
Erbium: A Deterministic, Concurrent Intermediate
Representation to Map Data-Flow Tasks to Scalable,

Persistent Streaming Processes

Cupertino Miranda
INRIA Saclay and LRI, Paris-Sud

11 University
Cupertino.Miranda@inria.fr

Antoniu Pop
CRI, MINES ParisTech

Antoniu.Pop@cri.ensmp.fr

Philippe Dumont
INRIA Saclay and LRI, Paris-Sud

11 University
Philippe.Dumont@inria.fr

Albert Cohen
INRIA Saclay and LRI, Paris-Sud

11 University
Albert.Cohen@inria.fr

Marc Duranton
CEA, LIST, Laboratoire Calcul

Embarqué
Marc.Duranton@cea.fr

ABSTRACT
Tuning applications for multicore systems involve subtle con-
currency concepts and target-dependent optimizations. This
paper advocates for a streaming execution model, called Er-
bium, where persistent processes communicate and synchro-
nize through a multi-consumer multi-producer sliding win-
dow. Considering media and signal processing applications,
we demonstrate the scalability and efficiency advantages of
streaming compared to data-driven scheduling. To exploit
these benefits in compilers for parallel languages, we propose
an intermediate representation enabling the compilation of
data-flow tasks into streaming processes. This intermedi-
ate representation also facilitates the application of classical
compiler optimizations to concurrent programs.

Categories and Subject Descriptors
D.3.4 [Programming Langugages]: Compilers

General Terms
Performance, Languages, Algorithms

1. INTRODUCTION
High-level parallel languages capture (in)dependence and

locality properties without reference to any particular hard-
ware. Compilers and runtime systems are responsible for
lowering these abstractions to well-orchestrated threads and
memory management, and for implementing target-specific
optimizations. Parallel stream and data-flow programming
makes the task-level data-flow explicit. It exposes pipeline,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00.

data and task parallelism with a functional determinism
guarantee: a major asset in the quest for productivity. An
intermediate compiler representation is required to imple-
ment the specialization steps converting portable data-flow
programs into efficient parallel implementations. Among
these necessary steps, static scheduling plays a major role:
it coarsens the grain of dynamic scheduling and synchroniza-
tion, adapting it to the target platform (bandwidth, latency,
local memory). Coarser grain tasks require a dedicated syn-
chronization and communication mechanism: they continu-
ously exchange data through FIFO streams. Without such
data streams, static scheduling may not be possible because
of dependence cycles. Streaming communications help re-
duce the severity of the memory wall: decoupled producer-
consumer pipelines naturally hide memory latency and favor
local, on-chip communications, bypassing global memory, a
big advantage on MPSoC architectures.

This paper advocates for persistent, long-running stream-
ing processes and communications. Our approach is com-
plementary to lightweight scheduling: streaming is the pre-
ferred execution model for the finest grain of thread-level
parallelism, while data-driven scheduling deals with load-
balancing and dynamic task invocation at coarser grain. The
core of the approach, called Erbium, is a data structure for
scalable and deterministic concurrency, an intermediate rep-
resentation for compilers, a low-level language for efficiency
programmers, and a fast runtime implementation.

The rest of the paper is structured as follows. Section 2
discusses the design goals and choices of the intermediate
representation. Section 3 defines its syntax and semantics.
Section 4 details its transparent specialization on shared-
memory platforms. Section 5 evaluates our implementation
on realistic and extreme situations. Section 6 discusses re-
lated work. We conclude in Section 7.

2. DESIGN
Erbium defines an intermediate representation for com-

pilers, also usable as a low-level language for efficiency pro-
grammers. Its features a unique combination of productivity
and performance properties.

Determinism. Erbium’s semantics derives from Kahn Pro-
cess Networks (KPNs) [29]. KPNs are canonical concurrent
extensions of (sequential) recursive functions preserving de-
terminism (a.k.a. time independence) and functional compo-
sition. Functions in a KPN operate on infinite data streams
and follow the Kahn principle: in denotational semantics,
they must be continuous over the Scott topology induced by
the prefix ordering of streams [29,34]. The operational defi-
nition of KPNs states that processes communicate through
lossless FIFO channels with blocking reads and non-blocking
writes. The semantics of Erbium is not bound to this partic-
ular operational implementation. Erbium processes can be
arbitrary, imperative C code, operating on process-private
data only; their interactions are compatible with the Kahn
principle, with an operational semantics favoring scalable
and lightweight implementation.

Expressiveness. Parallelism is often implicit in high-level
data-flow languages [3,30]. As an intermediate representa-
tion, Erbium is explicitly parallel. Erbium supports dy-
namic creation, termination of concurrent processes.

Erbium favors persistent, long-running processes commu-
nicating through point-to-point data streams. Traditional
streaming communications involve push() and pop() primi-
tives over FIFO channels. Erbium’s data structure for com-
munication is much richer: it provides random-access peek
(read), poke (write) and communications decoupled from
the actual synchronization. This abstract data structure is
called an event record.1 It unifies streams and futures [25],
and generalizes them to support multiple producers and mul-
tiple consumers. We rest on the programming language se-
mantics and on the compiler in charge of lowering high-level
abstractions to Erbium.

Modularity. Separate compilation of modular processes is
essential to the construction of real world systems. An Er-
bium program is built of a sequential main thread spawning
concurrent processes dynamically. Since Erbium provides
explicit means to manage resources (e.g., communication
buffers), it puts a specific challenge on the ability to compose
processes in a modular fashion. To this end, we introduce a
low-level mechanism for modular back-pressure supporting
arbitrary broadcast and work-sharing scenarios.

Static adaptation. As an intermediate language, Erbium
supports specialization, static analysis and optimization. Bi-
nary code does not offer the required level of static adapta-
tion; on the contrary Erbium defines the intermediate rep-
resentation as the portability layer.

The Erbium runtime may transparently be specialized for
different memory models. In the following, we assume a
shared, global address space whose caches are kept coherent
in hardware. Specialization for distributed-memory involves
completely different algorithms; this will be the purpose of
a separate paper. In addition, Erbium may transparently
exploit any hardware acceleration for faster context switch
[1,32,51], synchronization and communication [22,41].

The compiler selects the most relevant hardware opera-
tions and inlines Erbium’s split-phase communication prim-
itives. It may also adapt the grain of concurrency through
task-level and loop transformations.

1Abbreviated as Er... symbol of the Erbium element.

