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Abstract

Modular static analyzers use procedure abstractions, a.k.a. summarizations, to ensure that their execution
time increases linearly with the size of analyzed programs. A similar abstraction mechanism is also used
within a procedure to perform a bottom-up analysis. For instance, a sequence of instructions is abstracted
by combining the abstractions of its components, or a loop is abstracted using the abstraction of its loop
body: fixed point iterations for a loop can be replaced by a direct computation of the transitive closure of
the loop body abstraction.

More specifically, our abstraction mechanism uses affine constraints, i.e. polyhedra, to specify pre- and post-
conditions as well as state transformers. We present an algorithm to compute the transitive closure of such
a state transformer, and we illustrate its performance on various examples. Our algorithm is simple, based
on discrete differentiation and integration: it is very different from the usual abstract interpretation fixed
point computation based on widening. Experiments are carried out using previously published examples.
We obtain the same results directly, without using any heuristic.

Keywords: Abstract interpretation, fixed point computation, loop invariant.

1 Introduction

Program analyses such as interprocedural program parallelization [21,20], array ac-
cess bound checking [26], array initialization checking, aliasing checking [25] require
some mechanism to approximate loop behaviors. In order to obtain a modular ana-
lyzer and to limit analysis times, we depart from the usual approach [8] and compute
state transformers instead of state predicates, i.e. pre- and post-conditions. Trans-
formers are used to summarize functions: each function is analyzed once and its
transformer is reused at each call site. Preconditions are then propagated using the
transformers. Since transformers require twice as many variables as preconditions,
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we use polyhedra as finite abstractions of possibly infinite sets of states to maintain
a sufficient accuracy.

In Section 2, we present a simple yet effective algorithm to compute transitive
closures of transformers, which are then used to derive affine loop invariants. Then
we show how to improve its effectiveness by using equivalent but different formulae
for postconditions. They are equivalent when the analysis is exact, but they differ
when approximations, such as affine approximations, are made. Several kinds of
extensions are considered in Section 3. They are related to the transitive closure
algorithm. Related work is introduced in Section 4 and we show on previously pub-
lished examples that our algorithm provides the expected loop invariants without
using any widening heuristic.

2 Simple Transitive Closure of Affine Transformers

Pugh and al. studied the transitive closure of transfer functions defined by Pres-
burger formulae [22]. Here, transfer functions are approximated by affine relations.
The graph of the relation between the initial state and the final state is defined by a
polyhedron, i.e. a set of affine equalities and inequalities. Below, once transformers
and preconditions are defined, we present our algorithm to compute transformer
closures for while loops together with its proof. We illustrate its working on a
motivating example, a safety controller for a toy robot car [17].

2.1 Affine Transformers and Preconditions

Each program command, elementary or compound statement or procedure call is
approximated by an affine transformer. The underlying mechanism is similar to [8]
but extended from the states to state transitions. The idea of transformers is quite
general and is also used, for instance by Boigelot & al. [4].

The set of possible program states, before a command is executed, is defined by
a precondition. The set of program states after the command execution is defined
by a postcondition. The postcondition is the image of the precondition by the
command transformer. A legal affine abstract postcondition contains the effective
postcondition, i.e. it is an over-approximation.

For simplicity of exposure, the relationship between identifiers and memory lo-
cations is assumed to be a one-to-one mapping for scalar variables. In this paper,
we deal only with integer scalar variables and states taking values in Z™, where the
dimension n is the number of analyzed variables.

For semantic analysis purposes, control flow graphs are structured as while loops,
e.g. using Bourdoncle’s heuristic [5]. Other structured loops are decomposed into
while loops. As a result, the only control structure with an iterative behavior studied
here is the simple while loop.

2.2  The Affine Derivative Closure Algorithm

Our algorithm is outlined in Fig. 1 and works as follows:
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transformer T*(x,x’) affine_derivative_closure(transformer T(x,x’))

// add the difference vector dx

transformer Q(x,x’,dx) = T(x,x’) ~ (dx = x’-x);

// eliminate the initial and final states x and x’

transformer T’(dx) = project((project(Q(x,x’,dx), x), x’));

// compute dx for any iteration number k

T’(dx) = multiply_constant_terms(T’(dx), k) ~ (k >= 0);

// eliminate the iteration number k and substitute back dx by x’-x

return project(project(T’(dx),k) ~ (dx = x’-x), dx);

Fig. 1. Affine Derivative Closure Algorithm

Let us assume that T is a valid affine transformer for a while loop body and its
continuation condition. T includes the loop entry condition, or at least an affine
approximation of this condition. Let k be the iteration number, 2~ be the integer
memory state when the loop body is started the k-th time, and z* be the final state
when the loop condition is evaluated to true again. The predicate T(mkfl, zF ) holds
for all possible k > 1.

