposition for a common interface for abstract set manipulation engines, called

HQ interface and presented in chapter 4, helps to identify the problems, and presents

our very first solution. It consists of a prototype for a common interface, and practical

issue-related documents that reveal different approaches in existing implementations, from

which concrete decisions can be made.

Also in chapter 4, we have introduced the state of the art of a related project, the

APRON project, and compare it with our approach. In fact, the HQ interface was pre-

sented in APRON meetings, and helped starting deeper discussions on the subject. Our

proposition is divided into two parts.

The first part directly addresses the interface with imperative signatures, which should

describe what we need, how to present, introduce and expose it as clearly as possible. We

discuss the name of operators, what this function does, why we need other versions of it,

when we apply approximation, whether we should have a list of arguments instead of only

one argument, the level of this function, etc. These problems are already complex, thus

they should be separated from the second part.

The second part, which is as important as the first part, is where we discuss implemen-

tation issues such as how we handle exceptions, how we manage the memory, etc. In fact,

there are many ways to deal with this kind of problems, so finally we just have to pick one

that is the most appropriate. For example, from the initial HQ’s signatures whose proto-

type is implemented in Java, we can use the JNI (Java Native Interface) tool to generates

its C signatures. However, this approach is not satisfying since the generated code is not

easy to understand, so we can consider building a set of rules for this conversion. Other



177

problems such as memory management, destructive functions, destructive arguments are

also documented in order to be decided later.

During APRON meetings, more problems were identified and discussed, and another

prototype was constructed. Recent developments presented at the VMCAI 2005 and NSAD

2005 workshops show that current polyhedral libraries such as POLYLIB [Loe02, Wil93]

and PPL [tea02f, BRZH02], as well as polyhedra-related libraries such as Octagon library,

are being worked on their interfaces. Likewise, new abstract domains are introduced, e.g.

in [Fer05b], which may have an important impact on our common interface.

Some complex problems such as product of domains or the Presburger domain are not

dealt with. At first, the implementation of the common interface will help the three static

analyzers described in chapter 3 to profit from those abstract domains. Then, given the

compatibility among the libraries, other analyzers using abstract interpretation can use

them, too.

Benchmarking Polyhedral Implementations : The second question mentioned above

is reformulated as follows : we have considered several abstract domains, but did we have

the best use of each domain ? To answer this question, we have analyzed in detail the most

common polyhedral operators in chapter 5, and conducted several experiments with the

most used polyhedral libraries, presented in chapter 6.

Indeed, chapter 5 presented an operator by operator view of the common polyhedral

API, surveyed algorithms and existing implementations, and discussed problems concer-

ning each operator. Problem of different operator names is clarified. Used convex polyhedra

related definitions and the list of these implementations were introduced in chapter 3.

In section 2, we have presented the history of Chernikova related algorithms for the

dual conversion (double description) operator.

Then, in section 3, we have detailed four algorithms that are implemented for the test

of satisfiability : the Fourier-Motzkin’s and Simplex method for rational test that were

already available in C3 library, the JANUS for integer test that was ported to 64-bit by

me, and the algorithm based on dual conversion operator, implemented by me.

In section 4, we have introduced two main algorithms for the projection operator, one

uses the dual conversion, implemented by me, and the other uses the Fourier-Motzkin

elimination method.

Similar to the projection operator, the minimization operator, which has two main al-

gorithms, is discussed in section 5. One algorithm is based on dual conversion, implemented

by me, and the other algorithm directly manipulates the polyhedron’s H-representation

form.

The convex hull operator is exposed along with three recent improvements : the partial

factorization (designed and implemented by Corinne Ancourt and Fabien COELHO, see

section 6.2.1), the Cartesian factorization [HMPV03] (see section 6.2.2) and our decom-

position using inclusion test, inspired by the Cartesian factorization (section 6.2.3).



178 CHAPITRE 7. CONCLUSION

Other operators such as the intersection, difference, widening, narrowing, etc. were

then briefly presented.

In this chapter, for each operator, differences among existing libraries at the interface

level were analyzed, in order to study the possibility of an integration among nearly-

equivalent works. Being mostly an experimental work, practical issues such as incompati-

bilities among polyhedral libraries are relevant.

Our contributions to improve some of these operators such as the port to 64-bit of

JANUS and its integration in C3 (section 3.2.3, page 91) are also presented in this chapter.

Propositions for improvement, (e.g. the decomposition using inclusion test, section 6.2.3,

page 106) as well as properties (e.g. projection using double description page 95) are in-

troduced.

Backup algorithms for approximations to deal with polyhedral high complexity are

briefly discussed.

The question of precision versus approximation is raised throughout the chapter, as

well as computational issues like 32-bit, 64-bit, 128-bit or GNU multi-precision modes.

The experimental results are presented in chapter 6. In this chapter, we introduced

our POLYBENCH framework and its benchmarking results for polyhedral libraries.

In fact, it is the first large scale and real life experimental evaluations of key polyhedral

operators. These evaluations require a lot of work because of the diversity of implementa-

tions and because of numerous missing implementations had to be coded by the author.

Our benchmark system is quite different from other benchmarks in that, besides the

performance, the stability analyses, i.e., analyses of ability to cope with computational

problems, we have integrated polyhedral characteristics in our evaluations.