Lightweight, efficient implementation. Erbium aims to
be closest to the hardware while preserving portability and
determinism. Any overhead intrinsic to its design and any
implementation overhead hits scalability and performance;
such overheads cannot be recovered by a programmer who
operates at this or higher levels of abstraction.

Thanks to its data-flow semantics, it is possible to im-
plement the primitives of the Erbium runtime only relying
on non-blocking synchronizations. Leveraging Erbium’s na-
tive support for multiple producers and multiple consumers,
broadcast and work-sharing patterns can be implemented
very efficiently, avoiding unnecessary copy in (collective)
scatter and gather operations.

The split-phase communication approach hides latency
without thread scheduling or switching overhead: it relies
entirely on existing hardware such as prefetching or DMA.

3. SEMANTICS
Formalization is out of the scope of this practice- and

design-oriented paper. In the following, we will use a C
syntax and informal semantics instead.

Figure 1 shows the Erbium primitives and event record
structures on a producer-consumer template. This exam-
ple illustrates data-flow synchronization and communica-
tion, resource management, process creation and termina-
tion.

int main() {

record int re = new_record(1, 1);

run producer(re); run consumer(re);

}

process producer (record int re) {

int tl=0, hd, i;

view int vi = new_write_view(re);

register (vi);

alloc(vi, P_HORIZ);

while (1) {

hd = tl + P_BURST;

if (hd>=N) break;

stall(vi, hd);

for (i=tl; i<hd; i++)

vi[[i]] = foo(i);

commit(vi, hd);

tl = hd;

}

}

process consumer (record int re) {

int tl=0, hd, i;

int sum=0;

view int vi = new_read_view(re);

register(vi);

alloc(vi, C_HORIZ);

while(1) {

hd = tl + C_BURST;

receive(vi, hd);

hd = update(vi, hd);

if (!hd) break;

for (i=tl; i<hd; i++)

sum += vi[[i]];

release(vi, hd);

tl = hd;

}

}

Figure 2: Producer-consumer example

Data streaming.
Processes communicate through a concurrent data struc-

ture called event record, or record for short. Effective com-
munication and synchronization take place through read and
write views connected to a record. A read or write view is
an unbounded stream, randomly addressable through non-
negative indices. Each read (resp. write) view is associated
with a private, monotonically increasing update (resp. com-
mit) index. Read view elements are read-only. Read view
elements at indices less than or equal to the update index
are identical to the corresponding elements of the connected
record. Write view elements at indices less than or equal to
the commit index are read-only.
record T r (resp. view T v) declares a record r (resp.

view v) of data elements of type T. The [[i]] syntax is used
to subscript a view at index i.

On Figure 1, the producer process committed indices 0, 1
and 2 to the write view, but keeps indices 3 and 4 private.
At this point, modifications of these values are still possible
on indices 3 and 4, but the values at indices 2, 1 and below
are read-only. On the consumer side, only indices 0 and 1

read−onlyread−onlyread/write

write view horizon read view horizon
process

write view

last defined

stall commit

recording

updatelast available

process

release

2 1 0
read view

2 1 02 14 3
v0v2v2 v1 v0v3 v2 v1v4 v1

Figure 1: Producer-consumer flow

have been updated into the view; index 2 is available but
the consumer did not yet decide to observe it in the view.

The commit() and update() primitives implement data-
flow pressure, enforcing causality among processes.

• void commit(view T v, int i) increments the com-
mit index of v to i; it does nothing if i is lower than
or equal to 0 or to the current commit index.

• int update(view T v, int i) sets the update index
of v to i, or does nothing if i is lower than or equal
to 0 or to the current update index. It waits until
the minimum commit index of connected write views
is greater than or equal to i. It returns the value of i,
except on deallocation of the connected record, to be
explained in the termination section.

update() controls which indices will be observed in the
process controlling the view; it offers the same determinism
guarantees as a blocking read in a KPN. Indices are always
non-negative integers. The update index of a view is always
less than or equal to the minimum commit index of its con-
nected write views. On the other hand, the observed value
of the commit index (not directly accessible to the program)
depends on the observing thread and on how frequently its
is synchronized across the machine; we only assume that
changes to the commit index will ultimately be observable
by any hardware thread.
Erbium follows a split-phase design, decoupling commu-

nication from synchronization: update() does not deal with
communication, which is asynchronous and initiated with
the receive() primitive.

• void receive(view T v, int i) updates v with the
data of its connected record, starting from the current
update index up to i. It cannot complete until the
corresponding commit index reaches i; but the com-
munication may start earlier, retrieving sub-ranges of
indices, this is left to the implementation and not ob-
servable at the level of the intermediate representation.

• void receive_range(view T v, int tl, int hd) is
a variant to retrieve indices in the {tl + 1, . . . , hd}
range. This primitive allows to subsample data streams
and to distribute data among workers.

When an asynchronous call to receive(v, i) is pend-
ing, a follow-up update(v, j) must wait until all elements
of indices lower than min(i, j) have been retrieved. On
shared-memory platforms, receive() may be implemented
as prefetch or no-op. Although the call is asynchronous,
it may be easier/preferable on some embedded targets to
block until the commit index satisfies the condition, before
triggering the communication.

On Figure 1, indices 0, 1 and 2 have been received by the
consumer and stored in the view’s buffer. This is indepen-
dent from the fact that the consumer did not yet decide to
observe index 2.

Resource management.
Practical implementation of records need a bounded mem-

ory space. The bound may be managed statically or dy-
namically, and corresponds to the maximal number of live
elements. The live elements of a read or write view are
stored in a sliding window, and its size is called the view’s
horizon. It is not allowed to access elements outside the
horizon. As with any blocking write semantics, KPN with
bounded buffers may suffer from resource deadlocks when
the view horizon is insufficient. In general, buffer size in-
ference or adaptation is the responsibility of the compiler
[11,33] and/or of the runtime library [13].

The release() and stall() primitives implement back-
pressure. An element is considered live in a read view as
long as release() has not been called on a higher index.
An element is considered live in a write view as long as
at least one connected read view has not yet released its
index, calling release() on a higher index. Each write view
(resp. read view) is associated with a private, monotonically
increasing stall (resp. release) index, marking the tail of live
elements in the write view. void stall(view T v, int i)

waits as long as the release index of one or more connected
read views is lower than or equal to i − h, where h is the
horizon of the write view v. Then it increments the stall
index of v to i. The storage locations for elements of indices
lower than i−h can now be recycled. void release(v, i)

increments the release index of v to i; it does nothing if i is
lower than or equal to the current release index. The stall
index is always lower than or equal to the minimum of the
connected read views’ release indices.