Let 0z be zF — 2%~1 and T'(6x) be the projection of T A 6z = 2% — zF~1 along
x* and 2F~!. Note that 7" does depend neither on k which is not a component of
the memory state  nor on the names ¥ and z*~!, which have been eliminated by
the projection.

Let z° be the state on loop entry. The state 2* that may be reached after k
iterations of the loop, if such an iteration is executed, is:

k
=20 4 Z ozt with 6z° = 2° — 2} (1)
i=1
For all positive integers i, 7"(5z") holds. Since T” is a polyhedron, it can be
defined by affine equalities and inequalities:

T'(6z) = {0z |Abz =bA Aoz <V} (2)
where A and A’ are integer matrices and b and o’ the corresponding constant terms.
Multiplying Eq.(1) by the matrices A and A’, we have:

k k
AzF = Ax® + Z Adz’ and A'zb = A'z® + Z Aoz (3)
i=1 =1
Since Adz’ and A'6z" are equal to b or bounded by ¥, we have:
AzF = Az + kb and A'zF < A'20 4+ kb (4)

The loop transformer T*(mo, x) may be approximated by:
T*(2° ) C{(2°,2) |Fk € [0,00] Az = Az’ + kb A Az < A'2®+kb'}  (5)

The set P*(2") of states reachable from z” by executing the loop may thus be
approximated by:

P*(z%) C {z ‘T*(xo,x)} (6)

Then the whole loop transformer T*(:CO, x) is over-approximated by projecting

k from the constraints in Eq.(5). And an affine over-approximation of the loop
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1: int s =0, t =0, d=0;

2: while(s <= 2 && t <= 3)

3: if (alea())

4: t++, s = 0; // increment time, reset speed estimation

5: else

6: d++, s++; // meter increment, speed estimation increment

Fig. 2. Car safety example

postcondition is obtained by projecting 2% too and by adding a safe approximation
of the loop last iteration and exit condition.

Loop invariants are obtained for each state dimension ¢ such that b; is zero since
then Eq.(4) shows that (Az*); = (Az);. If there exists a dimension j such that
b; is not zero, then the iteration number £ can be derived from a combination of
variables and substituted everywhere else to obtain more invariants.

If not, k is still bounded by k& > 0 and some inequalities can be saved according
to the Fourier-Motzkin elimination rule. If some term a’dz, where a’ is a row of A,
is upper-bounded by a negative constant, or lower-bounded by a positive constant,
monotony constraints are obtained. Strict monotonicity leads to loop termination
proofs when the derivatives of the affine components of the while condition that
imply non-termination are incompatible with 7”.

Note that Tt = T*oT can be computed by setting k¥ > 1 in Eq.(5). Transformer
T+ may contain strict monotonicity conditions, which are useful for dependence
testing in automatic loop parallelization [30] and array bound checking [29].

2.3 An Example: Robot Car Safety

Let us take the toy example described in [17] and recently reused by [23]. A robot
car must follow autonomously a track painted on the floor. In case it loses the
track, it should not crash against a wall; however it is not stopped right away since
the track might be found again. The car should not accelerate too much when it is
looking for the lost track. The safety controller must ensure that a limited amount
of time is allowed to search the painted track at bounded speed. Since time and
speed are bounded in the track search mode, the car is safe if the track is far enough
from the walls.

Let ¢ be the time in seconds, d the distance from the starting point in meters
and s the current estimation of the speed in meters per second. A model of the
controller ensuring the physical safety of the car is encoded in C as shown in Fig. 2.
Function alea is used to model a random event: either the clock counter is going to
tick for the next second and the time is incremented while the speed estimation is
reset to 0, or the distance and the speed estimation are increased because another
meter has been reached. The safety is enforced by the loop guard. If nothing else
happens within three seconds or if the speed is greater than two meters per second,
the car is stopped. If walls are 10 meters away from the starting position, the car
cannot reach a wall.

