
A Modular Static Analysis Approach to Affine

Loop Invariants Detection1

(Extended Version)

Corinne Ancourt Fabien Coelho
François Irigoin

CRI, Maths & Systems, MINES ParisTech

Abstract

Modular static analyzers use procedure abstractions, a.k.a. summa-
rizations, to ensure that their execution time increases linearly with the
size of analyzed programs. A similar abstraction mechanism is also used
within a procedure to perform a bottom-up analysis. For instance, a se-
quence of instructions is abstracted by combining the abstractions of its
components, or a loop is abstracted using the abstraction of its loop body:
fixed point iterations for a loop can be replaced by a direct computation
of the transitive closure of the loop body abstraction.

More specifically, our abstraction mechanism uses affine constraints,
i.e. polyhedra, to specify pre- and post-conditions as well as state trans-
formers. We present an algorithm to compute the transitive closure of
such a state transformer, and we illustrate its performance on various
examples. Our algorithm is simple, based on discrete differentiation and
integration: it is very different from the usual abstract interpretation fixed
point computation based on widening. Experiments are carried out us-
ing previously published examples. We obtain the same results directly,
without using any heuristic.

1 Introduction

Program analyzes such as interprocedural program parallelization [21, 20], array
access bound checking [26], array initialization checking, aliasing checking [25]
require some mechanism to approximate loop behaviors. In order to obtain a
modular analyzer and to limit analysis times, we depart from the usual ap-
proach [8] and compute state transformers instead of state predicates, i.e. pre-
and post-conditions. Transformers are used to summarize functions: each func-
tion is analyzed once and its transformer is reused at each call site. Precondi-
tions are then propagated using the transformers. Since transformers require

1This work is funded by the ACI SI as part of the APRON project.
URL:http://www.cri.ensmp.fr/apron

twice as many variables as preconditions, we use polyhedra as finite abstractions
of possibly infinite sets of states to maintain a sufficient accuracy.

In Section 2, we present a simple yet effective algorithm to compute transitive
closures of transformers, which are then used to derive affine loop invariants.
Then we show how to improve its effectiveness by using equivalent but different
formulae for postconditions. They are equivalent when the analysis is exact,
but they differ when approximations, such as affine approximations, are made.
Several kinds of extensions are considered in Section 3. They are related to the
transitive closure algorithm. Related work is introduced in Section 4 and we
show on previously published examples that our algorithm provides the expected
loop invariants without using any widening heuristic.

2 Simple Transitive Closure of Affine Transform-
ers

Pugh and al. studied the transitive closure of transfer functions defined by Pres-
burger formulae [22]. Here, transfer functions are approximated by affine rela-
tions. The graph of the relation between the initial state and the final state is
defined by a polyhedron, i.e. a set of affine equalities and inequalities. Below,
once transformers and preconditions are defined, we present our algorithm to
compute transformer closures for while loops together with its proof. We illus-
trate its working on a motivating example, a safety controller for a toy robot
car [17].

2.1 Affine Transformers and Preconditions

Each program command, elementary or compound statement or procedure call
is approximated by an affine transformer. The underlying mechanism is similar
to [8] but extended from the states to state transitions. The idea of transformers
is quite general and is also used, for instance by Boigelot & al. [4].

The set of possible program states, before a command is executed, is defined
by a precondition. The set of program states after the command execution is
defined by a postcondition. The postcondition is the image of the precondition
by the command transformer. A legal affine abstract postcondition contains the
effective postcondition, i.e. it is an over-approximation.

For simplicity of exposure, the relationship between identifiers and memory
locations is assumed to be a one-to-one mapping for scalar variables. In this
paper, we deal only with integer scalar variables and states taking values in Zn,
where the dimension n is the number of analyzed variables.

For semantic analysis purposes, control flow graphs are structured as while
loops, e.g. using Bourdoncle’s heuristic [5]. Other structured loops are decom-
posed into while loops. As a result, the only control structure with an iterative
behavior studied here is the simple while loop.

2

2.2 The Affine Derivative Closure Algorithm

transformer T*(x,x’) affine_derivative_closure(transformer T(x,x’))

{
// add the difference vector dx

transformer Q(x,x’,dx) = T(x,x’) ^ (dx = x’-x);

// eliminate the initial and final states x and x’

transformer T’(dx) = project((project(Q(x,x’,dx), x), x’));

// compute dx for any iteration number k

T’(dx) = multiply_constant_terms(T’(dx), k) ^ (k >= 0);

// eliminate the iteration number k and substitute back dx by x’-x

return project(project(T’(dx),k) ^ (dx = x’-x), dx);

}

Figure 1: Affine Derivative Closure Algorithm

Our algorithm is outlined in Fig. 1 and works as follows:
Let us assume that T is a valid affine transformer for a while loop body

and its continuation condition. T includes the loop entry condition, or at least
an affine approximation of this condition. Let k be the iteration number, xk−1

be the integer memory state when the loop body is started the k-th time, and
xk be the final state when the loop condition is evaluated to true again. The
predicate T (xk−1, xk) holds for all possible k > 1.

Let δx be xk − xk−1 and T ′(δx) be the projection of T ∧ δx = xk − xk−1

along xk and xk−1. Note that T ′ does depend neither on k which is not a
component of the memory state x nor on the names xk and xk−1, which have
been eliminated by the projection.

Let x0 be the state on loop entry. The state xk that may be reached after k
iterations of the loop, if such an iteration is executed, is:

xk = x0 +
k∑

i=1

δx i with δx i = xi − xi−1 (1)

For all positive integers i, T ′(δx i) holds. Since T ′ is a polyhedron, it can be
defined by affine equalities and inequalities:

T ′(δx) = {δx |Aδx = b ∧A′δx ≤ b′ } (2)

where A and A′ are integer matrices and b and b′ the corresponding constant
terms.

Multiplying Eq.(1) by the matrices A and A′, we have:

Axk = Ax0 +
k∑

i=1

Aδx i and A′xk = A′x0 +
k∑

i=1

A′δx i (3)

Since Aδx i and A′δx i are equal to b or bounded by b′, we have:

Axk = Ax0 + kb and A′xk ≤ A′x0 + kb′ (4)

3

The loop transformer T ∗(x0, x) may be approximated by:

T ∗(x0, x) ⊆
{

(x0, x)
∣∣∃k ∈ [0,∞[Ax = Ax0 + kb ∧ A′x ≤ A′x0 + kb′

}
(5)

The set P ∗(x0) of states reachable from x0 by executing the loop may thus
be approximated by:

P ∗(x0) ⊆
{
x
∣∣T ∗(x0, x)

}
(6)

Then the whole loop transformer T ∗(x0, x) is over-approximated by pro-
jecting k from the constraints in Eq.(5). And an affine over-approximation of
the loop postcondition is obtained by projecting x0 too and by adding a safe
approximation of the loop last iteration and exit condition.