Moreover, since our set of tests is generated from PIPS [IJT90, IJT91a], a static ana-

lyzer performing on standard benchmarks with large size applications (PerfectClub and

SPEC95 benchmarks), the results provide richer information than previous experimental

work.

Indeed, pre-existing evaluations are not satisfying for several reasons : our bibliographic

study has revealed the fact that, it doesn’t exist yet a mechanism to evaluate effectively

these works, especially in the domain of program analysis and transformation with real-life

examples. Conducted evaluations are based on at most one hundred problems, mostly theo-

retical, without analyses on quantity, on criteria, on exceptions (cases where algorithms

fail because of resource limits), etc...

An example of existing comparisons can be found in [Sog96], where JANUS is compared

with Omega test [Pug91], whose results have discovered only performance-related issues

concerning the nightmare problem, due to the fact that the OMEGA tool include many

overhead factors that cannot be reduced by the author of [Sog96].

There is also a set of tests provided by CDD [Fuk02] and LRS [Avi02], then used by

PPL developers in order to evaluate the PPL library’s performance [Ba04], with respect to

the other libraries. These evaluations are based on the vertex/facet enumeration problem



179

with a set of less than two hundred hand-made inputs, which are supported by the libraries

POLYLIB [Loe02, Wil93], New POLKA [Jea02b, Jea00], the LINEAR C3 [tea90, ACI00],

CDD [Fuk02] and LRS [Avi02] (see chapter 3 for these libraries). Although these inputs

supply varying complexities for these libraries, they are far from satisfying, given the

differences among applications.

In POLYBENCH framework, the average execution time and ability to deal with ex-

ceptions are the most interested factors. However, apart from clarifying whether CPU

or memory efficiency or both are the intended measures of interest, our benchmark of-

fer problem-related analyses (such as polyhedral size parameters, their origin), stability

comparisons, incoherent results checking, precision of computing comparisons, etc... Those

features are not available elsewhere.

Furthermore, these results gave us an idea of the impact of choices made at higher

levels, or the interaction in the sequence of operations. For instance, a suitable projection

approximation can reduce the polyhedral size of several satisfiability tests afterward.

The dual conversion or double description approach is interesting since this operator

can be used to implement projection, minimization and, mostly, convex hull computa-

tions. We have implemented the satisfiability test, projection and minimization using this

approach, in order to compare with C3 approach.

The results obtained in the satisfiability part (section 3) have proved to be useful,

where an external algorithm, JANUS, was extended to 64-bit precision and integrated

by me in our analysis and transformation tool PIPS, because of its demonstrated better

performance. Our evaluations first confirm the excellence of JANUS compared to all other

implementations and algorithms as suggested in [Sog96] for integer satisfiability.

It is important to note that, JANUS has better performance than double description

based method, which is largely used by POLYLIB [Loe02, Wil93], New POLKA [Jea02b,

Jea00].

The decomposition of polyhedra by Corinne Ancourt and Fabien COELHO (see chap-

ter 5, section 6.2.1), can be used in order to speed-up the computation as shown in the

convex hull part (section 7). This technique, or the strongly related one in [Mer05], can

be applied for the other operators, including the satisfiability test.

Our evaluations also contain new comparisons of implementations that were not consi-

dered before, such as the Fourier-Motzkin method, the minimization operator implemen-

tation using the direct constraint manipulation in C3 library, etc.

They also provide information on the connection between polyhedral problems, which

are inputs for polyhedral libraries, and static analyzer analyses on programs.

Furthermore, our framework studies the direct impact when using the 64-bit instead

of 32-bit computation in polyhedral libraries, which is not possible from previous work.

Our experimental results show unexpectedly that the best predictive criterion is the

number of dimensions and not the number of constraints. No criterion more predictive has

been found. In case no clear winner is obtained, new heuristics can be constructed from



180 CHAPITRE 7. CONCLUSION

polyhedral characteristics as described in the dual conversion operator part.

We have observed an unexpected sensibility for experimental data sets, for example in

the comparisons of number of exceptions between JANUS and C3 Simplex (section 3).

We also have seen the limit interest for hard cases, where the filtered databases provide

poor information, except for the satisfiability test.

Bug detection and non-regression testing can be used to detect, for example, the dif-

ference between integer and rational answer. Such differences have been detected between

JANUS and C3 Simplex, which is rarely present, using our benchmark.

In conclusion, the main results are recapitulated as follows :

– First experimental evaluations for polyhedral operators at large scale and for real-life

applications ;

– No absolute winner : need of new heuristics ;

– Unexpected sensibility for different test sets ;

– Error detection and non-regression testing.

Our contributions in this dissertation are the evaluations that are published in NSAD

2005 workshop and HQ, the generic multi-domain, multi-implementation interface, which

has been represented and used in the APRON project.

Since a common interface is a collective work, our proposition has only been served to

break the surface of the whole problem, which requires more time and work.

We intend to continue working on the HQ interface, where the compatibility problems

are documented, given that APRON does not supply this kind of documentation. Some

adaptations from the APRON’s prototype are also encouraged.

We also plan to complete our HQ interface and compare it to APRON approach,

knowing that there are some key differences : while APRON members prefer to minimize

the number of changes required to adopt the new interface, we are free of that obligation ;

HQ approach is in fact PIPS-oriented, and APRON approach needs to take into account

other analyzers. Thus we can have more clarity and possible simplification of the problems.

