
Preserving high-level semantics of parallel
programming annotations through the

compilation flow of optimizing compilers

Antoniu Pop 1 and Albert Cohen 2

1 Centre de Recherche en Informatique, MINES ParisTech, France
2 INRIA Saclay and LRI, Paris-Sud 11 University, France

Abstract. Programming applications for multi-core systems increas-
ingly relies on higher-level languages, designed to express concurrency,
dependence, synchronization and locality. This information is necessary
for efficient and portable parallelization and appears in the form of an-
notations to conventional programming languages, like pragmas for C or
C++. The enhanced semantics of these languages does not fit well in the
intermediate representation of classical optimizing compilers, designed
for single-threaded applications, and therefore requires either source-to-
source compilation to a sequential programming language or a front-end
to an existing compiler with an early expansion pass that lowers the lan-
guage to the sequential intermediate representation. In both cases the
loss of the additional information provided in such languages, and the
obfuscation of the underlying code, occurs at a very early stage of the
compilation flow, forcing a tradeoff between exploiting the available par-
allelism and classical compiler optimizations. With the ever increasing
number of cores, this tradeoff leans towards concurrency and early ex-
pansion, even though it also means losing all hope for optimizing the
structure and the granularity of the parallelism, for statically scheduling
the computation or for performing global optimizations.

This paper presents a solution whereby the existing intermediate rep-
resentation is transparently used to represent additional semantics in a
way that allows classical analyzes and optimizations to be performed,
while also enabling to optimize the expressed parallelism and allowing
to check the annotations’ validity through static analysis. This solution
does not require any adjustment to existing compiler passes. Our work
stems from the intuition that early expansion of parallel constructs is a
waste of information and results in strong code obfuscation that hampers
subsequent attempts at code analysis and optimization. The expansion
should therefore be delayed. We present the general concepts, their ap-
plication to the OpenMP language and the GCC compiler, and an early
implementation in GCC 4.5. We show that this approach is both suf-
ficiently flexible to easily integrate new language extensions, which we
illustrate on an OpenMP extension for streaming, and generic enough to
be compatible with different and domain specific languages, like HMPP.



1 Motivation

The early expansion of user annotations (E.g., OpenMP pragmas) to runtime
calls, with the associated code transformations, outlining, opaque marshaling of
data and use of function pointers, is a process whereby concurrency is gained,
at an early compilation stage, at the cost of the loss of the initial high-level
information and obfuscation of the underlying code.

The annotations provide a wealth of precise information3 about data depen-
dences, control flow, data sharing and synchronization requirements, that can
enable more optimizations than just the originally intended parallelization.

The common approach for the compilation of parallel programming anno-
tations is to directly translate them into calls to the runtime system at a very
early stage. For example, in the GCC compiler, this happens right after parsing
the source code. This means that all the high-level information provided by the
programmer is lost and the compiler will have to cope with the resulting code
obfuscation and loss of precise information. Our approach is to further abstract
the semantics of the user annotations and bring this information into the com-
piler’s intermediate representation using the technique presented in Section 3.
The semantical information is preserved, and when possible used or even refined,
until the end of the code optimization passes, where it is finally translated to
the intended runtime calls in a late expansion pass.

int main () {
int *a = ... ;

#pragma omp parallel for shared (a) \
schedule (static)

for (i = 0; i < N; ++i)
{
a[i] = foo (...);

}

for (j = 0; j < N; ++j)
... = a[j]

}

void main_omp_fn_0 (struct omp_data_s * omp_data_i) {
n_th = omp_get_num_threads();
th_id = omp_get_thread_num();
// compute lower and upper bounds from n_th and th_id

for (i = lower; i < upper; ++i) {
omp_data_i->a[i] = foo (...);

}
}

int main () {
int *a = ... ;

omp_data_o.a = a;
GOMP_parallel_start (main_omp_fn_0, &omp_data_o, 0);
main_omp_fn_0 (&omp_data_o);
GOMP_parallel_end ();
a = omp_data_o.a;

for (j = 0; j < N; ++j)
... = a[j]

}

Fig. 1. The early expansion of a simple OpenMP example (left) results in information
loss and code obfuscation (right).