Loop invariants are obtained for each state dimension i such that bi is zero
since then Eq.(4) shows that (Axk)i = (Ax0)i. If there exists a dimension j
such that bj is not zero, then the iteration number k can be derived from a com-
bination of variables and substituted everywhere else to obtain more invariants.

If not, k is still bounded by k ≥ 0 and some inequalities can be saved
according to the Fourier-Motzkin elimination rule. If some term a′δx , where
a′ is a row of A′, is upper-bounded by a negative constant, or lower-bounded
by a positive constant, monotony constraints are obtained. Strict monotonicity
leads to loop termination proofs when the derivatives of the affine components
of the while condition that imply non-termination are incompatible with T ′.

Note that T+ = T ∗ ◦ T can be computed by setting k ≥ 1 in Eq.(5). Trans-
former T+ may contain strict monotonicity conditions, which are useful for de-
pendence testing in automatic loop parallelization [30] and array bound check-
ing [29].

2.3 An Example: Robot Car Safety

Let us take the toy example described in [17] and recently reused by [23]. A
robot car must follow autonomously a track painted on the floor. In case it
loses the track, it should not crash against a wall; however it is not stopped
right away since the track might be found again. The car should not accelerate
too much when it is looking for the lost track. The safety controller must ensure
that a limited amount of time is allowed to search the painted track at bounded
speed. Since time and speed are bounded in the track search mode, the car is
safe if the track is far enough from the walls.

1: int s = 0, t = 0, d = 0;

2: while(s <= 2 && t <= 3)

3: if(alea())

4: t++, s = 0; // increment time, reset speed estimation

5: else

6: d++, s++; // meter increment, speed estimation increment

Figure 2: Car safety example

4

Let t be the time in seconds, d the distance from the starting point in meters
and s the current estimation of the speed in meters per second. A model of the
controller ensuring the physical safety of the car is encoded in C as shown in
Fig. 2. Function alea is used to model a random event: either the clock counter
is going to tick for the next second and the time is incremented while the speed
estimation is reset to 0, or the distance and the speed estimation are increased
because another meter has been reached. The safety is enforced by the loop
guard. If nothing else happens within three seconds or if the speed is greater
than two meters per second, the car is stopped. If walls are 10 meters away
from the starting position, the car cannot reach a wall.

We explain the steps performed here by our Affine Derivative Closure Al-
gorithm using a primed notation that distinguishes the values of each variable
between the old and primed new state. If x is the memory state of (d, s, t), the
transformer for the first branch of the test (line 4) is:

T4(x, x′) = {s′ = 0, t′ = t+ 1, d′ = d, s ≤ 2, t ≤ 3}
For the second test branch (line 6) transformer is:

T6(x, x′) = {d′ = d+ 1, s′ = s+ 1, s ≤ 2, t′ = t, t ≤ 3}
Their convex hull used to approximate their combined effect is:

T3(x, x′) = {d′+t′ = d+t+1, s+3t+1 ≤ s′+3t′ ≤ 3t+3, t ≤ t′ ≤ t+1, t ≤ 3}
Projecting the old and new state, this transformer is rewritten as:

T ′(δx) = {δd + δt = 1, 1 ≤ δs + 3δt , 0 ≤ δt ≤ 1}
which leads to δd + δt ≤ δs + 3δt , or δd ≤ δs + 2δt . This is the speed equation
we looked for to prove the car safety. If the speed and the time are bounded, the
distance travelled is bounded. Here, the numerical speed bound of 2 produces
a linear speed equation. Note that the time bound can be a parameter n and
the distance is also found bounded by 2 ∗ n+ 3 (see Example 10). This extends
Halbwachs’ car safety case.

2.4 Discussion

The algorithm is very simple yet powerful enough to derive non trivial condi-
tions. Its weaknesses come from 1) computing T ′ as a relation on δx instead of
a more accurate relation on (δx , x) to ease the summation and stay in the affine
setting, and 2) in computing T in the first place as an affine transformer using
the convex hull to model tests. The complexity of the algorithm is dominated
by the complexity of the projection steps: its worst case is exponential with
the number of variables projected, but in practice it is polynomial when the
constraints are sparse.

3 From Transformers to Loop Invariants

Several simple extensions are useful to cope with non-affine behaviors such as
iteration independent assignments or periodic and polynomial behaviors. They
occur when an iteration independent assignment is equivalent to a differential

5

assignment, when two (or more) buffers are used in a flip-flop mode or when tri-
angular matrices are accessed. Note that polynomial behaviors [15] are frequent
when accessing symmetric matrices, but that monotonicity or strict monotonic-
ity information is often sufficient to make a decision about data dependence or
array bound overflow issues.

3.1 Using T+ instead of T ∗

If the loop w is certainly entered when reached with precondition Pw, that is
when the affine approximation of the negation of its condition combined with
Pw generates a contradiction, it is better to compute T+ instead of T ∗. The
constraints on the image of T can be added to the image of T+, but not of T ∗.

In a loop such as “while(alea()) m = 10;” no information on m is gathered
in the postcondition because its value may be unchanged, when the loop is not
entered, as well as set to 10.

Note that T+ = T ◦ T ∗ = T ∗ ◦ T when T is exact, but that the first formula
is more precise with an approximate T . In the second case, the information
added by T may be lost by T ∗. Also it is better to use:

P ∗ = P 0
⊔

T+(P 0) (7)

rather than the equivalent formula P ∗ = T ∗(P 0) when the range of T and P 0

have common constraints. The convex hull operator
⊔

is used instead of the
union operator, which is not internal for polyhedra. Since it is not accurate,
it should always be applied as late as possible when equivalent formulae are
available.

3.2 Periodic Behaviors

Periodic behaviors are observed when a variable or a set of variables is used
to flip-flop the accesses to two or more buffers; for instance this is often used
in signal processing applications to switch between receiving or sending and
computing buffers, or in scientific programs to switch between new and old
values [4, 3], as depicted in Fig. 3.

double x[2][10];

int old = 0, new = 1, i, t;

for(t = 0; t<1000; t++) {

for(i = 0; i<10;i++)

x[new][i] = g(x[old][i]);

old = new, new = 1 - old;

}

Figure 3: Flip-flop example

The t loop is parallel if the value of new is proven to be always different
from the value of old because old + new = 1, which is found thanks to Eq.(7).