We explain the steps performed here by our Affine Derivative Closure Algorithm
using a primed notation that distinguishes the values of each variable between the
old and primed new state. If z is the memory state of (d, s,t), the transformer for
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the first branch of the test (line 4) is:

Ty(z,2')={ =0, =t+1,d =d,s <2,t <3}
For the second test branch (line 6) the transformer is:

To(z,2")={d =d+ 1, =s+1,s <2,t' =t,t <3}
Their convex hull used to approximate their combined effect is:

Ts(z,o')y={d +t' =d+t+1,s+3t+1<s+3t/ <3t+3,t <t/ <t+1,t <3}
Projecting the old and new state, this transformer is rewritten as:

T'(dz) ={dd +dt =1,1<0s+30t,0 <t <1}
which leads to dd + 6t < ds + 3¢, or dd < ds + 24t. This is the speed equation
we looked for to prove the car safety. If the speed and the time are bounded, the
distance travelled is bounded. Here, the numerical speed bound of 2 produces a
linear speed equation.

2.4 Discussion

The algorithm is very simple yet powerful enough to derive non trivial conditions.
Its weaknesses come from 1) computing 7" as a relation on dz instead of a more
accurate relation on (dz, x) to ease the summation and stay in the affine setting, and
2) in computing T in the first place as an affine transformer using the convex hull
to model tests. The complexity of the algorithm is dominated by the complexity
of the projection steps: its worst case is exponential with the number of variables
projected, but in practice it is polynomial when the constraints are sparse.

3 From Transformers to Loop Invariants

Several simple extensions are useful to cope with non-affine behaviors such as iter-
ation independent assignments or periodic and polynomial behaviors. They occur
when an iteration independent assignment is equivalent to a differential assignment,
when two (or more) buffers are used in a flip-flop mode or when triangular matrices
are accessed. Note that polynomial behaviors [15] are frequent when accessing sym-
metric matrices, but that monotonicity or strict monotonicity information is often
sufficient to make a decision about data dependence or array bound overflow issues.

3.1 Using T instead of T*

If the loop w is certainly entered when reached with precondition P¥, that is when
the affine approximation of the negation of its condition combined with P* generates
a contradiction, it is better to compute TF instead of T*. The constraints on the
image of T' can be added to the image of T, but not of T*.

In a loop such as “while(alea()) m = 10;” no information on m is gathered
in the postcondition because its value may be unchanged, when the loop is not
entered, as well as set to 10.

Note that Tt =T oT* = T* o T when T is exact, but that the first formula is
more precise with an approximate T'. In the second case, the information added by
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T may be lost by T*. Also it is better to use:
pr=p0 | | TH(PY) (7)

rather than the equivalent formula P* = T*(P) when the range of T' and P°
have common constraints. The convex hull operator | | is used instead of the union
operator, which is not internal for polyhedra. Since it is not accurate, it should
always be applied as late as possible when equivalent formulae are available.

8.2 Periodic Behaviors

Periodic behaviors are observed when a variable or a set of variables is used to
flip-flop the accesses to two or more buffers; for instance this is often used in sig-
nal processing applications to switch between receiving or sending and computing
buffers, or in scientific programs to switch between new and old values [4,3], as
depicted in Fig. 3.

double x[2][10];

int old = 0, new = 1, i, t;

for(t = 0; t<1000; t++) {

for(i = 0; i<10;i++)
x[new] [1] = g(x[old] [i]);

old = new, new = 1 - old;

}
Fig. 3. Flip-flop example

The t loop is parallel if the value of new is proven to be always different from
the value of old because old + new = 1, which is found thanks to Eq.(7).

An interesting aspect in flip-flop analysis is its robustness with respect to the
flip-flop encoding scheme. Ideally, different encodings leading to the same execution
traces should produce the same analysis result. Different encodings use different
mathematical functions, as illustrated by Figure 4, but they have the same value over
the useful subset of their domains. Thus the analysis result depends on the accuracy
of the loop precondition used to characterize the effective function domains.