Let us consider the example on Figure 1 where a simple omp parallel for loop
with a static schedule is expanded. Despite the fact that we chose one of the

3 We obviously assume correctness.



least disruptive expansions4, the resulting code does not look quite as appealing
for most analysis and optimization passes. If the original loop could have been
unrolled or vectorized, it is now very unlikely it would still be.

To make matters worse, the resulting code is not only harder to analyze
and optimize, but it also lost the information provided by the user through the
annotations and we lost the capability of optimizing the parallelization itself. In
the original version, as the loop is declared to be parallel with a shared data
structure a, we know that the right-hand-side of the assignment a[i] = ... is
not partaking in any loop-carried dependences or that calls to the function foo
have no ordering restrictions and can happen concurrently. In the expanded
version, however, that information is lost and must be found through analyses
that may, and quite likely will, fail. Among other possibilities, the loop annotated
as parallel may have been fused with the second loop, but that is no longer an
option once expansion has taken place.

Source-to-source compiler

Standard compiler

Annotated code

Early expansion

Parser

Optimization passes

Annotated source code
OpenMP HMPPStarSs/SMPSs

Back-end

Parallel code
runtime calls

Standard IR: parallel code + runtime calls

Source-to-source compiler

Standard compiler

Annotated code

Early abstraction

Parser

Optimization passes

Annotated source code
OpenMP HMPPStarSs/SMPSs

Back-end

Sequential code
with annotations

Std. IR: seq. code + abstract annotations

Late expansion

Fig. 2. Compilation flow of high-level parallel-programming languages, current situa-
tion (left) and our objective (right).

Figure 2 illustrates the compilation flow of three parallel programming lan-
guages that are representative of this type of languages. OpenMP [9], StarSs [6]
and HMPP [8] each in their own way suffer from this issue. StarSs and HMPP
rely on source-to-source compilers as a first step. The ad hoc compiler they rely
on is capable of generating optimized parallel code, either directly expanded to
calls to the runtime system or translated into another high-level parallel pro-
gramming language like OpenMP. From that point on, their compilation flow
either goes through an early expansion pass that generates parallelized code and

4 If for example the schedule of the loop had been chosen to be dynamic, the resulting
expanded code would be much harder to analyze.



issues calls to the runtime along with OpenMP, or as is the case for HMPP, the
code is parsed and directly represented in the compiler’s intermediate represen-
tation. At that point, most of the potential for further optimization is lost.

In order to preserve the high-level semantics of user annotations and to avoid
clobbering important optimizations or analyses, we replace the early expansion
of user annotations by an early abstraction pass. This pass extracts the seman-
tics of the annotations and inserts it into the compiler’s original intermediate
representation, using constructs that preserve the information in a state that is
usable by analysis and optimization passes and that can ultimately be expanded
to parallel code and runtime calls at the end of the compilation flow.

We believe that even languages like HMPP, with a dedicated optimizing
compiler, can benefit from our approach as the source-to-source compiler is gen-
erally intended and specialized to perform the domain-specific optimizations
corresponding to the original source language. This compiler is unlikely to ben-
efit from as large a base of optimizations as, for example, GCC. Extending our
framework to such a language should not be overly complicated, but getting
access to the ad hoc optimizations implemented in its compiler would require
writing a new code generation backend for the source-to-source compiler.

We attempt to address the following issues:

1. High-level parallel programming languages, in particular OpenMP, are poorly
optimized by current compilers, even for simple and crucial sequential scalar
optimizations.

2. Opportunities for optimizing the exploitation of parallelism are lost5 (e.g.,
possibility to compute optimized static schedules, verification ...).

3. User information on concurrency, dataflow and synchronization requirements
is wasted. It can be used for more than only parallelization.