6

An interesting aspect in flip-flop analysis is its robustness with respect to
the flip-flop encoding scheme. Ideally, different encodings leading to the same
execution traces should produce the same analysis result. Different encodings
use different mathematical functions, as illustrated by Figure 4, but they have
the same value over the useful subset of their domains. Thus the analysis
result depends on the accuracy of the loop precondition used to characterize
the effective function domains.

1 new = old; old = 1-old;

2 new = 1 - new; old = 1 - old;

3 t = new; new = old; old = t;

4 if(new==1) { new = 0, old = 1; } else { new = 1, old = 0; }

5
if(new==1) { new = 0; old = 1; }
else { if(new==0) { new = 1; old = 0; } else

exit(1); }
6 new = (new+1) %2; old = (old+1) %2 ;

Figure 4: Six different encodings of flip-flop operations

The invariant new + old = 1 is found by our tool PIPS [24] for Cases 1, 3, 4
and 5 thanks to Eq.(7). But it fails for Case 6 because the modulo operator is
not analyzed as well as a multiplication or a division: the sources of failure are
not limited to convex hulls and transitive closures.

Case 2 requires a loop unrolling of two to obtain the invariant. Larger
periods can be obtained using integer rotation matrices or ad hoc constructs.
More generally, k-periodic behaviors can be captured by computing T ∗ and T+

as:

Tk
∗ =

⊔
i=0,k−1

T i ◦
(
T k
)∗

Tk
+ =

⊔
i=1,k

T i ◦
(
T k
)∗

(8)

This is equivalent to a loop unrolling of degree k and similar to a delayed
widening. These definitions can be used to refine Eq.(7) and to obtain better
loop preconditions. With k = 2, the precondition becomes:

P ∗ = P 0
⊔

T (P 0)
⊔

T 2+(P 0)
⊔

T
(
T 2+(P 0)

)
(9)

With Eq.(9), PIPS is able to deal with the second encoding of flip-flop be-
cause new and old are invariant by T 2. The effective period does not have to be
known as each T ∗k is a proper over-approximation of T ∗ and their intersection
can be used:

T ∗ =
⋂

i∈[1,k]

Ti
∗

7

The same holds for T+ and for the loop precondition. Equation (9) can be
generalized at order k:

P ∗k =

(
k−1⊔
i=0

T k(P 0)

) ⊔(
k−1⊔
i=0

T i
(
T k+

(P 0)
))

and all preconditions P ∗k obtained with T ∗k and this equation can be intersected
since each of them is a valid loop precondition. The user must provide a maximal
value kmax for k to obtain

P ∗ =
⋂

k∈[1,kmax]

P ∗k

and this process can capture invariants about cyclic variables with periods less
than kmax. Note that different sets of variables can have different periods in the
same loop: there may be no ideal k and the intersection is necessary to capture
all the information available.

It should also be noted that all invariants of T ∗ are also invariants of (T k)∗.
No information is lost when a power of T is used instead of T .

Invariant Completeness Theorem Any invariant found by our Affine Deriva-
tive Closure Algorithm for transformer T ∗ is also found by the same algorithm
for transformer (T k)∗.

Lemma If the elimination of variable z in a linear constraint system S by
Fourier-Motzkin elimination produces the new system S′, the elimination of z in
system S modified by multiplying all z coefficients by a positive integer produces
the same S′.
In other words, the Fourier-Motzkin elimination of a variable z is not perturbed
if all coefficients of z are multiplied by the same positive constant.

Lemma’s Proof Let S be Ax ≤ zb (since S is linear, there are no constant
terms). S is decomposed into: {A+x ≤ zb+, A−x ≤ −zb−} with b = b+ − b−.

The new constraints are built as
{
a+

i x ≤ zb
+
i , a

−
j x ≤ −zb

−
j

}
, which leads to

b−j a
+x+ b+i a

−
j x ≤ 0 .

If all coefficients of z are multiplied by the same positive constant c, the
decomposition in A+ and A− is not modified because c is positive and the
new relations are equal to the old ones

{
a+

i x ≤ czb
+
i , a

−
j x ≤ −czb

−
j

}
, and the

inequation cb−j a
+x+ cb+i a

−
j x ≤ 0 which can be divided by c. QED

Theorem Proof T (x, y) is a polyhedral transformer leading to T ′(y − x) =
{(y − x)|A(y − x) ≤ b} [no need to distinguish between equations and inequali-
ties]. Then (T k)′ verifies (T k)′(y − x) = {(y − x)|A(y − x) ≤ kb}. This is true
for k = 1 and 2. If it is true for k, then (T k+1)′(z−x) = (T k)′(y−x)∧T ′(z−y).
Since A(y − x) ≤ kb and A(z − y) ≤ b, A(z − x) ≤ (k + 1)b. So the constraint

8

systems defining T ′ and (T k)′ differ only because the coefficients of z are mul-
tiplied by k. Using Lemma 1, the elimination of z (last step of the algorithm)
leads to the same T ∗. Hence all invariants of T ∗ are included in invariants of
(T k)∗. QED

3.3 Higher-Order Differences

The scheme could be first generalized to second order differences by setting:

T (x, x′) ∧ δx = x′ − x ∧ T (x′, x′′) ∧ δx ′ = x′′ − x′ ∧∆x = δx ′ − δx

Let us consider the non linear example on the left hand side of Fig. 5. One
possible application of such differences is to prove that variable i is bounded
and reaches its maximum on the loop boundary or when its discrete difference
is zero. Indeed since the second difference of i is the difference of j, −1, and is
negative, sooner or later, i is going to decrease.

int i = 0, j = 2, k = 1;

while(k<=10)

j--, i += j, k++;

int i = 0, j = 0, n;

if(n<0) exit(1);

while(i<=n) i++, j+=i;

Figure 5: Non linear (left) and parabolic (right) examples

Exact closed form polynomials are computed in [15] and [28], but the polyno-
mial closed form would be uselessly complicated to use for this purpose, although
admittedly mandatory for code generation after automatic parallelization.

3.4 Monotonicity and Iterative Analysis

Postcondition {j = −8, k = 11} is directly derived from the code in the left of
Fig. 5. It does not bound i. However, if the transformers are recomputed with
this precondition, the loop postcondition is refined iteratively as shown on the
left hand side of Fig 6.

A similar code, without loop numerical bound, on the right hand side in
Fig. 5, can also be analyzed iteratively, but without ever reaching a fixed point,
as shown on the right hand side of Fig 6.