Our system of benchmarking is of course not complete and there are many things left

to be done. For example, there are no experimental results related to backup algorithms

dealing with exceptions, and making approximations which are outlined in chapter 5.

We intend to add into our evaluations more operators and more libraries. Designs

and implementations of new algorithms such as approximate algorithms for polyhedral

operators or improvements using the decomposition of polyhedra are of interest.

Indeed, the Cartesian factorization proposed by [HMPV03], as well as the decomposi-

tion by inclusion test (chapter 5, section 6.2.3) are prime candidates for evaluation.

About the POLYBENCH framework, we need to improve the sampling as well as the

repeating rule for small execution times.

We also plan to add memory usage comparisons into our comparisons, and try out

other criteria in order to use heuristic-based approach.

A memorization scheme to avoid several executions of the same algorithm on the same



181

arguments, as well as the resume capability, are to be implemented.



182 CHAPITRE 7. CONCLUSION



Bibliographie

[AB95] David Avis and David Bremner. How good are convex hull algorithms ? In

Symposium on Computational Geometry, pages 20–28, 1995. http ://cite-

seer.nj.nec.com/avis95how.html.

[ACI00] Corinne Ancourt, Fabien Coelho, and François Irigoin. Linear algebra as a

proof engine. Technical report, Centre de Recherche en Informatique, École

des Mines de PARIS, November 2000.

[AF92] David Avis and Komei Fukuda. A pivoting algorithm for convex hulls and

vertex enumeration of arrangements and polyhedra. Discrete and Computa-

tional Geometry, 8(3) :295–313, 1992. ACM Symposium on Computational

Geometry (North Conway, NH, 1991).

[AF96] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete

Applied Mathematics, 65(1-3) :21–46, 1996.

[AGR94] Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. Parallel algo-

rithms for higher-dimensional convex hulls. In IEEE Symposium on Founda-

tions of Computer Science, pages 683–694, 1994.

[AI91] Corinne Ancourt and François Irigoin. Scanning polyhedra with DO loops. In

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pages 39–50, April 1991. Inproceeding.

[ALV02] ALV. Action language verifier. http ://www.cs.ucsb.edu/˜bultan/composite,

2002. Project website.

[APR05] APRON. Numerical program analysis. http ://www.cri.ensmp.fr/apron, 2005.

Project APRON website.

[Avi02] David Avis. Lexicographical reverse search.

http ://cgm.cs.mcgill.ca/avis/C/lrs.htm, 2002. Project website.

[Ba04] R. Bagnara and al. Performance evaluation.

http ://www.cs.unipr.it/ppl/performance, 2004.

[Bay99] Valentina Bayer. Survey of algorithms for the convex hull problem. Technical

report, Oregon State University, 1999.

183



184 BIBLIOGRAPHIE

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-

niaux, and X. Rival. A static analyzer for large safety-critical software. In

PLDI. ACM, 2003.

[BCK+89] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff,

A. Sameh, E. Clementi, S. Chin, D. Scheider, G. Fox, P. Messina, D. Wal-

ker, C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson,

R. Goodrum, and J. Martin. The PERFECT club benchmarks : Effective

performance evaluation of supercomputers. The International Journal of Su-

percomputer Applications, 3(3) :5–40, 1989. Article.

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa.

The quickhull algorithm for convex hulls. ACM Transactions

on Mathematical Software, 22(4) :469–483, 1996. http ://cite-

seer.ist.psu.edu/article/barber95quickhull.html.

[BGP97] Tevfik Bultan, Richard Gerber, and William Pugh. Symbolic model checking

of infinite state systems using presburger arithmetic. In Computer Aided Ve-

rification, pages 400–411, 1997.

[BHRZ03] R. Bagnara, P. Hill, E. Ricci, and E. Za. Precise widening operators for convex

polyhedra. http ://www.cs.unipr.it/Publications, 2003.

[BHZ02] R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-

sharing. Theoretical Computer Science, 2002.

[BHZ03] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Widening operators

for powerset domains. In Bernhard Steffen and Giorgio Levi, editors, Verifi-

cation, Model Checking, and Abstract Interpretation, volume 2937 of Lecture

Notes in Computer Science, pages 403–433. Springer Berlin / Heidelberg, 2003.

[Bir67] Garrett Birkhoff. Lattice Theory. American Mathematical Society, 1967.

[Bou02] Youcef Bouchebaba. Optimisation des transferts de données pour le traite-

ment du signal : pavage, fusion et réallocation des tableaux. PhD thesis, École

Nationale Supérieur des Mines de PARIS, November 2002.

[BRZH02] R. Bagnara, E. Ricci, E. Za, and P. Hill. Possibly not closed

convex polyhedra and the parma polyhedra library. http ://ci-

teseer.nj.nec.com/bagnara02possibly.html, 2002. http ://cite-

seer.nj.nec.com/bagnara02possibly.html.

[BS99] R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in ROBDD-

based implementations of Pos. In A. M. Haeberer, editor, Proceedings of

the “Seventh International Conference on Algebraic Methodology and Soft-

ware Technology (AMAST’98)”, volume 1548 of Lecture Notes in Computer

Science, pages 471–485, Amazonia, Brazil, 1999. Springer-Verlag, Berlin.