In Section 2 we present a semantic abstraction pass that we substitute to the
early expansion pass. This early abstraction pass extracts important information
from the user annotations and stores this information in the compiler’s interme-
diate representation using the technique we discuss in Section 3. In the subse-
quent Section 4, we survey some important applications where the information
we add to the intermediate representation, as well as the way this information
is represented, are used to address the three aforementioned issues. Finally, in
Section 5, we give a short list of some of the exciting areas we have planned to
explore before concluding.

2 Semantic abstraction

The semantics of user-level annotations is generally defined with a direct cor-
respondence to specific parallelization techniques or to specific runtime calls.
Because of this, if instead of the early expansion we only represent the annota-
tions, as they are, in the intermediate representation, the interpretation of their

5 This is more an issue for OpenMP than for StarSs and HMPP as they have optimizing
compilers.



semantics will be necessary for each compiler pass that needs to use the informa-
tion they carry. Multiple interpretation layers, in optimization passes and then
in the late expansion pass, would severely reduce the genericity of this framework
and make its extension cumbersome.

The solution we advocate is to replace the early expansion pass by an early
abstraction pass that extracts the necessary information from user annotations
and represents it using a unique set of abstract annotations irrespectively of the
original language, lowering the annotations to a language-independent represen-
tation, which should provide a unified view of the user information whether it
comes from OpenMP, HMPP or StarSs annotations.

The key insight is that the high-level user annotations mostly provide infor-
mation on data-flow, with also some restrictions on control-flow that stem from
the lack of precision on the dynamic data-flow. The concurrency is just a result
of the absence of conflicts. We also recognize the importance of the additional
information a user provides as hints on the best strategy, like for example which
is the scheduling technique likely to yield the best results.

Adapting a new language, or an extension, to this early abstraction pass
requires understanding and abstracting the underlying semantics of the anno-
tations, but it should not require any modification in the optimization passes
of the compiler. Additional ad hoc semantics for tuning new architectures or
accelerators can easily be added in the form of user hints.

Following is the set of required abstract annotations, and a gist of their
semantics.

Data-flow annotations.

– use: the variable or memory area is read within the associated block.
– def: the variable or memory area is written.
– may-use: the variable or memory area may be read within the associated

block.
– may-def: the variable or memory area may be written.
– safe-ref: the variable is used or defined, but the user guarantees that all

potential conflicts are handled, e.g., with manual synchronization.
– reduction: the associated variable is part of a reduction.

Control-flow annotations.

– SESE: the associated block of code is a Single-Entry Single-Exit region.
There is no branching in or out and exceptions are caught within the region.

– single: the associated block can only be executed on one thread.
– barrier: either an explicit barrier or when a barrier is implied at the end of

a block.
– synchronization point: point-to-point synchronization.
– memory barrier: a memory flush is required at this point.



User hints. Many of the decisions involved in tuning the parallel code generation
and the execution are hard to decide from static analysis alone. We store as hints
all the information provided by the programmer. If the optimization passes can
find provably better choices, then these hints can be ignored, otherwise they
should take precedence.

– parallel: this hint may be important for loops, because even if static analysis
can recognize the loop is parallel, the profitability of the parallel execution
may not be obvious. If the programmer annotates a loop as parallel, it should
not be overlooked.

– schedule: the choice of the schedule for a parallel loop.
– num threads: number of threads available.
– More generally, any ad hoc information can be stored as a hint. In particular,

in case the late expansion pass is too difficult to perform using the abstract
annotations alone, it would be trivial to keep the whole set of original an-
notations in this form. As we will see in Section 4.1, this is the easy way
to solve the problem of enabling classical sequential optimizations for such
languages as OpenMP.

These abstract annotations provide readily usable information to the opti-
mization passes. They can also be refined through static analysis as, for example,
OpenMP sharing clauses will generally only provide may-def/may-use informa-
tion which can be promoted to def/use.