1 | new = 0ld; old = 1-o0ld;
2 new = 1 - new; old = 1 - old;
3 t = new; new = old; old = t;
4 | if(new==1) { new = 0, old = 1; } else { new = 1, old = 0; }
5 if (new==1) { new = 0; old = 1; }
else { if(new==0) { new = 1; old = 0; } else exit(1); }
6 | new = (new+1) %2; old = (old+1) %2 ;

Fig. 4. Six different encodings of flip-flop operations

The invariant new + old = 1 is found by our tool PIPS [24] for Cases 1, 3, 4
and 5 thanks to Eq.(7). But it fails for Case 6 because the modulo operator is not
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analyzed as well as a multiplication or a division: the sources of failure are not
limited to convex hulls and transitive closures.

Case 2 requires a loop unrolling of two to obtain the invariant. Larger periods can
be obtained using integer rotation matrices or ad hoc constructs. More generally,
k-periodic behaviors can be captured by computing 7* and T as:

= || T (Tk) Tt = || 7o (Tk> (8)
i=0,k—1 i=1,k
This is equivalent to a loop unrolling of degree k£ and similar to a delayed widening.

These definitions can be used to refine Eq.(7) and to obtain better loop precondi-
tions. With k = 2, the precondition becomes:

pr=pP | | T(P") | | T**(P") | | T (T*"(P")) (9)

With Eq.(9), PIPS is able to deal with the second encoding of flip-flop because
new and ol1d are invariant by 72. The effective period does not have to be known as
each T}.* is a proper over-approximation of T* and their intersection can be used:
T* =N;ep Ti" The same holds for 7.

Theorem 3.1 (Invariant Completeness Theorem) Any invariant found by our
Affine Derivative Closure Algorithm for transformer T* is also found by the same
algorithm for transformer (T™)*.

The proof is in the Appendix. In other words, the accuracy can only be improved
when n is increased.

3.3 Higher-Order Differences

The scheme could be first generalized to second order differences by setting: T'(z, z")A
dx =0 —x AT (@', 2")Ndx' =2 — 2/ N Az =62’ — dz

Let us consider the non linear example on the left hand side of Fig. 5. One
possible application of such differences is to prove that variable i is bounded and
reaches its maximum on the loop boundary or when its discrete difference is zero.
Indeed since the second difference of i is the difference of j, —1, and is negative,
sooner or later, i is going to decrease.

int i =0, j =2, k = 1; int i = 0, j = 0, n;
while (k<=10) if (n<0) exit(1);
j==, i += j, k++; while(i<=n) i++, j+=i;

Fig. 5. Non linear (left) and parabolic (right) examples

Exact closed form polynomials are computed in [15] and [28], but the polyno-
mial closed form would be uselessly complicated to use for this purpose, although
admittedly mandatory for code generation after automatic parallelization.

8.4  Monotonicity and Iterative Analysis

Postcondition {j = —8,k = 11} is directly derived from the code in the left of
Fig. 5. It does not bound i. However, if the transformers are recomputed with this
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precondition, the loop postcondition is refined iteratively as shown on the left hand
side of Fig 6.

A similar code, without loop numerical bound, on the right hand side in Fig. 5,
can also be analyzed iteratively, but without ever reaching a fixed point, as shown
on the right hand side of Fig 6.

{j=-8k=11,0<i+71,i+14 < 0} 1 {i=n+1,1<i}
{j=-8k=11,0<i+71,i+25< 0} 2 {,2<j+1,3i<j+3,4i<j+6}
{j=-8k=11,0<i+71,i+32 <0} 3 {..,5i<j+10,6i<j+15}
{j=-8k=11,0<i+71,i+ 35 <0} 4 {.,7i<j+21,8 <j+28}
{j=-8k=11,0<i+71,i+35<0} 5 {..,9i<j+236,10i < j+45}

TR W N

Fig. 6. Results for the non linear and parabolic examples of Fig. 5

The iterative relationship between transformers and preconditions is formalized
by the next two equations where B stands for the loop body statement and the
continuation condition, and 7 for the function that converts a statement into a
convex transformer:

nt1 = T(B, By) APy Py =P°UT, (T;(P) (10)

Note that the previous precondition P, impacts the transformer 7,,4; in two
different ways. The affine abstraction T is sharpened and the resulting transformer
also is restricted by the previous precondition.

The iterative refinement process does not always converge and it may even lead
to a precision loss, due to magnitude overflows. These are not handled with a good
heuristic in the present PIPS implementation, but it is not critical as the refinement
process is not automatic: it must be specified by the user.