[BYK01] Tevfik Bultan and Tuba Yavuz-Kahveci. Action language verifier. Automated

Software Engineering, International Conference on, 0 :382, 2001.



BIBLIOGRAPHIE 185

[Cam95] Caml. The caml language. http ://caml.inria.fr, 1995. The website.

[CC76] Patrick Cousot and Radhia Cousot. Static determination of dynamic proper-

ties of programs. In 2nd International Symposium on Programming, pages

106–130, April 1976.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation : a unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In ACM Symposium on Principles of Programming Languages, pages

238–252, January 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis

frameworks. In ACM Symposium on Principles of Programming Languages,

pages 269–282, January 1979.

[CC91] P. Cousot and R. Cousot. Comparison of the Galois connection and wide-

ning/narrowing approaches to abstract interpretation. JTASPEFL ’91, Bor-

deaux. BIGRE, 74 :107–110, October 1991.

[CC92] Patrick Cousot and Radhia Cousot. Comparing the galois connection and

widening/narrowing approaches to abstract interpretation. In PLILP ’92 :

Proceedings of the 4th International Symposium on Programming Language

Implementation and Logic Programming, pages 269–295, London, UK, 1992.

Springer-Verlag.

[CC00] Patrick Cousot and Radhia Cousot. Temporal abstract interpretation. In ACM

Symposium on Principles of Programming Languages, pages 12–25, January

2000.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-

straints among variables of a program. In ACM Symposium on Principles of

Programming Languages, pages 84–96, January 1978.

[Cha93] Bernard Chazelle. An optimal convex hull algorithm in any fixed dimension.

Discrete and Computational Geometry, 10 :377–409, 1993.

[Che64] N.V. Chernikova. Algorithm for finding a general formula for the non-negative

solutions of a system of linear equations. USSR Computational Mathematics

and Mathematical Physics, 4(4) :151–158, 1964.

[Che65] N.V. Chernikova. Algorithm for finding a general formula for the non-negative

solutions of a system of linear inequalities. USSR Computational Mathematics

and Mathematical Physics, 5(2) :228–233, 1965.

[Che68] N.V. Chernikova. Algorithm for discovering the set of all the solutions of a

linear programming problem. USSR Computational Mathematics and Mathe-

matical Physics, 8(6) :282–293, 1968.

[Chv83] Vasek Chvata. Linear Programming (Series of Books in the Mathematical

Sciences). W.H Freeman and Company, New York/San Francisco, 1983. Book.



186 BIBLIOGRAPHIE

[CI96] Béatrice Creusillet and François Irigoin. Exact vs. approximate array region

analyses. In International Workshop on Languages and Compilers for Parallel

Computing, volume 1239 of Lecture Notes in Computer Science, pages 86–100.

Springer-Verlag, 1996.

[CK70] Donald R. Chand and Sham S. Kapur. An algorithm for convex polytopes. J.

ACM, 17(1) :78–86, 1970.

[CL02] Thomas Christof and Andreas Loebel. Polyhedron repre-

sentation transformation algorithm. http ://www.iwr.uni-

heidelberg.de/groups/comopt/software/PORTA, 2002. Project website.

[Cla88a] K. L. Clarkson. Applications of random sampling in computational geometry,

ii. In SCG ’88 : Proceedings of the fourth annual symposium on Computational

geometry, pages 1–11, New York, NY, USA, 1988. ACM Press.

[Cla88b] Kenneth L. Clarkson. A randomized algorithm for closest-point queries. SIAM

J. Comput., 17(4) :830–847, 1988.

[Cla96] Philippe Clauss. Counting solutions to linear and nonlinear constraints

through ehrhart polynomials : Applications to analyze and transform scienti-

fic programs. In International Conference on Supercomputing, pages 278–285,

1996.

[Cou97] Patrick Cousot. Program analysis : The abstract interpretation perspective.

ACM SIGPLAN Notices, 32(1) :73–76, 1997.

[Cre96] Béatrice Creusillet. Analyses de régions de tableaux et applications. PhD

thesis, Centre de Recherche en Informatique, École des Mines de PARIS, De-

cember 1996.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in compu-

tational geometry, ii. Discrete Comput. Geom., 4(5) :387–421, 1989.

[CTI02] CTI. Constraint-based termination inference. http ://www.cs.unipr.it/cTI,

2002. Project website.

[Da00] Nurit Dor and al. Cssv : Towards a realistic tool for statically detecting

all buffer overflows in c. http ://www.cs.tau.ac.il/˜msagiv/cssv.pdf, 2000.

http ://www.cs.tau.ac.il/˜msagiv/cssv.pdf.

[Ede87] Herbert Edelsbrunner. Algorithms in combinatorial geometry. Springer-Verlag

New York, Inc., New York, NY, USA, 1987.

[Fea88] Paul Feautrier. Parametric integer programming. Operationnelle/Operations

Research, 22(3) :243–268, 1988. Article.

[Fea02] Paul Feautrier. Parametric integer programming.

http ://www.prism.uvsq.fr/˜cedb/bastools/piplib.html, 2002. Project

PIP website.



BIBLIOGRAPHIE 187

[Fer04] Jérôme Feret. Static analysis of digital filters. In European Symposium on Pro-

gramming (ESOP’04), number 2986 in LNCS. Springer-Verlag, 2004. Springer-

Verlag.