Depending on the compiler pass, annotated blocks of code can be either
seen as black boxes, that have well-specified memory effects and behaviour, or
they may need to be perfect white boxes to allow unrelated optimizations to be
transparently applied. The representation of these annotations needs to allow
access to the code, yet restrict optimizations that would break the semantics of
the optimizations.

Default clauses. In languages that have default clauses, or default specified be-
haviour, all defaults must be made explicit by the early expansion. This is part
of the interpretation of the language’s semantics and keeping any information
implicit would hamper the genericity of the approach. The abstract annotations
should be self-contained.

In particular, the OpenMP default sharing or a default clause allows the pro-
grammer to leave some of the sharing clauses implicit. We convert all implicit
clauses to explicit ones during the early abstraction pass, which allows to decou-
ple the intermediate representation from the OpenMP-specific semantics of the
default sharing.

Example: abstract semantics for OpenMP. Without attempting to provide a full
characterization of the OpenMP semantics, we present on Figure 3 a subset of
the abstract semantics of the language.

Adapting this framework for an OpenMP extension for streaming [4, 7], con-
sisting in two additional clauses for task constructs, would require also adding



OpenMP annotation Abstract annotations counterpart

Main directives

parallel SESE & barrier
single SESE & single & barrier
task SESE
sections SESE & barrier
section SESE & single
for parallel hint & barrier

Synchronization directives

master master thread hint & single
atomic {expr} lower to corresponding atomic builtin operation
barrier barrier
taskwait synchronization point
flush memory barrier

Sharing clauses

shared (X) safe-ref (X) & may-use (X) & may-def (X)
firstprivate (X) use (X)
lastprivate (X) def (X)
private (X) rename the variable X p
threadprivate (X) rename the variable X tp
reduction reduction(X)
copyin (X) use (X) & def (X tp)
copyprivate (X) barrier & use (X) & def (X p)

Tuning clauses

num treads num threads hint
schedule schedule hint
collapse —
ordered single & static schedule
nowait remove the implicit barrier from the directive

Fig. 3. OpenMP semantics.

the same two data-flow annotations. This extension defines an input and an out-
put clauses for tasks, which can be abstracted to a use and a def annotations
in the simple, scalar version of the extension.

3 Intermediate representation

In this section we present a simple yet convenient way to represent high-level
information in the current intermediate representation of optimizing compilers,
in a way that does not require special care.

The semantics of user-level annotations is generally defined with a direct
correspondence to specific parallelization techniques or to specific runtime calls.
This makes them well-suited for early expansion as they are self-contained and
require no static analysis or verification. A direct translation, or expansion, can
be performed at the earliest stages of the compilation flow, which is a convenient
way to avoid the interactions with the optimization passes of compilers.

A common constraint in extending the intermediate representation of a com-
piler is that it requires modifying most compiler passes, if only to keep the new
information consistent after code transformations. Instead of modify the repre-
sentation, we circumvent this issue by making use of the existing infrastructure.
We introduce calls to factitious builtin functions and conditional statements that
allow us to carry the abstract semantics of the user annotations and also to pre-
vent aggressive optimizations that would break the parallel semantics intended
by the user.



As Figure 4 shows, we use variadic builtins, with parameters corresponding
to the abstract annotation properties and, when relevant, the program variables
to which the property applies.

int *X;

void foo (int i) {
X[i] = ...;

}

void bar () {

for (int i = 0; i < ...; ++i) {
#pragma omp task shared (X) firstprivate (i)

{
foo (i);

}
}

#pragma omp barrier
// use X;

}

bool __builtin_property (property, ...) {
return true;

}

int bar () {

for (int i = 0; i < ...; ++i) {
if (__builtin_property (may_def, X)

&& __builtin_property (may_use, X)
&& __builtin_property (safe, X)
&& __builtin_property (use, i)
&& __builtin_property (restricted_CF)) {

foo (i);
}

}
__builtin_property (barrier);
// use X;

}

Fig. 4. Builtins.