1 {j = −8, k = 11, 0 ≤ i + 71, i + 14 ≤ 0}
2 {j = −8, k = 11, 0 ≤ i + 71, i + 25 ≤ 0}
3 {j = −8, k = 11, 0 ≤ i + 71, i + 32 ≤ 0}
4 {j = −8, k = 11, 0 ≤ i + 71, i + 35 ≤ 0}
5 {j = −8, k = 11, 0 ≤ i + 71, i + 35 ≤ 0}

1 {i = n + 1, 1 ≤ i}
2 {..., 2i ≤ j + 1, 3i ≤ j + 3, 4i ≤ j + 6}
3 {..., 5i ≤ j + 10, 6i ≤ j + 15}
4 {..., 7i ≤ j + 21, 8i ≤ j + 28}
5 {..., 9i ≤ j + 36, 10i ≤ j + 45}

Figure 6: Results for the non linear and parabolic examples of Fig. 5

The iterative relationship between transformers and preconditions is formal-
ized by the next two equations where B stands for the loop body statement and

9

the continuation condition, and T for the function that converts a statement
into a convex transformer:

T ∗n+1 = T (B,P ∗n) ∧ P ∗n P ∗n = P 0 t Tn

(
T ∗n(P 0)

)
(10)

Note that the previous precondition Pn impacts the transformer Tn+1 in
two different ways. The affine abstraction T is sharpened and the resulting
transformer also is restricted by the previous precondition.

The iterative refinement process does not always converge and it may even
lead to a precision loss, due to magnitude overflows. These are not handled
with a good heuristic in the present PIPS implementation, but it is not critical
as the refinement process is not automatic: it must be specified by the user.

3.5 Postponing Convex Hulls

If a loop contains a test, the test is abstracted by a convex hull and the transitive
closure is applied later. In other words, the convex hull loses information at the
very beginning of the invariant computation.
Hence it is useful to convert: while(c) if(t) a; else b;

into the equivalent: while (c) { while (c&&t) a; while (c&&!t) b; }
This transformation, which is somehow similar to the abstract acceleration

defined by Laure Gonnord [10] after the acceleration used in model-checking [4,
6, 7], eliminates the early convex hull and lets PIPS find the proper invariants
for cases 1 in [11] and 2 in [14, 13]. This transformation can be applied to the car
safety example used in Section 2.3 and its parametric extension (See Figure 10).
The safety property is proved again by PIPS in both cases.

4 Related Work

PIPS [24] development has been driven for almost twenty years by the needs of
automatic analysis and parallelization for large size real-life Fortran and C pro-
grams of up to hundreds of functions and 100 KLOCS. Our derivative algorithm
is used for all loops and on most of the control-flow graphs, after restructuring.

Its input is a deterministic C or Fortran program and not a non-deterministic
finite automata as used in model-checking benchmarks or by Gonnord [10]. It is
difficult to be sure to convert an automaton into a program without performing
some intelligent structuring that may turn out to be the key to its successful
analysis. Moreover, the PIPS semantic analyzer uses Bourdoncle’s algorithm [5]
to deal with unstructured control flow graph. This increases the number of
convex hulls to decrease the number of widenings, and we now know that it
often prevents acceleration opportunities. Most of our comparisons are based
on published pieces of code, not on transcoded automata.

Fig. 7 presents examples found in the literature [8, 10, 11, 12, 14, 16, 17, 23,
13] about the widening operator and its improvements. The relations found by
PIPS are given in the third column: they are obtained in less than a second on
a typical PC, and are equivalent to those of the other tools.

10

Original example After restructuration PIPS
(1) Gopan’07 [11], Gulwani’09 [13]

x=y=0;

while(*) {
if (x ≤ 50) y++;

else y--;

if (y < 0) break;

x++;

}

x=y=0;

while (y ≥ 0) {
while (y ≥ 0 && x ≤ 50)
y++;

x++;

while (y ≥ 0 && x > 50)
y--;

x++;

}
x--;

x = 102

(2) Gulwani 2007 [14, 13]

x=1; y=50;

while(x < 100) {
if (x < 50) x++;

else { x++; y++; }
}

x=1; y=50;

while (x < 100) {
while (x < 50) x++;

while (x < 100 && x ≥
50)
{ x++; y++; }

}

y = 100

(3) Gulavani 2006 [12], Gulwani 2009 [13]

x=1; lock=y=0; while (x 6= y) { lock=1; x=y; if (*) lock

=0; y++; }
lock = 1

(4) Gaz Burner - Chaochen [31], Gonnord [10]

t=l=x=0; while(*) {
x=0; while (x ≤ 9 && alea()) x++, t++, l++;

x=0; while (x ≤ 49 || alea()) x++, t++;}

6l ≤ t+ 5x

(5) Halbwachs [16]

x=y=0; while(x ≤ 100) { if (alea()) x = x+2; else x++,

y++; }

2 ≤ x+ y
y ≤ x
x+ y ≤ 202

(6) Halbwachs [16]

x=y=0;

while (x ≤ 100) { if (alea()) x = x+4; else x=x+2, y++; }

4 ≤ x+ 2y
2y ≤ x
x+ 2y ≤ 204

(7) Robot car safety example
Halbwachs [17], Merchat [23], Gonnord [10], Section 2.3-Fig. 2 d ≤ s+ 2t

(8)Subway example
Halbwachs [19], Gonnord [10]

20 ≤ b
b− s ≤ 20

Figure 7: PIPS Experimental results

Examples 1, 2 and 3 illustrate the need to compute disjunctive invariants.
Examples 5 and 6 express linear invariants. Some periodic cases are presented
in Section 3.2. Examples 4 and 7 and the Subway example [19] character-
ize automata with more complex invariants, and our results are equivalent to
[10] (p. 115). However our algorithm does not find accurate results with simple
C encodings of automata such as the bakery mutual exclusion algorithm [6].

Using polyhedra instead of Presburger arithmetic, we do not claim to obtain

11

more accurate results than others. Our philosophy is to use real-life cases,
avoiding artificial or contrived examples. We only claim our simple and direct
algorithm gets the same results as iterative approaches like widening.

The concept of abstract acceleration introduced by Gonnord in [10] is very
similar in its goal to our algorithm, but it is implemented by pattern matching
for different specific cases (see chapters 5 to 7 in [10]), whereas we can deal
with function calls and any control construct as the loop body transformer is
computed in a modular way. Also, the exploitation of the accelerated cycles is
part of a heuristic and not a program transformation as in Section 3.5. And the
final result is obtained iteratively. All examples found in [10] are successfully
processed by our algorithm, including the swimming pool [9].