8.5 Postponing Convex Hulls

If a loop contains a test, the test is abstracted by a convex hull and the transitive
closure is applied later. In other words, the convex hull loses information at the
very beginning of the invariant computation.

Hence it is useful to convert:  while(c) if(t) a; else b;

into the equivalent: while (c) { while (c&&t) a; while (c&&!t) b; }

This transformation, which is somehow similar to the abstract acceleration de-
fined by Laure Gonnord [10] after the acceleration used in model-checking [4,6,7],
eliminates the early convex hull and lets PIPS find the proper invariants for cases
1in [11] and 2 in [14,13].

4 Related Work

PIPS [24] development has been driven for almost twenty years by the needs of
automatic analysis and parallelization for large size real-life Fortran and C programs
of up to hundreds of functions and 100 KLOCS. Our derivative algorithm is used
for all loops and on most of the control-flow graphs, after restructuring.
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Original example After restructuration PIPS

K ) G x=y=0;
(1) Gopan’07 [11], Gulwani’09 [13] e W ) (
while (y > 0 & z < 50)

X=y=0; yt++;
while(x) { x++; r = 102
if (x < 50) y++; while (y > 0 & x > 50) -
else y--; y-—;
if (y < 0) break; X++;
X++; }
} x=-;
(2) Gulwani 2007 [14,13] x=1; y=50;
x=1": y=5o. whilg (x < 100) {
L2 ’ while (z < 50) x++; o
while(z < 100) { while (z < 100 && = >50) | ¥ = 100

if (x < 50) x++;
) else { x++; y++; }
(3) Gulavant 2006 [12], Gulwani 2009 [13]
x=1; lock=y=0; while (z #y) { lock=1; x=y; if (%) lock =0; y++; }
(4) Gaz Burner - Chaochen [31], Gonnord [10]
t=1=x=0; while(*) { 6l <t+5x

x=0; while (z <9 && alea()) x++, t++, l++;
x=0; while (z <49 || alea()) x++, t++;}

{ X++; yt+; }

lock =1

(5) Halbwachs [16] . - i+ Y
x=y=0; while(z < 100) { if (alea()) x = x+2; else x++, y++; } '7;; y < 202
(6) Halbwachs [16] i=z+2y
x=y=0; 2y <z

while (z <100) { if (alea()) x = x+4; else x=x+2, y++; } T +2y <204
(7) Robot car safety example Q< st
Halbwachs [17], Merchat [253], Gonnord [10], Sect. 2.5-Fig. 2 -

(8) Subway example 20<b
Halbwachs [19], Gonnord [10] b—s <20

Fig. 7. PIPS Experimental results

Its input is a deterministic C or Fortran program and not a non-deterministic
finite automata as used in model-checking benchmarks or by Gonnord [10]. It is
difficult to be sure to convert an automaton into a program without performing
some intelligent structuring that may turn out to be the key to its successful anal-
ysis. Moreover, the PIPS semantic analyzer uses Bourdoncle’s algorithm [5] to deal
with unstructured control flow graph. This increases the number of convex hulls
to decrease the number of widenings, and we now know that it often prevents ac-
celeration opportunities. Most of our comparisons are based on published pieces of
code, not on transcoded automata.

Fig. 7 presents examples found in the literature [8,10,11,12,14,16,17,23,13] about
the widening operator and its improvements. The relations found by PIPS are given
in the third column: they are obtained in less than a second on a typical PC, and
are equivalent to those of the other tools.

Examples 1, 2 and 3 illustrate the need to compute disjunctive invariants. Ex-
amples 5 and 6 express linear invariants. Some periodic cases are presented in Sec-
tion 3.2. Examples 4 and 7 and the Subway example [19] characterize automata with
more complex invariants, and our results are equivalent to [10] (p. 115). However
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our algorithm does not find accurate results with simple C encodings of automata
such as the bakery mutual exclusion algorithm [6].

Using polyhedra instead of Presburger arithmetic, we do not claim to obtain
more accurate results than others. Our philosophy is to use real-life cases, avoiding
artificial or contrived examples. We only claim our simple and direct algorithm gets
the same results as iterative approaches like widening.