It would be quite easy at this point to not perform any abstraction and
only focus on avoiding the code obfuscation of the early expansion, by simply
representing directly all of the language’s annotations and performing a late ex-
pansion after the sequential optimization passes. This is, however, only a partial
and suboptimal result.

One of the imperative requirements to make our representation robust, de-
spite not requiring to modify optimization passes, is that it naturally prevents
any transformation that would invalidate the semantics of the annotations.

Many compiler passes have the potential to break the semantics if they are
to perform without any constraint. However, the representation implicitly intro-
duces a few constraints that we believe to be sufficient. The conditional expres-
sions it introduces, relying on opaque builtin function calls, ensure the integrity
of the blocks of code they are attached to.

4 Application to compiler analysis and optimization

The information provided by programmers through high-level annotations has
the potential to be of great use in other areas of compiler analysis and opti-
mization than only parallelization. The first major benefit of our technique is
that it allows to avoid the systematical loss of classical sequential compiler op-
timizations when compiling parallel programming languages. In a second time,
we survey some other areas where we have hope to make an impact using the
information gathered from the programmer annotations.



We have already started to experiment with using this information for ex-
tending the code coverage of the Graphite polyhedral optimization framework
and we believe it will prove very useful for improving the accuracy of some
analysis passes, like for example data-dependence and pointer alias analyses. Fi-
nally, a more productivity-oriented advantage of this scheme, we will discuss the
potential for compiler verification of the program annotations.

4.1 Code obfuscation and optimization inhibition

As we have previously discussed in Section 1, one of the main drawbacks of the
early expansion pass is that it leaves little room for classical sequential optimiza-
tions, some of which have much potential for improving performance. Optimizing
concurrent applications is made harder by the presence of parallelization code.
By postponing the expansion pass, we allow the compiler to apply these opti-
mizations before generating the parallelization code, as long as we can ensure
that the semantics are preserved.

A sequential optimization pass will, in most cases, not interact with our
representation and will therefore consider any annotated block of code as a
white box. For example, on Figure 5, the optimization pass will consider that the
conditional statement and the call to our builtin function is simply user code. In
order to ensure that the compiler can efficiently analyze white boxes, the builtin
function6 is typed so that the access to a variable from the builtin function
matches its semantics. More specifically, on Figure 5, the builtin function has
const parameters. This means that this code can easily be analyzed to show
that it only reads x, thus enabling for example a constant propagation pass. The
invalidation of this property, in case the x variable is substituted by a constant
value in both references, does not invalidate the semantics of the annotations.

if (__builtin_property (use, x)) {
... = ... x ...;

}

Fig. 5. As a white box, the builtin function is considered as user code.

It appears clear that the constant propagation would not be possible if, for
example, the assignment statement on Figure 5 was enclosed within an OpenMP
task construct that had been expanded. In such a case, the value of x would have
been marshalled in an opaque data structure and passed to a function pointer
in the same way as the expansion presented on Figure 1.

Despite major efforts, data-parallel and transactional extension of impera-
tive languages still incur significant overheads due to missed optimizations [10,
1]. Our experiments demonstrate that optimization of parallel code can increase

6 There will be more than one name and prototype for the builtin function



performance by up to 1.54× on a real application, FMradio7, thanks to vector-
ization and additional scalar optimizations alone [5].

4.2 Extending the scope of polyhedral optimization frameworks

One of the traditional limitations of the polyhedral model has been its restric-
tion to the representation and transformation of Static Control Parts (SCoPs)
of programs. This restriction means that only static control is allowed and all
array accesses must be through affine subscripts. This strong limitation reduces
its applicability. Recently, Benabderrahmane et al. proposed a simple extension
of the code generation algorithm and a generic scheme to capture dynamic, data-
dependence conditions in polyhedral compilation frameworks [3]. This approach
can represent arbitrary intraprocedural, structured control flow. Yet it is only a
conservative approach, where dependences remain computed through static anal-
ysis, and where complex control flow or irregular data structures (with pointers)
may result in rough approximations [2]. In addition, it is only an intraprocedural
extension.