Kelly & al. [22] present an algorithm to compute the transitive closure of a
relation encoded by a Presburger formulae. This heuristic includes the notion
of d-form relation which leads to an explicit transitive closure. It is stated that
any relation can be put in a d-form at the expense of accuracy. We show here
that it is not necessary to put the relation into a d-form to obtain an explicit
transitive closure. We explain how to transform any relation into constraints
about the state evolution and finally we explain how to get precise results by
postponing convex hull operations.

Bielecki & al. [2] describe a procedure to obtain exact non-linear transi-
tive closures, but only for normalized relations written as systems of recurrence
equations and solved by Mathematica. The related work is limited to [22] and
a few examples are given. Regardless of the still unknown generality and prac-
ticality of this procedure, its results would require some processing to be used
within an affine-base analyzer or algorithm as found in abstract interpretation
and automatic parallelization.

// T() empty
void multiply01() {
// T(m) {m==1}
int m = 1;
// T(m) {m#init==1, m<=10}
// P(m) {m==1}
while (m<=10)
// T(m) {m==2m#init, m#init<=10}
// P(m) {m<=10}
m = 2*m;

// T(m) {11<=m, m#init<=m,
//

11<=m#init, m#init<=20}
// P(m) {11<=m, m<=20}
while (m>=1)
// T(m) {m==2m#init, 1<=m#init}
// P(m) {11<=m}
m = 2*m;

// T() empty
// P() empty
return;

}

// T() {}
void divide01() {
// T(m) {}
int m;
// T(m) {2<=m, m<=m#init, 2<=m#init}
while (m>1) {
// T(m) {m#init<=2m+1, 2m<=m#init, 2<=m#init}
// P(m) {2<=m}
m = m/2;
// T(m) {1<=m}, P(m) {1<=m}
printf("m=%d\n",m);

}
// T(m) {m+2<=0, m#init<=m, m#init+2<=0}
// P(m) {m<=1}
while (m<-1) {
// T(m) {m#init<=2m+1, 2m<=m#init, m#init+2<=0},
// P(m) {m+2<=0}
m = m/2;
// T(m) {m+1<=0}, P(m) {m+1<=0}
printf("m=%d\n",m);

}
// T() {0<=m+1, m<=1}, P(m) {0<=m+1, m<=1}
return;

}

Figure 8: Beyond counters: multiply (left) & divide (right)

12

Let us consider the code in Fig. 8 (left). Note that m is found monotonic
in T ∗ in the second loop, thanks to the loop bound, and that the never ending
loop is detected (the set of reaching states for return is empty), although closed
forms are not computed for m. The same kind of results are obtained for a
division in Fig. 8 (right). Variable m is found decreasing in the first loop and
increasing in the second one, thanks to the loop bounds. Note also that m is
not initialized, but that its final value is properly found in [−1, 1].

In [27], Paige and Koenig propose finite differencing as a program optimiza-
tion method that generalizes strength reduction. If the value of f(x) is known
and if f(x+dx) is needed, is it possible to compute f(x+dx)−f(x) faster than
f(x + dx)? The simple case of strength reduction shows that our approaches
are dual. We analyze the piece of code that computes f(x+ dx)− f(x) and we
infer the function f . Paige and Koenig start with the code to evaluate f(x) and
infer the code to evaluate f(x+ dx)− f(x). Their technique was developed to
optimize SETL code and to deal with functions over sets. The challenge for us
would be to extend our technique in a dual way to obtain predicates over arrays
such as those found in [18].

Monotonicity analysis [29] has also been used to extend induction variable
detection, the inverse transformation of strength reduction. Basically, assign-
ment statements nested in loops are monotonic if the value assigned increases
from one iteration to the next. The exact value of the difference is abstracted
by its sign. This information does not lead to loop invariants but is useful for
dependence testing [30] and for array bound checking. We could derive the
same kind of information from T+ by introducing the difference variables and
by eliminating the program variables. The transformer we find for the contrived
loop in Figure 7 of [29] is:

T(i,j,k,l,m,n,x,y,z) { i==i_0+1, i==j-2, 2i==k-2, i+m#init==l-2, l==m-1,

l==n-6, x==2y_0, 4y_0==z, 2<=i, y<=2i+2, i<=3y+1 }

The first equation shows that i is increasing, hence j and k from the next
two equations. Equations (4) and (5) lead to m-m#init=i+3. The loop body
precondition includes i ≥ 1, so m is increasing, thus l and n as well. We also
have i-1<=3y<=6i+6. The lower and upper bounds are increasing but we cannot
derive monotonicity information about y , nor about x and z . As the loop body
is summarized, the monotonicity information is linked to the variables and not
to the assignments, but this is exactly the same information.

5 Conclusion

A simple algorithm to compute affine invariants over integer scalar variables in
while loops is presented. Its development and refinements have been mostly ap-
plication driven, targeting the automatic program analysis and transformation
domain. Its low complexity is key to addressing large scientific codes of up to
100 KLOC. Our experience shows that it performs well on standard program

13

test cases, but not on complex automata whose states and transitions cannot
be rewritten with simple C encodings.

This algorithm is more effective in finding loop invariants when inaccurate
operations such as convex hulls and transitive closures are postponed as much
as possible. If the analysis were exact, formulae such as P ∗ = T ∗(P 0) and
P ∗ = P 0

⊔
T+(P 0) would be equivalent. However, the formulae dealing with

approximate transformers and preconditions are not and the best one must be
chosen or a trade-off be made between accuracy and computational complexity.
Developed formulae such as Eq.(9) correspond to peeling and unrolling the
while loop in the computation. It is not compatible with Bourdoncle’s heuristic,
which aims at minimizing the number of widenings: better results are obtained
by increasing the number of cycles and of transitive closures in order to delay
convex hulls, as the closures are quite accurate.

When the program behavior is not affine, its affine approximations can be
refined iteratively using the previous preconditions to obtain more accurate loop
body transformers. This does not yield an algorithm as the iterations do not
converge when the domain is not bounded (Section 3.4).

Our current implementation in PIPS is not fully satisfying as some exten-
sions described in this paper are not available yet. They are not required often
enough to justify the potential average slowdown and implementation time. Us-
ing a domain product instead of a unique general abstract domain could be
investigated. Another idea would be to combine a widening heuristic and a
derivative transitive closure algorithm. The later could be used for abstract
acceleration in a widening heuristic along the lines of [10], but a combined ap-
proach is still in want of motivating test cases.

Acknowledgments

N. Halbwachs suggested years ago that our transitive closure algorithm should be
published, however simple it was. It benefited from observations by B. Creusillet
and N. Nguyen who performed tedious experiments and screened the results for
missing information. P. Jouvelot and reviewers suggested many improvements
in the presentation and in the related work. L. Gonnord helped us understand
how her ASPIC tool works. P. Jouvelot formally proved the correctness of the
code transformation of Section 3.5, see [1].