The concept of abstract acceleration introduced by Gonnord in [10] is very sim-
ilar in its goal to our algorithm, but it is implemented by pattern matching for
different specific cases (see chapters 5 to 7 in [10]), whereas we can deal with func-
tion calls and any control construct as the loop body transformer is computed in a
modular way. Also, the exploitation of the accelerated cycles is part of a heuristic
and not a program transformation as in Section 3.5. And the final result is obtained
iteratively. All examples found in [10] are successfully processed by our algorithm,
including the swimming pool [9].

Kelly et al. [22] present an algorithm to compute the transitive closure of a
relation encoded by a Presburger formulae. This heuristic includes the notion of
d-form relation which leads to an explicit transitive closure. It is stated that any
relation can be put in a d-form at the expense of accuracy. We show here that it
is not necessary to put the relation into a d-form to obtain an explicit transitive
closure. We explain how to transform any relation into constraints about the state
evolution and finally we explain how to get precise results by postponing convex
hull operations.

Bielecki et al. [2] describe a procedure to obtain exact non-linear transitive clo-
sures, but only for normalized relations written as systems of recurrence equations
and solved using Mathematica. The related work is limited to [22] and a few exam-
ples are given. Regardless of the still unknown generality and practicality of this
procedure, its results would require some processing to be used within an affine-base
analyzer or algorithm as found in abstract interpretation and automatic paralleliza-
tion.

Let us consider the code in Fig. 8 (left). Note that m is found monotonic in
T* in the second loop, thanks to the loop bound, and that the never ending loop
is detected (the set of reaching states for return is empty), although closed forms
are not computed for m. The same kind of results are obtained for a division in
Fig. 8 (right). Variable m is found decreasing in the first loop and increasing in the
second one, thanks to the loop bounds. Note also that m is not initialized, but that
its final value is properly found in [—1,1].

In [27], Paige and Koenig propose finite differencing as a program optimization
method that generalizes strength reduction. If the value of f(z) is known and if
f(z+dzx) is needed, is it possible to compute f(z+dz)— f(x) faster than f(z+dz)?
The simple case of strength reduction shows that our approaches are dual. We
analyze the piece of code that computes f(x + dz) — f(x) and we infer the function
f. Paige and Koenig start with the code to evaluate f(x) and infer the code to
evaluate f(x + dx) — f(x). Their technique was developed to optimize SETL code
and to deal with functions over sets. The challenge for us would be to extend our
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// TO {} o1
id divideO1
// T( empty vol
void multiply01() { (7 Tm
i/gtTn(lmi f’f’zzi} // T(m)( {2)<=/£, m<=m#init, 2<=m#init}
’ o while (m>1
/7 T(m) {m#init==1, m<=10} // T(m) {m#init<=2m+1, 2m<=m#tinit, 2<=m#init}

[ o /5 B
// T(m) {m==2m#init, m#init<=10} w = n/2;
- ’ // T(m) {1<=m}, P(m) {1<=m}
/n{ f(é"im.{”'GlO} ) printf ("m=Yd\n",m);
// T(m) {11<=m, m#init<=m o -
D A // T(m) {m+2<=0, m#init<=m, m#init+2<=0}
// 11<=m#init, m#init<=20} ) plm) {m<=1}

// P(m) {11<=m, m<=20}

while (m>=1)
// T(m) {m==2m#init, 1<=m#init}
// P(m) {11<=m}
m = 2%m;

/7 T() empty

// P() empty

return;

while (m<-1) {
// T(m) {m#init<=2m+1, 2m<=m#init, m#init+2<=0},
// P(m) {m+2<=0}
m = m/2;
// T(m) {m+1<=0}, P(m) {m+1<=0}
printf ("m=%d\n",m) ;

// T() {0<=m+1, m<=1}, P(m) {0<=m+1, m<=1}
return;

Fig. 8. Beyond counters: multiply (left) & divide (right)

technique in a dual way to obtain predicates over arrays such as those found in [18].