On Figure 1, index 0 has been released by the consumer,
its value being (logically) removed from the view’s buffer;
it is not available for further computations. Because there
is only one consumer, index 0 has also left the write view’s
buffer, making room for further value definitions and com-
mits by the producer. The write and read view horizons are
set to 4 and 2, respectively.

The representation of indices is a subtle resource con-
straint. We will assume 32-bit integers in the following.
Overflow may occur, but infrequently enough so that perfor-
mance is not impacted. The commit() primitive is respon-
sible for preventing overflows by detecting when the index
crosses the 231 limit. All internal index variables (e.g., the
current commit, update, release variables) can be translated
backwards by the closest multiple of the horizon lower than
or equal to the minimal release index. The application does
not have to be aware of this translation. The index variables

it uses can wrap-around safely, as the runtime primitives can
transparently translating index arguments.

Creation.
A process is declared as a plain C function, introduced by

the process keyword. It cannot be called as a function, and
does not have a return value. The run p(...) spawns a new
thread to run process p, passing arbitrary arguments to ini-
tialize the new process instance, including record arguments
to communicate with other instances.

Initialization is a common source of complexity and dead-
locks in concurrent applications. Erbium defines a stan-
dard, deterministic protocol, supporting modular composi-
tion, dynamic process creation and connection of views.
record T new_record(int wreg, int rreg) creates a

fresh descriptor for a record. The role of arguments wreg

and rreg will be described below.
view T new_read_view(record T r) creates a read-only

view descriptor connected to record r and initializes its up-
date and release indices to 0.

Similarly, view T new_write_view(record T r) creates
a read/write view descriptor connected to r and initializes
its commit and stall indices to 0.
int register(view T v, int id) sets v as a registered

view of its connected record, assigning it the id label. ids
must be consecutive positive integers. Registered views are
handled specially: update(i) (resp. stall(i)) may proceed
if all views of ids less than or equal to rreg (resp. wreg)
have registered and the update (resp. stall) indices of all
connected read (resp. write) views are greater than or equal
to i. Registration avoids non-deterministic loss of data in
case of late connection of a view. It also enables determinis-
tic hand-over of communications from one view to another
with the same id.

Conversely, non-registered views are useful in asymmetric
broadcasts where some consumers may safely miss parts of
the data stream — such as observation or instrumentation
processes. The call (register(v, -1)) unregisters v.
void alloc(view T v, int h) create a fresh sliding win-

dow of h elements of type T and attach it to v. The horizon
h is specific to a given view.

Termination.
Termination is at least as error-prone as initialization in

concurrent applications. A process may deallocate a view
it owns through the free_view() primitive. The terminal
commit (resp. release) index of a deallocated view is stored,
and used in the computation of the minimal commit (resp.
release) index. The view is disconnected from its recording
and its resources are freed when its terminal commit (resp.
release) index has been passed by the update (resp. stall)
indices of views it is connected to. In case the deallocated
view was registered, the free_view() primitive can be used
with a termination argument that forbids hand-over of com-
munication, i.e., the registration of a view with the same
id. In the case of a write view, when the minimal com-
mit index is held by a deallocated view marked with this
termination argument, update() does not wait and may re-
turn a different value from its index argument. A following
update() call returns 0, indicating proper termination of
operations through a given record. Termination is the only
case where update() does not return the value of its second

argument. Termination does not impact stall() directly:
back-pressure is not meant to carry semantical information.

When free_view() is called for the last view connected
to a given record, the latter is deallocated right after deallo-
cation all the remaining data from former connected views.
An explicit or implicit return terminates a process.

Modular back-pressure.
The registration mechanism above is essential to achiev-

ing modular composition. But the reader may wonder more
specifically why back-pressure is not implemented with com-

mit() and update() on “shadow” views. Modularity is the
reason. stall() and release() use an a previously con-
nected view, whereas commit() and update() would require
a new connection: a producer waiting for the release of in-
dices by a consumer would need to statically know to which
consumer it is communicating with. This would violate the
modularity of function composition, dedicating the producer
to a predefined collection of consumers.

Simple example.
Figure 2 illustrates these concepts on a producer-consumer

example. A single record is connected to a pair of read
and write views. Data-flow synchronization, communication
and back-pressure are straightforward, with index and data
bursts in the {tl + 1, . . . , hd} range. Each process sets its
own view horizon, and its own commit and update burst.

Notice that commit() follows the last definition of a value
in the commit burst, update() precedes the first use of the
update burst, release() follows the last use of the update
burst, and stall() precedes the first definition of new in-
dices in the commit burst.

Termination is detected in the consumer in two phases:
first the return value of update() bounds the burst iteration
to the precise number of retrieved elements, then control-
flow breaks out of the loop at the next call.

The record descriptor, defined and initialized in the main
function is passed as argument to both processes. Both
views connect to it in their respective process. This makes
separate compilation of the producer and consumer possible.

This naive implementation is inefficient. A better version
would add a prefetch distance to the call to receive(), look-
ing a few data element ranges ahead. The distance would
of course be platform-specific and tuned by the compiler or
at runtime. The grain of synchronization can also be tuned,
coarsening the burst size of the producer and/or consumer.
Load-balancing can be achieved by adjusting the relative
value of the burst sizes. Finally, on some high-latency sys-
tems it may simply not be beneficial to split the computation
into distinct producer and consumer processes: task fusion
may be the only solution and should be implemented by the
compiler, statically scheduling the activations while avoiding
starvation and overflow.

This simple example can be trivially adapted into a broad-
cast with multiple consumers: the only changes are to run
multiple consumers instead of one, setting the appropriate
view ids, and setting the minimal number of registered views
accordingly when creating the record descriptor. Likewise it
is also easy to distribute work across writers or readers, us-
ing a stride to separate accesses into disjoint index ranges.

4. SHARED MEMORY TARGETS

On a distributed memory target, each view holds a private
sliding window buffer, and communications involve explicit
copies across these private buffers. In such a case, notice that
calls to release() can be made redundant: update() can
implement an early release, reducing the turn-around time
of live elements. release() becomes essential in a shared
memory implementation, where it is possible to allocate a
single buffer shared between the connected write and read
views. The size of such a buffer is the sum of the maximal
write view horizon and the maximal read view horizon; it
is dynamically reallocated when connecting a view whose
horizon exceeds the maximum size of all connected horizons.