References

[1] Corinne Ancourt, Fabien Coelho, and FranÃ§ois Irigoin. A modular static
analysis approach to affine loop invariants detection (extended version).
Technical Report A-419, CRI, MINES ParisTech, 2010. Parts to be pub-
lished in NSAD 2010.

[2] W. Bielecki, T. Klimek, and K. Trifunovic. Calculating exact transitive
closure for a normalized affine integer tuple relation. Electronic Notes in

14

Discrete Mathematics, 33:7 – 14, 2009. International Conference on Graph
Theory and its Applications.

[3] Bernard Boigelot, Louis Bronne, and Stéphane Rassart. Symbolic verifica-
tion with periodic sets. In Proc. 9th International Conference on Computer-
Aided Verification, volume 1254, Lecture Notes in Computer Science, pages
167–177. Springer-Verlag, 1997.

[4] Bernard Boigelot and Pierre Wolper. Symbolic verification with periodic
sets. In 6th International Conference on Computer Aided Verification,
number 808 in LNCS, pages 55–67. Springer-Verlag, 1994.

[5] François Bourdoncle. Sémantiques des langages d’ordre supérieur et in-
terprétation abstraite. PhD thesis, École polytechnique, novembre 1992.

[6] Tevfik Bultan, Richard Gerber, and William Pugh. Symbolic model check-
ing of infinite state systems using presburger arithmetic. In Proc. 9th Inter-
national Conference on Computer-Aided Verification, volume 1254, Lecture
Notes in Computer Science, pages 400–411. Springer-Verlag, June 1997.

[7] Hubert Comon and Yan Jurski. Multiple counters automata, safety analysis
and presburger arithmetic. In CAV ’98: Proceedings of the 10th Interna-
tional Conference on Computer Aided Verification, pages 268–279, London,
UK, 1998. Springer-Verlag.

[8] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In POPL, pages 84–96. ACM Press,
January 1978.

[9] Laurent Fribourg and Hans Olsen. Proving safety properties of infinite
state systems by compilation into presburger arithmetic. In CONCUR’97,
LNCS 1243, pages 213–227. Springer, 1997.

[10] Laure Gonnord. Acceleration abstraite pour l’amelioration de la precision
en analyse des relations lineaires. PhD thesis, Université Joseph Fourier,
Grenoble, France, 2007.

[11] Denis Gopan and Thomas W. Reps. Guided static analysis. In Static
Analysis, 14th International Symposium, SAS 2007, pages 349–365, 2007.

[12] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V.
Nori, and Sriram K. Rajamani. Synergy: a new algorithm for property
checking. In SIGSOFT ’06, pages 117–127, 2006.

[13] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement
and progress invariants for bound analysis. In PLDI ’09, pages 375–385,
2009.

[14] Sumit Gulwani and Nebojsa Jojic. Program verification as probabilistic
inference. SIGPLAN Not., 42(1):277–289, 2007.

15

[15] Mohammad Haghighat. Symbolic analysis for parallelizing compilers.
Boston Kluwer Academic, 1996.

[16] N. Halbwachs. Détermination automatique de relations linéaires vérifiées
par les variables d’un programme. PhD thesis, Université Scientifique et
Médicale de Grenoble, March 1979.

[17] Nicolas Halbwachs. Delay analysis in synchronous programs. In Fifth Con-
ference on Computer Aided Verification, pages 4–13. Springer Verlag, 1993.

[18] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays
in simple programs. In PLDI ’08, pages 339–348, 06 2008.

[19] Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification
of real-time systems using linear relation analysis. Form. Methods Syst.
Des., 11(2):157–185, 1997.

[20] FranÃ§ois Irigoin. Interprocedural analyses for programmig environments.
In Environments and Tools for Parallel Scientific Computing, pages 333–
350. Elsevier, September 1993.

[21] FranÃ§ois Irigoin, Pierre Jouvelot, and RÃ c©mi Triolet. Semantical inter-
procedural parallelization: an overview of the pips project. In ICS, pages
144–151, June 1991.

[22] Wayne Kelly, William Pugh, Evan Rosser, and Tatiana Shpeisman. Transi-
tive closure of infinite graphs and its applications. Int. J. Parallel Program.,
24(6):579–598, 1996.

[23] David Merchat. Réduction du nombre de variables en analyse de relations
linéaires. PhD thesis, Université Joseph Fourier, 2005.

[24] MINES-ParisTech. PIPS. http://pips4u.org, 1989–2009. Open source,
under GPLv3.

[25] Nga Nguyen. Efficient and Effective Software Verification for Scientific
Applications Using Static Analysis and Code Instrumentation. PhD thesis,
École des mines de Paris, 2002.

[26] Thi Viet Nga Nguyen and Francois Irigoin. Efficient and effective array
bound checking. TOPLAS, 27(3):527–570, May 2005.

[27] Robert Paige and Shaye Koenig. Finite differencing of computable expres-
sions. TOPLAS, 4(3):402–454, 1982.

[28] Sebastian Pop, Albert Cohen, and Georges-Andre Silber. Induction variable
analysis with delayed abstractions. Technical report, Ecole des mines de
Paris, CRI A/367, 2005.

[29] Madalene Spezialetti and Rajiv Gupta. Loop monotonic statement. IEEE-
TOSE, 21(6):497–505, Jun 1995.

16

http://pips4u.org

[30] Peng Wu, Albert Cohen, Jay Hoeflinger, and David Padua. Monotonic
evolution: an alternative to induction variable substitution for dependence
analysis. In ICS’01, pages 78–91. ACM Press, June 2001.

[31] Chaochen Zhou, C. A. R. Hoare, and Anders P. Ravn. A calculus of dura-
tions. Information Processing Letters, December 1991.

17

6 Appendix : Proof for the while loop conver-
sion in Section 3.5

This proof has been provided graciously by P. Jouvelot.