Monotonicity analysis [29] has also been used to extend induction variable de-
tection, the inverse transformation of strength reduction. Basically, assignment
statements nested in loops are monotonic if the value assigned increases from one
iteration to the next. The exact value of the difference is abstracted by its sign. This
information does not lead to loop invariants but is useful for dependence testing [30]
and for array bound checking. We could derive the same kind of information from
T+ by introducing the difference variables and by eliminating the program variables.
The transformer we find for the contrived loop in Figure 7 of [29] is:

T(i,j,k,1,m,n,%,y,2) { i==i_0+1, i==j-2, 2i==k-2, i+m#init==1-2, l==m-1,
1==n-6, x==2y_0, 4y_0==z, 2<=i, y<=2i+2, i<=3y+1 }

The first equation shows that ¢ is increasing, hence j and &k from the next two
equations. Equations (4) and (5) lead to m-m#init=i+3. The loop body precon-
dition includes ¢ > 1, so m is increasing, thus | and n as well. We also have
i-1<=3y<=6i+6. The lower and upper bounds are increasing but we cannot de-
rive monotonicity information about y, nor about z and z. As the loop body is
summarized, the monotonicity information is linked to the variables and not to the
assignments, but this is exactly the same information.

5 Conclusion

A simple algorithm to compute affine invariants over integer scalar variables in while
loops is presented. Its development and refinements have been mostly application
driven, targeting the automatic program analysis and transformation domain. Its
low complexity is key to addressing large scientific codes of up to 100 KLOC. Our
experience shows that it performs well on standard program test cases, but not on
complex automata whose states and transitions cannot be rewritten with simple C
encodings.
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This algorithm is more effective in finding loop invariants when inaccurate opera-
tions such as convex hulls and transitive closures are postponed as much as possible.
If the analysis were exact, formulae such as P* = T*(P") and P* = PY | | T+(P")
would be equivalent. However, the formulae dealing with approximate transform-
ers and preconditions are not and the best one must be chosen or a trade-off be
made between accuracy and computational complexity. Developed formulae such as
Eq.(9) correspond to peeling and unrolling the while loop in the computation. It is
not compatible with Bourdoncle’s heuristic, which aims at minimizing the number
of widenings: better results are obtained by increasing the number of cycles and of
transitive closures in order to delay convex hulls, as the closures are quite accurate.

When the program behavior is not affine, its affine approximations can be re-
fined iteratively using the previous preconditions to obtain more accurate loop body
transformers. This does not yield an algorithm as the iterations do not converge
when the domain is not bounded (Section 3.4).

Our current implementation in PIPS is not fully satisfying as some extensions
described in this paper are not available yet. They are not required often enough to
justify the potential average slowdown and implementation time. Using a domain
product instead of a unique general abstract domain could be investigated. Another
idea would be to combine a widening heuristic and a derivative transitive closure
algorithm. The later could be used for abstract acceleration in a widening heuristic
along the lines of [10], but a combined approach is still in want of motivating test
cases.
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Appendix: Proof of Theorem 3.1

Lemma If the elimination of variable z in a linear constraint system S by Fourier-
Motzkin elimination produces the new system S’, the elimination of z in system S
modified by multiplying all z coefficients by a positive integer produces the same S'.

In other words, the Fourier-Motzkin elimination of a variable z is not perturbed
if all coefficients of z are multiplied by the same positive constant.

Proof. Let S be Az < zb (since S is linear, there are no constant terms). S is
decomposed into: {ATz < 207, A2 < —2b"} with b=b" —b™.

The new constraints are built as {a:rx < zb;“,a;x < —zb;}, which leads to
byate +bfa;e<0.

If all coefficients of z are multiplied by the same positive constant ¢, the de-

composition in AT and A~ is not modified because c is positive and the new re-
+

% ,(1]
cbj_cﬁx + cb:'aj_x < 0 which can be divided by c. O

lations are equal to the old ones {a;rx <ezb r < fczbj_}, and the inequation

Proof of Theorem 3.1. T'(x,y) is a polyhedral transformer leading to 7" (y —x) =
{(y — 2)]A(y — ) < b} [no need to distinguish between equations and inequalities].
Then (T™)" verifies (T")'(y — z) = {(y — 2)|A(y — ) < nb}. This is true for n =1
and 2. If it is true for n, then (7" (2 — ) = (T")(y — ) AT'(z — y). Since
A(ly —x) < nband A(z —y) < b, A(z—z) < (n+ 1)b. So the constraint systems
defining 7" and (7™)" differ only because the coefficients of z are multiplied by n.
Using Lemma 1, the elimination of z (last step of the algorithm) leads to the same
T*. Hence all invariants of 7* are included in invariants of (7™)*. O
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