The four synchronization primitives can be implemented
very efficiently on standard cache-coherent hardware. Con-
sidering the Total Store Ordering (TSO) memory model of
x86 and SPARC ISAs, our implementation does not require
any memory fence or atomic instruction (such as compare-
and-swap, test-and-set, fetch-and-add). Our algorithm also
minimizes cache line invalidation and on-chip contention.
We revisited a lock-free implementation of a sliding-window
to support multiple producers and multiple consumers [20].
This extension is made possible by delegating the task of
index-range negotiation to the compiler. The synchroniza-
tion primitives are left with a simpler concurrency problem.
This algorithm and its implementation will be presented in
another paper.

The code generator is implemented in an experimental
branch of GCC 4.3. It expands the Erbium constructs to
their shared-memory specializations after the main opti-
mization passes. The synchronization primitives are pre-
served as“builtin”functions. We leveraged the expressive at-
tribute and builtin mechanisms in GCC to expose their side-
effects to the data-flow analyses of the compiler. The goal is
to preserve the scalar and loop optimizations in the middle-
end of the compiler from inline assembly, external function
calls and pointers, hence to retain all their aggressiveness.
But the synchronization primitives are still hampering some
optimizations, such as automatic vectorization: as a result,
we systematically strip-mine bursts of computations enclos-
ing the index-wise computations inside a protected inner
loop. This approach was already proposed to support op-
timizations over streaming extensions of OpenMP [45]. It
also removes modulo-indexing of sliding windows. We will
see the impact of this design in the experimental evaluation.
A library-based alternative would inhibit many compiler op-
timizations, as it is currently the case with early OpenMP
expansion in GCC [45].

5. EXPERIMENTS
Experiments target a 4-socket Intel hexa-core Xeon E7450

(Dunnington), with 24 cores at 2.4 GHz, a 4-socket AMD
quad-core Opteron 8380 (Shanghai) with 16 cores at 2.5 GHz,
both with 64 GB of memory, and an Intel quad-core Core 2
Q9550 at 2.83GHz. These targets are respectively called
Xeon, Opteron and Core 2 in the following.

We studied a synthetic benchmark called exploration,
with multiple producers broadcasting data to multiple con-
sumers. Each process implements a simple loop enclosing a
pair of synchronization primitives updating, stalling, com-
mitting and releasing a burst of k indices at every iteration.
The workload for each index amounts to a single integer load
(consumer side) or store (producer side) only.

! " # $ % & ' () * "! "" "# "$ "% "& "' "(") "* #! #" ## #$
!+"

"

"!

"!!

",-.-%/ %,-.-"/ #,-.-#/

012#-345678-79:;<

=
.
;
>
5
89
1
?
-@
9A
;

Cache Line Size L1 Cache

L2 Cache

L3 Cache

Figure 3: Burst size impact on Opteron

We then wrote Erbium versions of one classical signal-
processing kernel and three full applications: fft from the
StreamIt benchmarks [?], fmradio from the GNU radio pack-
age and also available in the StreamIt benchmarks, a 802.11a

code from Nokia [?], and jpeg, a JPEG decoder rewrit-
ten in Erbium from a YAPI implementation of Philips Re-
search [53]. They are representative of data crunching tasks
running on both general-purpose and embedded platforms.
These applications are complex enough to illustrate the ex-
pressiveness of Erbium, yet simpler than complete frame-
works like H.264 video that would require adaptive schedul-
ing schemes not yet implemented in Erbium [5]. In addition,
802.11a involves input-dependent mode changes that do not
fit the expressiveness constraints of StreamIt, jpeg has vari-
able computation load per macro-block and both jpeg and
fft feature very fine grain tasks.

5.1 Synthetic Benchmark
Synchronization overhead for the exploration benchmark

is shown in Figure 3. We tested 4 configurations per tar-
get: 1 producer and 1 consumer, and 1 producer and 4
consumers, 4 producers and 1 consumer, 2 producers and
2 consumers. All views of producer(s)/consumer(s) are con-
nected to the same record structure with an horizon of 224

elements. Each execution processes and communicates 226

indices. Threads are pinned such that producer(s) are all
mapped to different cores of the same chip, and all consumer
are mapped to different cores on a different chip.

False sharing induces severe overheads for tiny bursts and
is the cause of the wide performance instabilities. The burst
size remains an important factor passed the cache line size,
but synchronization overhead becomes negligible for bursts
of 1024 indices or more. In addition, the scatter and gather
performance is also excellent: small bursts remain profitable
even for complex configurations with multiple producers and
consumers. This validates the choice of an expressive con-
current data structure: performance is excellent on a simple
pipeline, while offering maximal flexibility to support com-
binations of pipeline- and data-parallel computations in a
high-level language.

The single-producer single-consumer configuration reaches
a maximum of 103M index computations per second on

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

1

2

3

4

5

6

Pipeline & data-
parallelism

Pipeline parallel-
ism only

OpenMP3.0
tasks

OpenMP3.0
parallel loops

Cilk

Log2 (FFT size)

S
p

e
e

d
u

p
 v

s.
 s

e
q

u
e

n
tia

l

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

1

2

3

4

5

6

Pipeline & data-
parallelism

Pipeline parallel-
ism only

OpenMP3.0
tasks

OpenMP3.0
parallel loops

Cilk

Log2 (FFT size)

S
p

e
e

d
u

p
 v

s.
 s

e
q

u
e

n
tia

l

Figure 4: Performance of fft on Xeon. Single settings (left) and best settings per data point (right)

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

1

2

3

4

5

6

7

Pipeline & data-
parallelism

Pipeline parallel-
ism only

OpenMP3.0
tasks

OpenMP3.0
parallel loops

Cilk

Log2 (FFT size)

S
p

e
e

d
u

p
 v

s.
 s

e
q

u
e

n
tia

l

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

1

2

3

4

5

6

7

Pipeline & data-
parallelism

Pipeline parallel-
ism only

OpenMP3.0
tasks

OpenMP3.0
parallel loops

Cilk

Log2 (FFT size)

S
p

e
e

d
u

p
 v

s.
 s

e
q

u
e

n
tia

l

Figure 5: Performance of fft on Opteron. Single settings (left) and best settings per data point (right)

Xeon: on average 23.3 cycles per index, an order of mag-
nitude shorter than the cache line transfer across x86 chips.
This paradox is easily explained: (1) for a large-enough hori-
zon, update() and stall() almost never result in a block-
ing synchronization, and (2) our cache-conscious algorithm
amortizes cache line transfers over a large number of calls
to the synchronization primitives.