[Fer05a] Jérôme Feret. The arithmetic-geometric progression abstract domain. In Ve-

rification, Model Checking and Abstract Interpretation (VMCAI’05), number

3385 in LNCS, pages 42–58. Springer-Verlag, 2005. To appear, ? Springer-

Verlag.

[Fer05b] Jérôme Feret. Numerical abstract domains for digital filters. In International

workshop on Numerical & Symbolic Abstract Domains (NSAD 2005), num-

ber ? ? in ENTCS, page ? ? Elsevier, 2005.

[FLL01] Komei Fukuda, Th. M. Liebling, and Christine Lutolf. Extended convex hull.

Computational Geometry, 20(1-2) :13–23, 2001. Article.

[FP95] Komei Fukuda and Alain Prodon. Double description method revisited.

In Combinatorics and Computer Science, pages 91–111, 1995. http ://cite-

seer.nj.nec.com/fukuda96double.html.

[FQ88] Felipe Fernandez and Patrice Quinton. Extension of chernikova’s algorithm for

solving general mixed linear programming problem. Technical report, Institut

National de Recherche en Informatique et en Automatique à Rennes, December

1988.

[Fra02] Matthias Franz. Convex - a maple package for convex geometry. http ://www-

fourier.ujf-grenoble.fr/franz/convex, 2002. Project.

[Fuk02] Komei Fukuda. C implementation of double desciption method.

http ://www.ifor.math.ethz.ch/fukuda/cdd home/cdd.html, 2002. Project

website.

[GDD+04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with

summarized dimensions. http ://citeseer.ist.psu.edu/gopan04numeric.html,

2004. http ://citeseer.ist.psu.edu/gopan04numeric.html.

[GJ00] Ewgenij Gawrilow and Michael Joswig. Polymake : a framework for analyzing

convex polytopes. In Gil Kalai and Günter M. Ziegler, editors, Polytopes —

Combinatorics and Computation, pages 43–74. Birkhäuser, 2000.

[GJ01] Ewgenij Gawrilow and Michael Joswig. Polymake : an approach to modular

software design in computational geometry. In Proceedings of the 17th Annual

Symposium on Computational Geometry, pages 222–231. ACM, 2001. June

3-5, 2001, Medford, MA.

[Gra72] R. L. Graham. An efficient algorithm for determining the convex hull of a

finite planar set. Information Processing Letters, 1(4) :132–133, June 1972.

[Hal79] Nicolas Halbwachs. Détermination automatique de relations linéares verifiées

par les variables d’un programe. PhD thesis, Universite Scientifique et Medicale

de Grenoble, France, Mars 1979. Thesis.



188 BIBLIOGRAPHIE

[HK91] Paul Havlak and Ken Kennedy. An implementation of interprocedural boun-

ded regular section analysis. IEEE Transactions on Parallel and Distributed

Systems, 2(3) :350–360, 1991.

[HMPV03] N. Halbwachs, D. Merchat, and C. Parent-Vigouroux. Cartesian factoring of

polyhedra in linear relation analysis. In Static Analysis Symposium, SAS’03,

San Diego, June 2003. LNCS 2694, Springer Verlag.

[HZB01] P. M. Hill, E. Zaffanella, and R. Bagnara. A correct, precise and efficient

integration of set-sharing, freeness and linearity for the analysis of finite and

rational tree languages. Quaderno 273, Dipartimento di Matematica, Univer-

sità di Parma, Italy, 2001. http ://www.cs.unipr.it/Publications/.

[IJT90] François Irigoin, Piere Jouvelot, and Rémi Triolet. Overview of the pips pro-

ject. International Workshop on Compilers for Parallel Computers, 1990.

[IJT91a] François Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interprocedural

parallelization : an overview of the pips project. In ICS, pages 144–151, June

1991.

[IJT91b] François Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interprocedural

parallelization : an overview of the pips project. In ICS ’91 : Proceedings of

the 5th international conference on Supercomputing, pages 244–251, New York,

NY, USA, 1991. ACM.

[Iri92] F. Irigoin. Interprocedural analyses for programming environments. In In En-

vironments and Tools for Parallel Scienti Computing, pages 333–350. Elsevier

Science Publisher, 1992.

[Iri05] François Irigoin. Detecting affine loop invariants using a modular static ana-

lysis. Technical report, Centre de Recherche en Informatique, École des Mines

de PARIS, September 2005. Version préliminaire–A/368/CRI.

[Jar73] R. A. Jarvis. On the identification of the convex hull of a finite set of points

in the plane. Information Processing Letters, 2(1) :18–21, March 1973.

[Jea00] Bertrand Jeannet. Partitionnement Dynamique dans l’Analyse de Relations

Linéaires et Application à la Vérification de Programmes Synchrones. PhD

thesis, Institut National Polytechnique de Grenoble, September 2000.

[Jea02a] Bertrand Jeannet. The cuddaux library.

http ://www.irisa.fr/prive/bjeannet/cuddaux.html, 2002. Extension of

CUDD.

[Jea02b] Bertrand Jeannet. New polka. http ://www.irisa.fr/prive/bjeannet/newpolka.html,

2002. Library Polka website.

[Les96] Arnauld Leservot. Analyse interprocédurale du flot des données. PhD thesis,

Université PARIS VI, March 1996.