The semantics of while loop W defined as while (c) do if (t) then a
else b; is the lower fixed point lfp(F) with Functional F defined as:

F = λw.λs.s if E[c]s is false, w(C[if (t) then a else b]s) otherwise

Following Kleene’s theorem,

lfp(F) = lim
i→∞

F i(⊥)

If, for a given s at the beginning of the loop, we consider n as the smallest
i such that E[c](F i(⊥)s) is false (and ω if there is no such n in N), then:

lfp(F) = (C[if (t) then a else b])n

By the definition of n and F (which leads to fixed points equivalent to the
identity function after n iterations when c is false in the current state), we have:

lfp(F) = (C[if (c and t) then a; if (c and not t) then b])ω

By grouping the semantics linked to successive instances of a and b, we get:

lfp(F) = (C[W ′])ω

where W ′ = while (c and t) do a; while (c and not(t)) do b;
Following the definition of n, n is an upper bound of the number of iterations

necessary for W ′ to make (C[W ′])ω converge, so:

lfp(F) = (C[W ′])n

And this lfp(F) is also the smaller fixed point of F ′ defined as:

F ′ = λw.λs.s if E[c]s is false, w(C[W ′]s) otherwise

Thus W is semantically equivalent to while (c) do W’ i.e. W

while (c) do {
while (c and t) do a;
while (c and not(t)) do b;

}

18

7 Examples

This section contains the source codes of all examples used above. Preconditions
and transformers are available on PIPS SVN server (see http://pips4u.org)
and can be downloaded with the validation suite.

The source codes are:

• Car Safety (see Figure 9).

• Parametric Car Safety: the maximal duration is a parameter n (see Fig-
ure 10).

• Restructured Car Safety: car safety code after restructuration (see Fig-
ure 11).

• Original Flip Flop presented in Section 3.2 (see Figure 12)

• Flip Flop - version 1 in Figure4, Section 3.2 (see Figure 13)

• Flip Flop - version 2 in Figure4, Section 3.2 (see Figure 14)

• Flip Flop - version 3 in Figure4, Section 3.2 (see Figure 15)

• Flip Flop - version 4 in Figure4, Section 3.2 (see Figure 16)

• Flip Flop - version 5 in Figure4, Section 3.2 (see Figure 17)

• Flip Flop - version 6 in Figure4, Section 3.2 (see Figure 18)

• Gopan’07 (see Figure 19)

• Restructured Gopan’07: Gopan’07 code after restructuration (see Fig-
ure 20)

• Gulwani’07 (see Figure 21)

• Restructured Gulwani’07: Gulwani’07 code after restructuration (see Fig-
ure 22)

• Gulwani’06 (see Figure 23)

• Halbwachs’79 - code 1 (see Figure 24)

• Halbwachs’79 - code 2 (see Figure 25)

• Second Order (see Figure 26)

• Parabolic (see Figure 27)

• Gaz Burner (see Figure 28)

• Subway (see Figure 29)

• Divide (see Figure 30)

• Multiply (see Figure 31)

19

http://pips4u.org

#include <stdlib.h>
#include <stdio.h>

int alea(void)
{
float fr = ((float) rand())/((float)RAND_MAX);
return ((fr>0.5)?1:0);

}
int main()
{
int s = 0, t = 0, d = 0;

while(s <= 2 && t <= 3) {
if(alea())
t++, s = 0;
else
d++, s++;

}
if(d <= 10)
printf("healthy");
else
printf("crashed!");

}

Figure 9: Example : Car Safety

// car-safety + Symbolic bound for t
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>

int alea(void)
{
float fr = ((float) rand())/((float)RAND_MAX);
return ((fr>0.5)?1:0);

}

void main(int n)
{
int s = 0, t = 0, d = 0;
assert(n>=0);
while(s <= 2 && t <= n) {
if(alea())
t++, s = 0;
else
d++, s++;

}
if(d <= 2*n+3)
printf("healthy");
else
printf("crashed!");

}

Figure 10: Example : Parametric Car Safety

20

// car-safety + Symbolic bound for t
// after restructuration
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>

int alea(void)
{
float fr = ((float) rand())/((float)RAND_MAX);
return ((fr>0.5)?1:0);

}

void main(int n)
{
int s = 0, t = 0, d = 0;
assert(n>=0);
while(s <= 2 && t <= n) {
while(s <= 2 && t <= n && alea() > 0.)
t++, s = 0;

while(s <= 2 && t <= n && alea()<= 0.)
d++, s++;

}

if(d <= 2*n+3)
printf("healthy");

else
printf("crashed!");

}

Figure 11: Example : Parametric Car Safety after restructuration

// Check analysis of periodic behaviors
//
double g(double x)
{
return x;

}

int main()
{
double x[2][10];
int old = 0, new = 1, i, t;

t=0;
while(t<1000) {
for(i=0;i<10;i++)
x[new][i] = g(x[old][i]);

old = new;
new = 1 - old;
t++;

}
}

Figure 12: Example : Flip-flop

21

// Check analysis of periodic behaviors
//

double g(double x)
{
return x;

}

int main()
{
double x[2][10];
int old = 0, new = 1, i, t;

t=0;
while(t<1000) {
for(i=0;i<10;i++)
x[new][i] = g(x[old][i]);

new = old;
old = 1 - old;
t++;

}
}

Figure 13: Example : Flip-flop 1

// Check analysis of periodic behaviors
//

double g(double x)
{
return x;

}

int main()
{
double x[2][10];
int old = 0, new = 1, i, t;

t=0;
while(t<1000) {
for(i=0;i<10;i++)
x[new][i] = g(x[old][i]);

new = 1 - new;
old = 1 - old;
t++;

}
}

Figure 14: Example : Flip-flop 2

22

// Check analysis of periodic behaviors
//

double g(double x)
{
return x;

}

int main()
{
double x[2][10];
int old = 0, new = 1, i, t, temp;

t=0;
while(t<1000) {
for(i=0;i<10;i++)
x[new][i] = g(x[old][i]);

temp = new;
new = old;
old = temp;
t++;

}
}

Figure 15: Example : Flip-flop 3

// Check analysis of periodic behaviors
//

double g(double x)
{
return x;

}

int main()
{
double x[2][10];
int old = 0, new = 1, i, t;

t=0;
while(t<1000) {
for(i=0;i<10;i++)
x[new][i] = g(x[old][i]);

if (new==1)
new=0,old=1;

else
new=1,old=0;

t++;
}

}

Figure 16: Example : Flip-flop 4

23

// Check analysis of periodic behaviors
//

double g(double x)
{
return x;

}

int main()
{
double x[2][10];
int old = 0, new = 1, i, t;

t=0;
while(t<1000) {
for(i=0;i<10;i++)
x[new][i] = g(x[old][i]);

if (new==1)
new=0,old=1;

else
if (new==0)
new=1,old=0;

else
exit(1);

t++;
}

}

Figure 17: Example : Flip-flop 5

// Check analysis of periodic behaviors
//

double g(double x)
{
return x;

}

int main()
{
double x[2][10];
int old = 0, new = 1, i, t;

t=0;
while(t<1000) {
for(i=0;i<10;i++)
x[new][i] = g(x[old][i]);

new = (new+1)%2;
old = (old+1)%2;
t++;