5.2 Real Applications
Figures 4, 5 and 6 compare the performances of various

parallel versions of the FFT kernel and considering multi-
ple vector sizes. The baseline is an optimized sequential
FFT implementation used as a baseline for the StreamIt
benchmark suite. The first two bars are two parallel ver-
sions using Erbium, the next two bars are OpenMP ver-
sions, the last bar is a Cilk version. Combined pipeline
and data-parallelism achieve the best speedups, compared
to pure data-parallelism (both with Erbium). The size of
the machines and the associated cost of inter-processor com-
munication sets the break-even point around vectors of 256
single-precision floating point values.

FFT does not naturally expose much task parallelism be-
cause of the dependence patterns in the butterfly stages, yet

64 128 256 512 1024 2048 4096 8192
0

0.5

1

1.5

2

2.5

Erbium pipeline &
data-parallelism

Erbium data-
parallelism only

OpenMP3.0 tasks

OpenMP3.0 paral-
lel loops

Cilk

FFT size

S
pe

ed
up

 v
s.

 s
e

qu
en

tia
l

Figure 6: Performance of fft on Core 2

pipelining computations across different stages remains pos-
sible, and favors local, cache-to-cache communications over

external memory accesses; this explains the performance im-
provement of the combined version. On Xeon and Opteron
exploiting this pipeline parallelism allows to reduce con-
tention, even if at the expense of some data-parallelism. To
better analyze the intrinsic synchronization performance of
Erbium, we also show performance results on the smaller
single-node Core 2 platform on Figure 6. As the possi-
ble concurrency is reduced, the data-parallel versions stand
more of a chance, with a shared L3 cache and L2 shared
among each two cores. However, even in this unfavorable
setting, the addition of pipelining gives enough edge to our
combined data- and pipeline-parallelism approach, which
outperforms the task-parallel and data-parallel implemen-
tations in OpenMP, as well as a Cilk implementation [36].

FFD

Reader
+

Demod

FFD
ntaps=407

size = 8

1. FFD
taps=407

2. FFD
taps=407

3. FFD
taps=813

4. FFD
taps=813

Writer

FFD
ntaps=407

size = 8

(1. * 2.) + (3. * 4.)

Reader
+

Demod

FFD[129-256]FFD[0-128]

merger

(1. * 2.) + (3. * 4.)

Figure 7: Informal data flow of fmradio

Figure 8: Informal data flow of 802.11a

Platform (cores) Task-Level Only Data-Parallel Only Combined

Xeon (24) 1.85 1.84 6.67
Opteron (16) 2.73 2.81 7.45

Figure 9: Speedups results for 802.11a

Platform (cores) Seq. -O3 Par. -O2 Par. -O3 Par. -O3 vs. Par. -O2

Xeon (24) 1.14 10.1 12.6 1.25
Opteron (16) 1.52 9.51 14.6 1.54

Figure 10: Speedups results for fmradio

Now considering the three full applications, fmradio and
802.11a did not require radical design changes to achieve
scalable performance; jpeg was written initially as a fine-
grain KPN and only required systematic conversion of the
synchronization and communication methods.

On fmradio, exploiting task and pipeline parallelism is
easy but shows limited scalability — 6 concurrent processes.
Exploiting data parallelism is not trivial and involves an in-
teresting transformation: the original code uses a circular
window using modulo arithmetic and holding the results of
previous filtering iterations; it can be replaced by a record,
removing spurious memory-based dependences. Further-
more, the work must be distributed over independent work-
ers then merged into a single output stream; to eliminate
data copying overhead, the implementation leverages de-
coupled data access and synchronization, and the extended
Kahn semantics where multiple workers deterministically
produce data in exclusive index ranges.

Figure 7 illustrates the concurrency exposed in fmradio.
On the left, 4 processes called FFD (Float input, Float out-
put and Double taps) account for most of the computation
load. Two of them operate at twice the sampling rate of the
two others, involving twice the number of “taps” and twice
as many computations. This suggests to balance the load
by creating twice as many instances for the heavier ones.
The right side of the figure details the data-parallelization
of an FFD process, sharing the work into two instances. Fig-
ure 10 summarizes the speedups achieved with GCC 4.3 and
different optimization options. The baseline is the sequential
(original) version compiled with -O2 (no vectorization, less
optimizations); it runs in 13.65 s on Xeon. These results con-
firm the scalability of Erbium on a real application. They
also confirm its compiler-friendliness, GCC’s automatic vec-
torizer being capable of aggressive loop restructuring in pres-
ence of concurrency primitives and view accesses.

Figure 8 illustrates the concurrency exposed in 802.11a.
The data-flow graph is more unbalanced than fmradio and
it is not fork-join. frequency_sync and fine_time_sync

are stateful: they need to be decoupled from the rest of the
pipeline to enable data-parallelization [41]. Figure 10 dis-
plays speedup results. The Combined column shows the ben-
efit in exploiting both task-level and data parallelism. Strict
data parallelization even degrades performance on Xeon due
to work-sharing overheads.

1

2
4

8
16

32
64

128
256

512
1024

2048
4096

8192
16384

32768
65536

0

10

20

30

40

50

60

1 core 16 cores

Burst size

E
xe

cu
t io

n
tim

e

Figure 11: Performance of jpeg on Opteron

On jpeg, the systematic decomposition of the applica-
tion exposes 23 computational tasks, communicating by ex-
changing burst of pixels (or coefficients, depending on the

filter/stage). In the uncompressed data stream, 64 pixels/-
coefficients correspond to 1 macro block. The objective of
this experiment is to demonstrate the benefits of Erbium
on a real application with extremely fine grain tasks. Most
of the fine-grain tasks can be further data-parallelized, but
restrict ourselves to a task-parallel version for the purpose
of this experiment. Figure 11 shows the results on Opteron,
running the decoder once on a 4288 × 2848 image. Verti-
cal axis is execution time in milliseconds, horizontal axis is
the burst size in pixels. For single-core execution, the perfor-
mance plateau is achieved for bursts of 128 pixels, or 2 macro
blocks. For 16-core execution, the performance plateau is
achieved for bursts of 512 pixels, or 8 macro blocks. Com-
paring the best 16-core and single-core versions, we achieve a
4.85× speedup on Opteron. Most important, the break-even
point — defined as the burst size where 16-core performance
outperforms the best single-core performance — is 1 macro
block only. These numbers confirm that Erbium succeeds
in exploiting fine-grain thread-parallelism on real applica-
tions, although better results could be achieved combining
task-level and data parallelism. This is encouraging about
the scalability on future manycore architectures, where data
parallelism alone does not scale.