In this paper, we advocate for a complementary approach, using annotations
to drive the formation of larger SCoPs. While maintaining the static control
properties, this approach allows for more accurate dependence analysis and en-
ables more aggressive optimizations. We modified GCC’s polyhedral optimiza-
tion framework, Graphite, to use the abstract annotations in the SCoP detection
phase. By assimilating well-behaved blocks of code (corresponding to the SESE
abstract annotation), with the proper memory effects information, to black boxes
that are represented as single statements in the polyhedral model, we hide non-
static control flow or non-affine array subscripts from the optimization framework
without compromising its correctness.

Let us consider the example on Figure 6 of non-static control code that is
currently, and correctly, not recognised as a SCoP by Graphite and thus not
optimized.

for (i = 0; i < N; ++i) {
for (j = 0; j < M; ++j) {

#pragma omp task shared (A)
{
if (j%2)
A[j][i] = ...;

else
A[j][i] = ...;

}
}

}

for (i = 0; i < N; ++i) {
for (j = 0; j < M; ++j) {
if (__builtin_property (SESE))
{
if (j%2)
A[j][i] = ...;

else
A[j][i] = ...;

}
}

}

Fig. 6. Extending Static Control Parts.

If the task directive is expanded early within the existing OpenMP frame-
work, this would be a lost cause for Graphite as there would be opaque function

7 From the GNU radio package:http://gnuradio.org/trac



calls and marshaling of a pointer to the array in an opaque data structure. If
the task directive is ignored, then the non-affine modulo conditional expression
makes the SCoP detection fail.

However, using our representation and considering the task as a black box
within Graphite enables the optimization of this loop nest. The current imple-
mentation of the early abstraction pass is already handling common OpenMP
constructs. The Graphite adaptation to represent single-entry single-exit regions
as black boxes and to use the information we extracted from the OpenMP an-
notations is complete and will be included in the next release of GCC.

We plan to test the benefits of this technique by compiling OpenMP bench-
marks in this way and compare to the sequential execution of the programs. As
the late expansion pass from our representation to generate parallel code is still
under development.

Combining this annotation-based SCoP formation method with Benabder-
rahmane’s extension [3] is an exciting future work. It will motivate additional
support from annotations to refine the quality of the data dependence and
pointer aliasing computation.

4.3 Statically verifying user annotations

For languages like OpenMP, where the early expansion only consists in a direct
translation of the directives to parallelization code, the compiler can only per-
form rudimentary sanity checks along the line of verifying that the same variable
does not appear on more than one sharing clause. This is a serious limitation to
productivity as most mistakes must be tracked through debugging.

Performing the expansion at a late stage will ensure the compiler has gath-
ered much more information on the program through static analysis and will
be able to more accurately and more completely assess the validity of the user
annotations.

For instance, relying on user annotations does not mean that static analysis
can be forgotten. It is important to compare its results with the programmer
information. If there is a contradiction and the static analysis gives a precise
answer, then there is a reasonable case for considering the programmer made a
mistake.

Let us consider the example presented on Figure 7, where the programmer
omitted a reduction clause. The code is obviously incorrect. If the annotations
are expanded early, even though it is possible for the compiler to detect, at a later
stage, the reduction in the function foo omp fn 0, there is no information left
about the original annotation, not even about the fact that this is a parallelized
loop.

If the early abstraction pass was used instead, as soon as the compiler de-
tects the dependence on x, or the reduction, it is possible to decide that the
programmer made a mistake as he declared the loop to be parallel.



void foo () {
#pragma omp parallel for shared (A, x)
for (i = 0; i < N; ++i) {
x += A[i];

}
}

void foo_omp_fn_0 (struct omp_data_s * omp_data_i) {
for (i = lower; i < upper; ++i) {
omp_data_i->x += omp_data_i->A[i];

}
}

void foo () {
omp_data_o.a = A;
omp_data_o.x = x;
GOMP_parallel_start (foo_omp_fn_0, &omp_data_o, 0);
foo_omp_fn_0 (&omp_data_o);
GOMP_parallel_end ();
a = omp_data_o.A;
x = omp_data_o.x;

}

Fig. 7. The wrong code annotation, missing the reduction clause on x (left) and the
result of early expansion (right).