}
}

Figure 18: Example : Flip-flop 6

24

// From Gopan 2006
//
#include <stdio.h>

int main()
{
int x,y;
x=y=0;

while(true) {
if (x<=50)
y++;

else y--;
if (y<0) break;
x++;

}
if(x==102)
printf("property verified\n");

}

Figure 19: Example: Gopan’07

// Test from Gopan - SAS07
// Cited by Gulwani in Control-flow refinement and
Progress invariants for Bound
// Analysis - PLDI’09
//

#include <stdio.h>

int main()
{
int x,y,z,k;
x=0;
y=0;

while (y>=0)
{
while(y>=0 && x<=50)

{
x++; y++;

}
while (y>=0 && x>50)
{
y--;
x++;

}
}

if(x==103)
printf("property verified\n");

}

Figure 20: Example: Gopan’07 after restructuration

25

// Test from Gulwani 2007
//
#include <stdio.h>

int main()
{
int x,y,z;
x=0;
y=50;

while(x<100) {
if (x<50)
x++;

else {
x++; y++;

}
}
if (y==100) printf("property verified\n");

}

Figure 21: Example: Gulwani’07

// From Gulwani 2007
// Cited in Control-flow refinement and Progress invariants for Bound
// Analysis - PLDI’09
#include <stdio.h>
int main()
{
int x,y,z;
x=0;
y=50;

while(x<100)
{
while (x<50)
x++;

while (x<100 && x>=50){
x++; y++;

}
}

if (x ==100 && y==100) printf("property verified\n");
}

Figure 22: Example: Gulwani’07 After restructuration

26

// From Gulwani 2006
// Cited in Control-flow refinement and Progress invariants for Bound
// Analysis - PLDI’09

#include <stdlib.h>
#include <stdio.h>

int alea(void)
{
float fr = ((float) rand())/((float)RAND_MAX);
return ((fr>0.5)?1:0);

}
int main()
{
float z;
int x,y,lock;

x=1;
lock = 0;
y=0;

while(x!=y)
{
lock =1; x=y;
if (alea()) {
lock =0; y++;

}
}

if (lock ==1) printf("property verified\n");
}

Figure 23: Example: Gulwani’06

#include <stdio.h>
#include <stdlib.h>

int alea(void)
{
float fr = ((float) rand())/((float)RAND_MAX);
return ((fr>0.5)?1:0);

}

int main()
{
float z;
int x,y;
x=y=0;

while(x<=100)
{
if (alea())
x = x+2;

else {
x++;y++;

}
if (x+y<=202) printf("property verified\n");

}
}

Figure 24: Example 1 : Halbwachs’79

27

#include <stdio.h>
#include <stdlib.h>

int alea(void)
{
float fr = ((float) rand())/((float)RAND_MAX);
return ((fr>0.5)?1:0);

}

int main()
{
float z;
int x,y;

x=y=0;

while(x<=100)
{
if (alea())
x = x+4;

else {
x=x+2;
y++;

}
if (x+2*y<=204) printf("property verified\n");

}
}

Figure 25: Example 2 : Halbwachs’79

// Example in Section 3.4
#include <stdio.h>

int main()
{
int i = 0, j = 2, k = 1;
while(k<=10) {
j--;
i += j;
k++;

}
printf("i=%d, j=%d, k=%d\n", i, j, k);

}

Figure 26: Example: Non Linear

28

// Example in Section 3.4

#include <stdio.h>

int main()
{
int i = 0, j = 0, n;
if(n<0) exit(1);
while(i<=n) {
i++;
j+=i;

}
printf("i=%d, j=%d\n", i, j);

}

Figure 27: Example: Parabolic

#include <stdio.h>
#include <stdlib.h>

int alea(void)
{
float fr = ((float) rand())/((float)RAND_MAX);
return ((fr>0.5)?1:0);

}
int main()
{
float z;
int x,l,t;

t=l=x=0;
while(1)
{
x=0;
while (x<=9 && alea())
{
x++; t++;l++;

}
x=0;
while(x<=49 || alea())
{
x++;t++;

}
if (6*l<= t+5*x) printf("property verified\n");

}
}

Figure 28: Example: Gaz Burner

29

// Subway example
// The train detects beacons that are placed along the trasck,
// and receives the "second" from a central clock.
// The train adjusts its speed as:
// - B-S >= 10 it is early and puts brake as long as B>S
// it must stop before encountering 10 beacons
// - B-S <= 10 it is late and is
// considered late as long B <S.
#include <stdio.h>
#include <stdlib.h>
float alea(void)
{
float fr = ((float) rand())/((float)RAND_MAX);
return (fr);

}

int main()
{
int s=0; // the number of seconds
int b=0; // the number of beacons
int d=0; // the number of beacons after

// the train begins to brake

// The train is ON TIME
ontime:
if (alea()>0.) b++;
if (alea()>0.) s++;
if (s-b>=10) goto late;
if(s-b<=-10) goto early;
goto ontime;

// the train is LATE
late:
if (alea()>0.) b++;
if (s==b) goto ontime;
goto late;

// the train is early
early:
d=0;

brake:
// the train puts brake while(s!=b) and d<=10
if (alea()>0.) {b++;d++;}
if (alea()>0.) s++;
if (s==b) goto ontime;
if (d>=10) goto stopped;
goto brake;

// It stops and waits after 10 beacons
stopped:
if (alea()>0.) s++;
if (s==b) goto ontime;
goto stopped;

}

Figure 29: Example: Subway

30

/* Check that m = m/2; leads to dm<=-1 when m>= 1 as 2*dm ~ m and hence
dm <= 1.

*/
void divide01()
{
int m ;
while(m>1) {
m = m/2;
m = m; // to get postcondition

}
while(m<-1) {
m = m/2;
m = m; // to get postcondition

}
return;

}

Figure 30: Example: Divide

void multiply01()
{
int m = 1;
while(m<=10)
m = 2*m;

while(m>=1)
m = 2*m;

return;
}

Figure 31: Example: Multiply

31

	Introduction
	Simple Transitive Closure of Affine Transformers
	Affine Transformers and Preconditions
	The Affine Derivative Closure Algorithm
	An Example: Robot Car Safety
	Discussion

	From Transformers to Loop Invariants
	Using T+ instead of T*
	Periodic Behaviors
	Higher-Order Differences
	Monotonicity and Iterative Analysis
	Postponing Convex Hulls

	Related Work
	Conclusion
	Appendix : Proof for the while loop conversion in Section 3.5
	Examples