The tradeoff between task, pipeline and data-level paral-
lelism depends on the target architecture, and is becoming
one of the key challenges when adapting a computational ap-
plication to a new platform. Our results show that Erbium
is an ideal tool to explore this tradeoff. Overall, Erbium
leverages much more flexible, scalable and efficient forms
parallelism than restricted models.

5.3 Comparison with Lightweight Scheduling

1 2 4 8 16 32 64 128 256 1024 2048 4096 8192 16384 32768 65536
1

10

100

1000

Erbium Cilk (--nproc 4) Cilk (--nproc 1)

Burst size

E
xe

cu
tio

n
tim

e

Figure 12: Streaming processes vs. short-lived tasks

Erbium differs from the common parallel runtimes where
concurrency is expressed at the level of atomic, short run-
ning tasks. Figure 12 compares the execution time of the
exploration synthetic benchmark with a Cilk implementa-
tion spawning short-lived user-level tasks [36]. We consider
the Core 2 target, and Cilk is run with the -nproc 4 option
to generate parallel code, and with the -nproc 1 option to
specialize the code for sequential execution. The baseline

sequential execution takes almost 7 s for the finest synchro-
nization grain, and 5 s for larger ones. The parallel Cilk
version with the finest synchronization takes 221.4 s and the
corresponding Erbium version takes 107.7 s. The perfor-
mance gap widens significantly for intermediate bursts sizes,
and reaches almost 5× when the Erbium version reaches
its performance plateau. But the most important figure in
practice is that the Erbium version breaks even for grain
size 80× smaller than Cilk. It demonstrates that communi-
cations among long-lived processes are an essential abstrac-
tion for scalable concurrency.

These numbers also explain the poor performance of the
Cilk FFT implementation. Data-parallelism dominates the
scalability of the FFT, and Cilk incurs a noticeable schedul-
ing and synchronization overhead for data-parallel execu-
tion. Erbium avoids this overhead by running data-parallel
tasks fully independently, and implementing synchroniza-
tions across butterfly stages at a much lower cost.

We also compared Erbium with StarSs, in its SMPSs fla-
vor [37]. StarSs is perfectly suited to express our data-flow
applications. However, its current execution model relies on
lightweight scheduling. Our experiments with fmradio show
that StarSs achieves 3.88× speedup on Xeon and 2.97× on
Opteron, 3 to 4 times less than Erbium.

Short-lived atomic tasks may be better supported with
dedicated hardware [32]. This is also the case for streaming
communications, as illustrated by the TTL approach [26].
Of course, lightweight threading techniques are still required
for load balancing and to increase the reactivity of passive
synchronizations (blocking update()/stall()).

6. RELATED WORK
Concurrency models have been designed for maximal ex-

pressiveness and generality [27,38], with language counter-
parts such as Occam [12]. Asynchronous versions have been
proposed to simplify the implementation on distributed plat-
forms and increase performance [18], with language coun-
terparts such as JoCaml [17]. Compared to these very ex-
pressive concurrency models, Erbium builds on the Kahn
principle (data flow), which is sufficient to expose scalable
parallelism in a wide spectrum of applications; it also offers
determinism and liveness guarantees that evade the more
expressive models.

Our work is strongly influenced by the compilation of
data-flow and streaming languages, including I-Structures
[3], SISAL [30], Lustre [24], Lucid Synchrone [9], Jade [49]
and StreamIt [55]. These languages share a common in-
terest in determinism (time-independence) and abstraction.
They also involve advanced compilation techniques, includ-
ing static analysis to map declarative concurrent semantics
to effective parallelism, task-level optimizations and static
scheduling. Erbium is an ideal representation to implement
platform-specific optimizations for such languages.

Extensions of OpenMP have been proposed to support
pipeline parallelism and streaming applications [7,37,44,45,
52]. These are promising tradeoffs between declarative ab-
stractions and explicit, target-specific parallelization. But
they suffer from expressiveness limitations: the fmradio ap-
plication has been initially parallelized with such approaches,
but data parallelism could not easily be expressed. Pop et
al. report speedup saturating around 3× on 4-core to 16-core
x86-64 platforms [45]. A new proposal for a streaming ex-
tension of OpenMP has benefitted from our experience with

Erbium [?]; implementation is underway, with dedicated al-
gorithms to convert the short-lived tasks of the OpenMP
specification into persistent Erbium processes.

The work of Haid et al. [23] shares many design goals with
Erbium. It aims for the scalable and efficient execution of
Kahn process networks on multicore processors. Its sliding
window design matches the layout of records in Erbium.
But it does not come with an associated compiler inter-
mediate representation, and it does not deal with modular
composition and dynamic process creation. Furthermore,
although it advocates for streaming communications, it still
relies on dynamic scheduling for event-driven synchroniza-
tion. Most encouraging to us, Haid et al. demonstrate that
data-driven scheduling and streaming communications can
coexist: it indicates that our approach is complementary to
the large body of work in lightweight runtimes.

Fastflow is closely related with the Erbium runtime imple-
mentation [?]. It is a C++ programming pattern for stream-
ing applications dedicated to shared-memory platforms. Its
lock-free, fence-free synchronization layer has comparable
performance to our single-producer single-consumer record.
It supports multi-producer multi-consumer communication
at the expense of an additional arbitration thread and mem-
ory copying. Because index-range negotiation is exposed to
the compiler in the intermediate representation, our runtime
achieves lock-free, fence-free multi-producer multi-consumer
communication without these overheads.

Cilk does not natively support data-flow concurrency [36]
but we share its emphasis on compile-time specialization.
We wish to integrate work stealing and load-balancing capa-
bilities in the future, as motivated by Azevedo et al. for irreg-
ular streaming applications [5]. In addition, Erbium binds
processes and data together, facilitating process migration
and fault tolerance. Regarding the distributed-memory im-
plementation of Erbium, we will leverage the results of pro-
posals like StarSs (parallel data-flow annotations [42]) and
StarPU (scheduling framework [4]).

Further performance improvements can be achieved with
hardware support, starting from the pioneering data-flow
architectures [14,56], recently revived for coarser-grain, task-
level concurrency [1,32,51]. Streaming register files have also
been proposed to accelerate data-flow computations [22,41].

Finally, our work is not related to the software approaches
to achieve deterministic execution for debugging purposes —
deterministic replay [40]. These approaches do not define a
target-independent semantics for the application.