BIBLIOGRAPHIE 189

[Loe99] V. Loechner. Polylib : A library for manipulating parameterized polyhe-

dra. http ://citeseer.nj.nec.com/loechner99polylib.html, 1999. http ://cite-

seer.nj.nec.com/loechner99polylib.html.

[Loe02] Vincent Loechner. Polylib. http ://icps.u-strasbg.fr/polylib, 2002. Project

website.

[Mas92] François Masdupuy. Array abstractions using semantic analysis of trapezoid

congruences. In ICS, pages 226–235, 1992.

[Mas93] François Masdupuy. Semantic analysis of interval congruences. In Formal

Methods in Programming and Their Applications, pages 142–155, 1993.

[Mer05] David Merchat. Réduction du nombre de variables en analyse de relations

linéaires. PhD thesis, Université Joseph Fourier Grenoble I, May 2005.

[Mey90] Bertran Meyer. Introduction to the Theory of Programming Languages. Pren-

tice Hall, Englewood Cliffs, 1990.

[Min01a] Antoine Miné. A new numerical abstract domain based on difference-bound

matrices. In PADO II, volume 2053 of LNCS, pages 155–172. Springer-Verlag,

May 2001. http ://www.di.ens.fr/˜mine/publi/article-mine-padoII.pdf.

[Min01b] Antoine Miné. The octagon abstract domain. In AST 2001 in

WCRE 2001, IEEE, pages 310–319. IEEE CS Press, October 2001.

http ://www.di.ens.fr/˜mine/publi/article-mine-ast01.pdf.

[Min02] Antoine Miné. A few graph-based relational numerical abstract domains.

In SAS’02, volume 2477 of LNCS, pages 117–132. Springer-Verlag, 2002.

http ://www.di.ens.fr/˜mine/publi/article-mine-sas02.pdf.

[Min04a] Antoine Miné. Domaines numériques abstraits faiblement relationnels :

Weakly Relational Numerical Abstract Domains. PhD thesis, École Normale

Supérieure de PARIS, December 2004.

[Min04b] Antoine Miné. Relational abstract domains for the detection of floating-point

run-time errors. In ESOP’04, volume 2986 of LNCS, pages 3–17. Springer,

2004. http ://www.di.ens.fr/˜mine/publi/article-mine-esop04.pdf.

[Min05] Antoine Miné. The octagon abstract domain library.

http ://www.di.ens.fr/˜mine/oct, 2005. Library Octagon website.

[MR80] T.H. Matheiss and David S. Rubin. A survey and comparison of methods

for finding all vertices of convex polyhedral sets. Mathematics of operations

research, 5(2) :167–185, 1980.

[MRTT53] T. Motzkin, H. Raiffa, G. Thompson, and R.M. Thrall. The double description

method. Contributions to the Theory of Games II, 8 :51–73, 1953.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishers, San Francisco, 1997.



190 BIBLIOGRAPHIE

[Ngu02] Thi Viet Nga Nguyen. Efficient and effective software verifications for scien-

tific applications using static analysis and code instrumentation. PhD thesis,

École Nationale Supérieur des Mines de PARIS, November 2002.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Pro-

gram Analysis. Springer-Verlag, Berlin, 1999.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry : An Introduction.

Texts and Monographs in Computer Science. Springer-Verlag, New York, 1985.

[Pug91] William Pugh. The omega test : a fast and practical integer programming

algorithm for dependence analysis. In Supercomputing, pages 4–13, 1991.

[Pug92] William Pugh. A practical algorithm for exact array dependence analysis.

Communications of the ACM, 35(8) :102–114, August 1992.

[Que04] Duong Nguyen Que. Towards a generic implementation of abstract domains

validated by experiment. Technical report, Centre de Recherche en Informa-

tique, École des Mines de PARIS, 2004.

[Que05a] Duong Nguyen Que. Polybench. http ://www.cri.ensmp.fr/people/duong/polybench,

2005. Polyhedral Benchmark.

[Que05b] Duong Nguyen Que. HQ interface. http ://www.cri.ensmp.fr/people/duong/HQ API,

2005. A common interface prototype.

[Sch86] Alexander Schrijver. Theory of linear and integer Programming. Wiley-

Interscience, New York, 1986. Book.

[Sei81] Raimund Seidel. A convex hull algorithm optimal for point sets in even di-

mensions. Technical report, University of British Columbia, Vancouver, BC,

Canada, Canada, 1981.

[Sei87] R. Seidel. Output-size sensitive algorithms for constructive problems in com-

putational geometry. PhD thesis, Cornell University, Ithaca, NY, USA, 1987.

[SLY90] Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An empirical study of for-

tran programs for parallelizing compilers. IEEE Transactions on Parallel and

Distributed Systems, 1(3) :356–364, 1990.

[Sog96] Jean-Claude Sogno. The janus test : a hierarchical algorithm for computing

direction and distance vectors. In Hawaii International Conference on System

Sciences, January 1996. Extended version in 2001.

[Sog02] Jean-Claude Sogno. Logiciel janus. Restricted, 2002. Project Chloé.

[Som93] Fabio Somenzi. The cudd library. http ://vlsi.colorado.edu/˜fabio/CUDD/cuddIntro.html,

1993.

[ST01] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms :

why the simplex algorithm usually takes polynomial time. In ACM SIGACT

Symposium on Theory of Computing, pages 296–305, July 2001. Inproceeding.