5 Roadmap for future work

In order to experimentally validate our approach and evaluate the impact these
techniques have on real applications, we envisage the following roadmap:

– Evaluate the additional code coverage that can be achieved in the polyhedral
representation by using the additional semantics of OpenMP annotations in
the programs of the OpenMP Benchmark Suite.

– Consider streaming OpenMP extensions carrying explicit dependence infor-
mation, to enhance the accuracy of data dependence analyses.

– Further evaluate the performance improvement this added coverage has on
both the late-expanded version and on the sequential version.

– Evaluate more precisely and more extensively the impact of missed opti-
mization opportunities on the OpenMP Benchmark Suite, by comparing the
performance achieved using the original OpenMP code with the classical
early expansion to the performance achieved using late expansion.

– Compare the performance results of early expansion to the results of both
unoptimized late expansion and optimized late expansion with specific con-
currency optimization.

6 Conclusion

We presented an alternative approach to the classical compilation flow of high-
level annotation-based parallel programming languages. This alternative solu-
tion enables sequential optimizations of parallel codes, in particular it allows
OpenMP programs to benefit from many optimizations that until now were out
of reach. Further uses, of the intermediate representation we presented include
the extension of the scope of polyhedral representation and optimization as well
as static verification of user annotations.

Acknowledgements. This work was partly funded by the European FP7 project
TERAFLUX id. 249013, http://www.teraflux.eu.



References

1. W. Baek, C. C. Minh, M. Trautmann, C. Kozyrakis, and K. Olukotun. The opentm
transactional application programming interface. In IEEE Intl. Conf. Parallel
Architecture and Compilation Techniques (PACT’07), pages 376–387, 2007.

2. D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array dataflow analysis. J. on
Parallel and Distributed Computing, 40:210–226, 1997.

3. M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The polyhe-
dral model is more widely applicable than you think. In Proceedings of the Inter-
national Conference on Compiler Construction (ETAPS CC’10), number 6011 in
LNCS, Paphos, Cyprus, Mar. 2010. Springer Verlag.

4. P. M. Carpenter, D. Ródenas, X. Martorell, A. Ramı́rez, and E. Ayguadé. A
streaming machine description and programming model. In SAMOS, pages 107–
116, 2007.

5. C. Miranda, A. Pop, P. Dumont, A. Cohen, and M. Duranton. ERBIUM: A De-
terministic, Concurrent Intermediate Representation to Map Data-Flow Tasks to
Scalable, Persistent Streaming Processes. Technical report, MINES ParisTech,
CRI - Centre de Recherche en Informatique, Mathématiques et Systèmes, 35 rue
St Honoré 77305 Fontainebleau-Cedex, France, Mar. 2010.

6. J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical Task-Based
Programming With StarSs. Int. J. High Perform. Comput. Appl., 23(3):284–299,
2009.

7. A. Pop and A. Cohen. A Stream-Computing Extension to OpenMP. Tech-
nical report, MINES ParisTech, CRI - Centre de Recherche en Informatique,
Mathématiques et Systèmes, 35 rue St Honoré 77305 Fontainebleau-Cedex, France,
Jan. 2009.

8. S. B. R. Dolbeau and F. Bodin. Hmpp: A hybrid multi-core parallel programming
environment. In Workshop on General Purpose Processing on Graphics Processing
Units (GPGPU 2007), 2007.

9. The OpenMP Architecture Review Board. OpenMP Application Program Inter-
face. http://www.openmp.org/mp-documents/spec30.pdf.

10. C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-Tabatabai. Code generation
and optimization for transactional memory constructs in an unmanaged language.
In ACM/IEEE Intl. Symp. on Code Generation and Optimization (CGO’07), pages
34–48, 2007.