7. CONCLUSION
We introduced Erbium and its three main ingredients:

an intermediate representation for compilers and efficiency
programmers, a data structure for scalable and determinis-
tic concurrency, and a lightweight runtime. The interme-
diate representation is being implemented in GCC 4.3 and
allows classical optimizations and parallelizing transforma-
tions to operate transparently. It relies on 4 concurrency
primitives implemented with platform-specific, non-blocking
algorithms. The data structure called event record is the ba-
sis for a scalable and deterministic concurrency model with
predictable resource management. Our current implemen-
tation has a very low footprint and demonstrates high scal-
ability and performance.

Acknowledgments. This work was partly supported by the
European Commission through the Marie Curie ToK-IAP
PSYCHES grant id. 030072, the FP6 project ACOTES id.
034869, and the FP7 project TERAFLUX id. 249013. Cu-
pertino Miranda was supported by a scholarship from the
Portuguese Ministry of Research. This work was performed
while Marc Duranton and Phlippe Dumont were working
at NXP Semiconductors, The Netherlands. The design of
Erbium benefited from fruitful collaborations with Zbig-
niew Chamski, Léonard Gérard, Sean Halle, Jan Hooger-
brugge, Piotr Kourzanov, Xavier Martorell, Louis Mandel,
Florence Plateau, Marc Pouzet, Alex Ramirez, Aly Syed,
Andrei Terechko and Nicolas Zermati.

8. REFERENCES
[1] G. Al-Kadi and A. S. Terechko. A hardware task

scheduler for embedded video processing. In Proc. of
the 4th Intl. Conf. on High Performance and
Embedded Architectures and Compilers (HiPEAC’09),
Paphos, Cyprus, Jan. 2009.

[2] P. An, A. Jula, S. Rus, S. Saunders, T. Smith,
G. Tanase, N. Thomas, N. M. Amato, and
L. Rauchwerger. Stapl: An adaptive, generic parallel
C++ library. In Languages and Compilers for Parallel
Computing (LCPC’01), pages 193–208, 2001.

[3] Arvind, R. S. Nikhil, and K. Pingali. I-structures:
Data structures for parallel computing. ACM Trans.
on Programming Languages and Systems,
11(4):598–632, 1989.

[4] C. Augonnet, S. Thibault, R. Namyst, and M. Nijhuis.
Exploiting the Cell/BE architecture with the StarPU
unified runtime system. In Embedded Computer
Systems: Architectures, Modeling, and Simulation
(SAMOS’09), pages 329–339, 2009.

[5] A. Azevedo, C. Meenderinck, B. H. H. Juurlink,
A. Terechko, J. Hoogerbrugge, M. Alvarez, and
A. Ramı́rez. Parallel H.264 decoding on an embedded
multicore processor. In Proc. of the 4th Intl. Conf. on
High Performance and Embedded Architectures and
Compilers (HiPEAC’09), Paphos, Cyprus, Jan. 2009.

[6] G. Bilsen, M. Engels, L. R., and J. A. Peperstraete.
Cyclo-static data flow. In Intl. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP’95), pages
3255–3258, Detroit, Michigan, May 1995.

[7] P. M. Carpenter, D. Ródenas, X. Martorell,
A. Ramı́rez, and E. Ayguadé. A streaming machine
description and programming model. In Embedded
Computer Systems: Architectures, Modeling, and
Simulation (SAMOS’07), pages 107–116, Samos,
Greece, July 2007.

[8] P. Caspi, J.-L. Colaço, L. Gérard, M. Pouzet, and
P. Raymond. Synchronous objects with scheduling
policies: introducing safe shared memory in lustre. In
LCTES, pages 11–20, 2009.

[9] P. Caspi and M. Pouzet. Synchronous Kahn networks.
In ACM Intl. Conf. on Functional programming
(ICFP’96), pages 226–238, 1996.

[10] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti,
F. Plateau, and M. Pouzet. N-Sychronous Kahn
networks. In ACM Symp. on Principles of
Programming Languages (POPL’06), pages 180–193,
Charleston, South Carolina, Jan. 2006.

[11] A. Cohen, L. Mandel, F. Plateau, and M. Pouzet.
Abstraction of clocks in synchronous data-flow
systems. In 6th Asian Symp. on Programming
Languages and Systems (APLAS 08), Bangalore,
India, Dec. 2008.

[12] I. Corp. Occam Programming Manual. Prentice Hall,
1984.

[13] D. E. Culler and Arvind. Resource requirements of
dataflow programs. In ISCA, pages 141–150, 1988.

[14] J. B. Dennis and G. R. Gao. An efficient pipelined
dataflow processor architecture. In Supercomputing
(SC’88), pages 368–373, 1988.

[15] U. Drepper. Futexes are tricky.
http://people.redhat.com/drepper/futex.pdf,
Aug. 2009. Latest revision.

[16] K. Fatahlian, T. J. Knight, M. Houston, M. Erez,
D. R. Horn, L. Leem, J. Y. Park, M. Ren, A. Aiken,
W. J. Dally, and P. Hanrahan. Sequoia: Programming
the memory hierarchy. In Supercomputing 2006,
Tampa, Florida, Nov. 2006.

[17] F. L. Fessant and L. Maranget. Compiling
join-patterns. Electr. Notes Theor. Comput. Sci.,
16(3), 1998.

[18] C. Fournet and G. Gonthier. The reflexive chemical
abstract machine and the join-calculus. In Proceedings
of the 23rd ACM Symposium on Principles of
Programming Languages, pages 372–385, St.
Petersburg Beach, Florida, Jan. 1996. ACM.

[19] A. Ghuloum, T. Smith, G. Wu, X. Zhou, J. Fang,
P. Guo, B. So, M. Rajagopalan, Y. Chen, and
B. Chen. Future-proof data parallel algorithms and
software on Intel multi-core architecture. Intel
Technology Journal, Nov. 2007.

[20] J. Giacomoni, T. Moseley, and M. Vachharajani.
Fastforward for efficient pipeline parallelism: a
cache-optimized concurrent lock-free queue. In ACM
Symp. on Principles and practice of parallel
programming (PPoPP’08), pages 43–52, Salt Lake
City, Utah, 2008.

[21] M. I. Gordon, W. Thies, and S. Amarasinghe.
Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In ASPLOS-XII:
Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems, pages 151–162, San Jose,
California, 2006.

[22] R. Gupta. Exploiting parallelism on a fine-grain
MIMD architecture based upon channel queues. Intl.
J. of Parallel Programming, 21(3):169–192, 1992.