BIBLIOGRAPHIE 191

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal Mathemathics, 5(2) :285–310, 1955. Article.

[tea90] PIPS team. Linear c3. http ://www.cri.ensmp.fr/pips, 1990. Project Linear

C3 website.

[tea02a] ASTRÉE team. Analyseur statique de logiciels temps-reel embarques.

http ://www.astree.ens.fr, 2002. Project ASTRÉE website.

[tea02b] CHINA team. A data-flow analyzer for clp languages.

http ://www.cs.unipr.it/China, 2002. Project website.

[tea02c] LUSTRE team. Lustre. http ://www-verimag.imag.fr/SYNCHRONE, 2002.

Project SYNCHRONE website.

[tea02d] NBAC team. Nbac. http ://www.irisa.fr/prive/bjeannet/nbac/nbac.html,

2002. Project NBAC website.

[tea02e] Omega team. Omega. http ://www.cs.umd.edu/projects/omega, 2002. Project

website.

[tea02f] PPL team. Parma polyhedral library. http ://www.cs.unipr.it/ppl, 2002.

Project website.

[tea02g] SPEC team. Spec cfp95 benchmark. http ://www.specbench.org/cpu95/CFP95,

2002. Benchmark website.

[TFI86] Rémi Triolet, Paul Feautrier, and François Irigoin. Automatic parallelization of

Fortran programs in the presence of procedure calls. In European Symposium

on Programming, March 1986.

[VCH96] Clark Verbrugge, Phong Co, and Laurie Hendren. Generalized constant pro-

pagation a study in c. In In 6th Int. Conf. on Compiler Construction, volume

1060 of Lec. Notes in Comp. Sci, pages 74–90. Springer, 1996. http ://cite-

seer.ist.psu.edu/verbrugge96generalized.html.

[VDW94] Hervé Le Verge, Vincent Van Dongen, and Doran K. Wilde. Loop nest syn-

thesis using the polyhedral library. Technical report, Institut National de

Recherche en Informatique et en Automatique, May 1994.

[Ver92] Hervé Le Verge. A note on chernikova’s algorithm. Technical report, IRISA,

Feb 1992.

[Ver94] Hervé Le Verge. A note on chernikova’s algorithm. Technical report, Institut

National de Recherche en Informatique et en Automatique, July 1994.

[vLa90] Jan van Leeuwen and al., editors. Handbook of Theoretical Computer Science,

Volume A : Algorithms and Complexity. Elsevier and MIT Press, 1990.

[Weg00] Ingo Wegener. Branching Programs and Binary Decision Diagrams : Theory

and Applications. Siam, Philadelphia, 2000.



192 BIBLIOGRAPHIE

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Techni-

cal Report RR-2157, Brigham Young University, 1993. http ://cite-

seer.nj.nec.com/wilde97library.html.

[Wil97a] D. K. Wilde. A library for doing polyhedral operations. Technical report,

Brigham Young University, August 1997.

[Wil97b] Doran K. Wilde. A library for doing polyhedral operations. Technical Report

RR-2157, Brigham Young University, August 1997.

[Yan93] Yi-Qing Yang. Tests des Dépendances et Transformations de Programme. PhD

thesis, École Nationale Supérieur des Mines de PARIS, November 1993.

[Yav04] Tuba Yavuz. Specification and Automated Verification of Concurrent Software

Systems. PhD thesis, University of California Santa Barbara, September 2004.

[YKTB01] Tuba Yavuz-Kahveci, Murat Tuncer, and Tevfik Bultan. A library for compo-

site symbolic representations. Lecture Notes in Computer Science, 2031 :52–62,

2001. http ://citeseer.ist.psu.edu/402436.html.



	
  

Domaine	
   abstrait	
   robuste	
   et	
   générique	
   pour	
   les	
   analyses	
   statiques	
   de	
  
programme:	
  le	
  cas	
  des	
  polyèdres.	
  	
  

RESUME : Les	
  bibliothèques	
  des	
  domaines	
  abstraits	
  utilisées	
  par	
  les	
  analyseurs	
  statiques	
  qui	
  
analysent	
   le	
  comportement	
  des	
  programmes	
  écrits	
  dans	
  des	
   langues	
  différentes,	
   lors	
  de	
   leur	
  
exécution	
  sans	
  réellement	
  les	
  exécuter,	
  rencontrent	
  des	
  problèmes	
  qui	
  limitent	
  leur	
  efficacité.	
  
Cependant,	
   des	
   améliorations	
   récentes	
   dans	
   certaines	
   bibliothèques	
   telles	
   que	
  de	
   nouveaux	
  
domaines	
   abstraits,	
   par	
   exemple	
   la	
   bibliothèque	
   Octagon,	
   ou	
   bien	
   des	
   améliorations	
  
algorithmiques,	
  comme	
  la	
  factorisation	
  cartésienne,	
  ne	
  peuvent	
  pas	
  être	
  facilement	
  exploitées	
  
par	
   d'autres	
   bibliothèques.	
   Notre	
   travail	
   vise	
   à	
   concevoir	
   une	
   interface	
   commune	
   pour	
   ces	
  
bibliothèques	
  afin	
  de	
  proposer	
  une	
  utilisation	
  standardisée	
  dans	
  les	
  analyseurs	
  statiques,	
  et	
  de	
  
construire	
  un	
  système	
  d'évaluation	
  qui	
  étudie	
  la	
  performance	
  des	
  bibliothèques,	
  qui	
  aide	
  dans	
  
les	
   tests	
  de	
   régression	
  et	
   le	
  débogage,	
  etc.	
   Le	
   travail	
  est	
  divisé	
  en	
  deux	
  parties.	
   La	
  première	
  
partie	
   porte	
   sur	
   une	
   interface	
   commune	
   de	
   cinq	
   analyseurs	
   statiques,	
   appelés	
   PIPS,	
   NBAC,	
  