[23] W. Haid, L. Schor, K. Huang, I. Bacivarov, and
L. Thiele. Efficient execution of Kahn process networks
on multi-processor systems using protothreads and
windowed FIFOs. In Workshop on Embedded Systems
for Real-Time Multimedia (ESTImedia’09), pages
35–44, Grenoble, France, Oct. 2009.

[24] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language
Lustre. Proceedings of the IEEE, 79(9):1305–1320,
Sept. 1991.

[25] R. H. Halstead, Jr. Multilisp: a language for
concurrent symbolic computation. ACM Trans. on

Programming Languages and Systems, 7(4):501–538,
1985.

[26] T. Henriksson and P. van der Wolf. Ttl hardware
interface: A high-level interface for streaming
multiprocessor architectures. In Workshop on
Embedded Systems for Real-Time Multimedia
(ESTImedia’06), pages 107–112, Seoul, Korea, Oct.
2006.

[27] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[28] K. Honda and M. Tokoro. An object calculus for
asynchronous communication. In ECOOP ’91:
Proceedings of the European Conference on
Object-Oriented Programming, pages 133–147.
Springer-Verlag, 1991.

[29] G. Kahn. The semantics of a simple language for
parallel programming. In J. L. Rosenfeld, editor,
Information processing, pages 471–475, Stockholm,
Sweden, Aug. 1974. North Holland, Amsterdam.

[30] C. Kim, J.-L. Gaudiot, and W. Proskurowski. Parallel
computing with the sisal applicative language:
Programmability and performance issues. Software,
Practice and Experience, 26(9):1025–1051, 1996.

[31] M. Kudlur and S. Mahlke. Orchestrating the execution
of stream programs on multicore platforms. In ACM
Conf. on Programming Language Design and
Implementation (PLDI’08), pages 114–124, June 2008.

[32] C. Kyriacou, P. Evripidou, and P. Trancoso.
Data-driven multithreading using conventional
microprocessors. IEEE Trans. on Parallel Distributed
Systems, 17(10):1176–1188, 2006.

[33] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal
processing. IEEE Trans. on Computers, 36(1):24–25,
1987.

[34] E. A. Lee and A. L. Sangiovanni-Vincentelli. A
framework for comparing models of computation.
IEEE Trans. on CAD of Integrated Circuits and
Systems, 17(12):1217–1229, 1998.

[35] R. Lublinerman, C. Szegedy, and S. Tripakis. Modular
code generation from synchronous block diagrams:
modularity vs. code size. In ACM Symp. on Principles
of programming languages (POPL’09), pages 78–89.
ACM, 2009.

[36] K. H. R. M. Frigo, C. E. Leiserson. The
implementation of the Cilk-5 multithreaded language.
In ACM Symp. on Programming Language Design and
Implementation (PLDI’98), pages 212–223, Montreal,
Quebec, June 1998.

[37] V. Marjanovic, J. Labarta, E. Ayguadé, and
M. Valero. Effective communication and computation
overlap with hybrid MPI/SMPSs. In PPOPP, 2010.

[38] R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes, i and ii. Inf. Comput., 100(1):1–40
and 41–77, 1992.

[39] U. Nestmann and B. C. Pierce. Decoding choice
encodings. Inf. Comput., 163(1):1–59, 2000.

[40] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
Efficient deterministic multithreading in software. In
The International Conference on Architectural Support
for Programming Languages and Operating Systems,
Washington, DC, Mar 2009.

[41] G. Ottoni, R. Rangan, A. Stoler, and D. I. August.
Automatic thread extraction with decoupled software
pipelining. In IEEE Intl. Symp. on Microarchitecture
(MICRO’05), pages 105–118, 2005.

[42] J. M. Pérez, P. Bellens, R. M. Badia, and J. Labarta.
CellSs: Making it easier to program the cell
broadband engine processor. IBM Journal of Research
and Development, 51(5):593–604, 2007.

[43] K. Pingali and Arvind. Efficient demand-driven
evaluation - Part 1. ACM Trans. on Programming
Languages and Systems, 7(2):311–333, 1985.

[44] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta.
Hierarchical task-based programming with starss. Intl.
J. on High Performance Computing Architecture,
23(3):284–299, 2009.

[45] A. Pop, S. Pop, and J. Sjödin. Automatic
streamization in GCC. In GCC Developer’s Summit,
Montreal, Quebec, June 2009.

[46] M. Prvulovic and J. Torrellas. Reenact: Using
thread-level speculation mechanisms to debug data
races in multithreaded codes. In ISCA, pages 110–121,
2003.

[47] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and
D. I. August. Parallel-stage decoupled software
pipelining. In ACM Intl. Symp. on Code Generation
and Optimization (CGO’08), pages 114–123, Apr.
2008.

[48] M. Ren, J. Y. Park, M. Houston, A. Aiken, and W. J.
Dally. A tuning framework for software-managed
memory hierarchies. In Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT’08),
pages 280–291. ACM Press, 2008.

[49] M. C. Rinard and M. S. Lam. The design,
implementation, and evaluation of Jade. ACM Trans.
on Programming Languages and Systems,
20(3):483–545, 1998.

[50] A. Robison, M. Voss, and A. Kukanov. Optimization
via reflection on work stealing in TBB. In IEEE
International Symposium on Parallel and Distributed
Processing (IPDPS’08), pages 1–8, Miami, Florida,
Apr. 2008.

[51] M. Själander, A. Terechko, and M. Duranton. A
look-ahead task management unit for embedded
multi-core architectures. In Proc. of the 2008 11th
EUROMICRO Conf. on Digital System Design
Architectures, Parma, Italy, Sept. 2008.

[52] K. Stavrou, M. Nikolaides, D. Pavlou, S. Arandi,
P. Evripidou, and P. Trancoso. Tflux: A portable
platform for data-driven multithreading on commodity
multicore systems. In Intl. Conf. on Parallel
Processing (ICPP’08), pages 25–34, Portland, Oregon,
Sept. 2008.

[53] S. Stuijk. Concurrency in computational networks.
Master’s thesis, Technische Universiteit Eindhoven
(TU/e), Oct. 2002. # 446407.

[54] W. Thies. Language and Compiler Support for Stream
Programs. Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, MA, Feb 2009.

[55] W. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A language for streaming applications. In
Intl. Conf. on Compiler Construction, Grenoble,
France, Apr. 2002.

[56] I. Watson and J. R. Gurd. A practical data flow
computer. IEEE Computer, 15(2):51–57, 1982.