ASTREE,	
   OMEGA	
   et	
   CHINA,	
   qui	
   essaie	
   de	
   combiner	
   et	
   d'utiliser	
   efficacement	
   les	
  
implémentations	
  existantes.	
  La	
  deuxième	
  partie	
  décrit	
  un	
  système	
  permettant	
  une	
  évaluation	
  
des	
   bibliothèques	
   du	
   domaine	
   polyédrique.	
   Il	
   fournit	
   une	
   étude	
   de	
   cas	
   avec	
   les	
   analyseurs	
  
utilisant	
   ce	
   domaine,	
   comptant	
   plusieurs	
   découvertes	
   algorithmiques	
   qui	
   les	
   rendent	
   très	
  
robustes.	
   Les	
   implémentations	
   existantes	
   sont	
  diverses	
   et	
   complexes	
   alors	
   nous	
  ne	
  pouvons	
  
pas	
  déterminer	
  lesquelles	
  sont	
  les	
  plus	
  efficaces,	
  sans	
  ce	
  système	
  d'évaluation.	
   

Mots clés : interprétation	
  abstraite,analyse	
  sémantique,algébre	
  linéraire	
  

	
  

Robust	
   and	
   generic	
   abstract	
   domain	
   for	
   static	
   program	
   analyses:	
   the	
  
polyhedral	
  case.	
  	
  

ABSTRACT : Abstract	
  domain	
   libraries	
  used	
   in	
  static	
  analyzers	
  checking	
  statically	
  safety	
  and	
  
security	
  properties	
  of	
  programs	
  written	
  in	
  different	
  languages,	
  identifying	
  and	
  locating	
  origins	
  
of	
   failures,	
   are	
   dealing	
   with	
   problems	
   limiting	
   their	
   effectiveness.	
   However,	
   recent	
  
developments	
   in	
   some	
   libraries	
   such	
   as	
   new	
   abstract	
   domains,	
   e.g.	
   the	
   Octagon	
   library,	
   or	
  
algorithmic	
   improvements,	
   e.g.	
   Cartesian	
   factorization,	
   cannot	
   be	
   readily	
   exploited	
   by	
   other	
  
libraries.	
  Our	
  work	
  aims	
  to	
  design	
  a	
  common	
  interface	
  for	
  those	
  abstract	
  domain	
  libraries,	
  and	
  
to	
  build	
  a	
  polyhedral	
  benchmarking	
  system.	
  The	
  common	
  interface	
  permits	
  static	
  analyzers	
  to	
  
easily	
   switch	
   between	
   libraries	
   for	
   better	
   performance,	
   and	
   the	
   benchmarking	
   system	
  helps	
  
deciding	
  when	
  and	
  where	
  to	
  use	
  which	
  libraries.	
  The	
  benchmark	
  also	
  helps	
  regression	
  testing,	
  
bug	
  detection,	
  performance	
  and	
  stability	
  evaluations,	
  etc.	
  The	
  work	
  is	
  divided	
  into	
  two	
  parts.	
  
The	
   first	
   part	
   deals	
   with	
   an	
   adaptive	
   abstract	
   domain	
   for	
   five	
   static	
   analyzers	
   namely	
   PIPS,	
  
NBAC,	
  ASTREE,	
  OMEGA	
  and	
  CHINA,	
  which	
   leads	
   to	
   the	
   construction	
  of	
   a	
   common	
   interface.	
  
This	
  interface	
  tries	
  to	
  combine	
  and	
  use	
  efficiently	
  existing	
  abstract	
  domains	
  implementations.	
  
The	
  second	
  part	
  describes	
  a	
  framework	
  permitting	
  evaluations	
  of	
  equivalent	
  implementations	
  
for	
  the	
  polyhedral	
  domain.	
  It	
  provides	
  a	
  case	
  study	
  with	
  the	
  polyhedra-­‐based	
  analyzers,	
  which	
  
counts	
  several	
  algorithmic	
  discoveries	
  that	
  make	
  them	
  very	
  robust.	
  While	
  this	
  framework	
  can	
  
be	
   extended	
   to	
   other	
   abstract	
   domains,	
   it	
   is	
   best	
   suited	
   for	
   the	
   polyhedral	
   domain	
   where	
  
existing	
   implementations	
   are	
   varying	
   and	
   complicated	
   to	
   the	
   point	
   that	
   without	
   a	
  
benchmarking	
  system,	
  we	
  cannot	
  determine	
  which	
  one	
  is	
  the	
  most	
  efficient.	
   

Keywords : abstract	
  domain,benchmark,polyhedral,static	
  analysis. 


	couverture-TH-NGUYEN
	Thesis-vCA
	Quatriemedecouverture-TH-NGUYEN

